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ON ORDER AND MORPHISMS
RELATED TO A SHEFFER STROKE

E. Trillas and V. Pawlowsky

ABSTRACT

‘The paper deals with a new interpretation of
a special functional characterisation of She-
ffer strokes, with the study of morphisms and
the construction of different De Morgan Alge-
bras on a given set. :

Introduction.

The :study of De Morgan lattices through one binary connecti
ve S, kné&n as ''Sheffer Stroke', was introduced in [Monteiro and
Picco, 1963]§and recently in [Trillas and Alsina, 1981] a func-
tional characterisation was presented. In the present paper the
study of ithis functional characterisation is extended, establi-
shing the relationship of the Sheffer Stroke (Ss) itself w?ththe
underlying ordered structure and the meaning of the functional
characterisatfon in this context.‘Furthermore, the study of mor-
ph(sms of- Ss enable us to construct new De Morgan Algebras on the
same set M; one of the two possible constructions changes the .la
ttice-structure, but not the complement, while the other changes
both, but allowing to construct a whole family of morphisms gene

rating a family of De Morgan lattices with the same lattice struc
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ture and different complements. Proofs are omitted as far as they

are straightforward and tedious computations.

By definition [Monteiro and Picco, 1963] a Ss on a non-empty

set M is a mapping S from MxM into M such that

>(a) S(S(xx),S(x,y)) = x,
(b) s(s(x,s(y,z)),s(x,S(y,z)))=s(s(s(y,y),x),s(s(z,2),x)),

for any x,y,z in M.

The functional characterization presented in [Trillas and

Alsina, 1981] is expressed by the following
Theorem 1. A function S from MxM into M is a Ss if and only if
S = f-(nxn),

where n is an involutive function on M, and f is a function from

MxM into M satisfying

(a) f(x,n(f(n(x),n(y)))) = x,
(b) f(x,n(f(n(y),n(z2)))) n(fF(n(f(y,x)),n(f(z,x)))),

for any x,y,z in M.

Notice that this is a reduced version, because the original
one included the idempotency of f (f(x,x)=x for any x in M); this
condition has been dropped as far as it can be deduced directly

from the other two conditions (a) and (b).

From this theorem the main result of [ Monteiro and Picco,

1963] can easily be deduced and can be stated as

Corollary 2. If S is a Ss on M, defining

TIx o= S(x,x), xay = S(x,7ly), xvy =ls(x,y,,

(M, 1,A,v) is a De Morgan Lattice.
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Conversely, any De Morgan Lattice induces a Ss given by
S(x,y) = Ixaly, which suggests to read S(x,y) as ''‘neither x nor
yll‘

From the functional characterization given in thearem 1 the

following result is directly deduced

Corollary 3. Given a Ss S both the involutive function n and the

function f from theorem 1 associated both are unique.

The order induced by a Sheffer Stroke.

Let S be a Ss on a non-empty set M. Define in M the following

binary relation

x Sy iff s(x,y) = s(y,y).

Then .

Theorem 4. (M, Sg) is a distributive lattice and the function n de
fined in M by n(x) = S(x,x) is non-increasing and involutive. The
order relation S% is a total order iff S(x,y)=S(y,y) or S{x,y)=S(x,x)

for all x,y in M.

We will write infs(x,y) and sups(x,y) for the infimum and the

supremum of the pair (x,y) relatively to the partial order <

g ca

lled the order induced by the Ss S.

The converse of theorem 4 also holds: |f (M,< ) is a distributive

lattice and n is a non increasing and involutive function on

M, S = inf_ (nxn) is a Ss on M.

Notice that defining x <é y iff S(x,y)=S(x,x) the dual order on M

is obtained, and that if there exists a function h on M such that

x Sy TFFoS(x,y) = h(y),
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is a partial order, then the reflexive property implies
h(x) = S(x,x) for any x in M.

Notice also that for the converse of theorem 4 we get a simi

lar result considering the following alternative definition:
$' = supg(nxn).

We call S' the dual Ss of S.

The proof of theorem 4 can be obtained either by straighfor-
ward computation or considering the equivalence between the Ss
and the De Morgan lattice structure on the set M stated in corolla
ry 2. But it is interesting to see that the ordered structure can
be directly derived from the binary connective S and reciprocally.
Nonwithstanding the most important result lies in the direction

of the functional characterization, for we obtain the following
Theorem 5. The function f of theorem 1 is the infimum with respect

to the order relation induced by S (respectively the supremum for
the dual order).

MORPHISMS AND SHEFFER STROKES.

Consider now a Ss S on M, and a one-to-one and onto mapping

h from a non-empty set N onto M. Let be <S the order induced by S

on M and n(x) = S(x,x) the induce involutive function.
Theorem 6. S* = h‘loSo(hxh) is a Ss on N such that

(a) the involutive function induced by S*¥ on N is n*=h']°noh;

(b) h is an order isomorphism between N with the order induced
by S* and (M,<S);

(c) n* is non-decreasing with respect to the induced order in N.
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Restricting our study to the case N = M, suppose now that
honoh-] is non-increasing with respect to <s' Under this hypothe-

sis next theorem gives an alternative way of defining a Ss on M:

-1

Theorem 7. S = h ' °So(nohonxn°h°n) is a Ss on M such that
(a) the induced involutive function is S(x,x) = n(x) = 5(x,x).

(b) h is an order isomorphism between M with the order induced by
S and (M,<S).

Considering both ways of defining new Ss on M for the same
one-to-one and onto function h (supposed h°n°h-] non-increasing
for <S) it is easily verified, due to both properties (b) from

theorems 6 and 7, that:

The order induced by S* and the order induced by S on M are the

same.

Notice that if nh = hn, then S* = S, but if on the contrary
nh # hn, then new De Morgan lattice-structures on M are obtained
which differ from the original one (corresponding to S) for S*%
both in the underlying lattice-structure and the complement (gi-
ven by n*), and for S only in the underlying lattice-structure,

resting the complement the same (n = n).

Defining now a family of functions:

)k-1on, k in N,

_ =1
h, =nch (neh noh
being h a one-to-one and onto function M and n the involutive

function considered before, then

s, = h leso(h xh

k K Wxhds koin N,

is a family of Ss on M, due to theorem 6.

K the order induced in M by Sk and by n, the

Denoting by < K

corresponding irmvolutive function, we have:
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For all k in N the order <k is the same, differing the involutive

functions Ny iff nh # hn.

To remark the close relation between the ordered structure

and the Ss on M, let us state finally

Theorem 8. Consider the set M ordered both by <s (the order indu-
ced by S) and an arbitrary order a. Let be h an order isomorphism
between (M,a) and (M,<S). Then

(a) n' = h_lonoh is an involutive function on M, non-increasing
for a;

(b) if h is increasing, S*=h-]°S°(hxh)=infa(n*xn*), and if h is
decreasing S*=supa(n*xn*).

1 . . .
is non-increasing

(c) if n is non-increasing for a then honoh
for <s’ and S = h—1°S°(n°h°nxn°h°n) is a Ss on M such that the
order induced by S is precisely a, both for h increasing and

for h decreasing.

The fact of being h an order isomorphism allows to give a ne
gative answer to an open problem stated in [Trillas and Alsina,
1981]. There the authors asked whether any total order in [0,1]
could be described through a Ss defined by

S(x,y)=g "(min(g(n(x)),g(n(y)))),

where g is a one-to-one function from [0,1] onto itself, n an in-
volutive, decreasing function from [0,1] onto itself such that
n(0) = 1, min the minimum with respect to the usual order on [0,1]

and n and g verify that genog ! is non-increasing.

The negative answer cén be obtained, for example, as follows;
Writing S = min(nxn), then S = g-1§(nogonxnognn) and theorem 7 im-
plies that g is an order isomorphism between [0,1] with the usual
order and [0,1] with the order induced by S. So it is enough to
bring a total order on [0,1] not isomorphic to the usual one to

disprove the statement. Consider therefore the following ordering



On order and morphisms related to a Sheffer Stroke 207

of [0,1]: "the usual order in [0,1/2)U(1/2,1], and x less than
1/2 for any x in [0,1/2)U(1/2,1]". It is easy to prove that there

exists no isomorphism, as required.

Allthough generally the answer is a negative one, the descrip
tion of any total order isomophic to the usual order in [0,1]

through a Ss is ensured by theorem 8.
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