THE SPACE OF DISTRIBUTION FUNCTIONS IS SEPARABLE

Carlo Sempi

ABSTRACT

The space of distribution functions endowed with the metric introduced in [5] is separable.

The space Δ of distribution functions (d.f.'s) is a compact (and hence complete) metric space when it is endowed with the metric d: $\Delta x \Delta \rightarrow R^+$ defined by

(1)
$$d(F,G) := \sum_{r=1}^{\infty} 2^{-r} \left| \int_{\overline{R}} \theta_r dF - \int_{\overline{R}} \theta_r dG \right|$$

where $\bar{R}=R\cup\{-\infty,+\infty\}$ are the extended reals and $\{\theta_r,r\in N\}$ i's a suitable enumeration of the functions $\phi_{ab}:\bar{R}\to[0,1]$ defined, for every pair $a,b\in Q$ with a< b, by

$$\phi_{ab}(x) := (b-a)^{-1} \int_{x}^{+\infty} 1_{[a,b]}(t) dt.$$

The convergence determined by this metric is the usual weak convergence of d.f.'s ([2]) which will be denoted by $F_n \stackrel{W}{\to} .F$. For

what precedes see [5].

Let $E:=\{\epsilon_x\in\Delta\colon x\in\bar{R}\}$ where $\epsilon_x:\bar{R}\to[0,1]$ is the d.f.

$$\varepsilon_{X}(t) := \begin{cases} 0, & t < x, \\ 1, & t \geq x. \end{cases}$$

Theorem 1. E is homeomorphic to \bar{R} .

Proof. There is obviously a bijection $\Phi\colon\!\bar{R}\to E$ such that $\Phi(x)\!=\!\varepsilon_{_{\textstyle X}}.$ One must now show that both Φ and Φ^{-1} are continuous.

(i) Φ is continuous. Let $\{x(n): n \in \mathbb{N}\} \subset \overline{\mathbb{R}}$ be a sequence that converges to $x \in \overline{\mathbb{R}}$. Now $d(\varepsilon_{x(n)}, \varepsilon_{x}) = \Sigma_{r} 2^{-r} \delta(r, n)$ where

$$\delta \left(r,n\right) := \left| \begin{array}{ccc} \int & \theta & d\varepsilon \\ R & \end{array} \right. \left. \left(r,n\right) \right. - \left. \begin{array}{cccc} \int & \theta & d\varepsilon \\ R & \end{array} \right| \ .$$

If $a,b \in Q$, then, by integration by parts

$$\begin{split} \left| \int\limits_{R} \varphi_{ab} \ d\varepsilon_{x(n)} - \int\limits_{R} \varphi_{ab} \ d\varepsilon_{x} \right| &= (b-a)^{-1} \left| \int\limits_{a}^{b} \left\{ \varepsilon_{x(n)}(t) - \varepsilon_{x}(t) \right\} dt \right| \leq \\ &\leq (b-a)^{-1} \int\limits_{a}^{b} \left| \varepsilon_{x(n)}(t) - \varepsilon_{x}(t) \right| dt. \end{split}$$

But

$$\left| \varepsilon_{\mathsf{X}(\mathsf{n})}(\mathsf{t}) - \varepsilon_{\mathsf{X}}(\mathsf{t}) \right| = \begin{cases} 0, & \mathsf{t} \notin [\min\{\mathsf{x}, \mathsf{x}(\mathsf{n})\}, \max\{\mathsf{x}, \mathsf{x}(\mathsf{n})\}[, \\ 1, & \mathsf{t} \in [\min\{\mathsf{x}, \mathsf{x}(\mathsf{n})\}, \max\{\mathsf{x}, \mathsf{x}(\mathsf{n})\}[.] \end{cases}$$

Therefore, by dominated convergence,

$$\lim_{n\to\infty} \int_{\bar{R}}^{\varphi} \varphi_{ab} d\varepsilon_{x}(n) = \int_{\bar{R}}^{\varphi} \varphi_{ab} d\varepsilon_{x} \quad \forall \quad a,b \in \mathbb{Q} (a < b),$$

viz. $\lim_{n\to\infty} \delta(r,n) = 0 \ \forall r \in \mathbb{N}$.

Thus, applying the dominated convergence theorem to the counting measure on N, one has $\lim_n d(\epsilon_{x(n)}, \epsilon_x) = 0$, i.e. $x(n) \to x$ im-

plies $\epsilon_{\mathbf{x}(\mathbf{n})} \stackrel{\mathsf{W}}{\to} \epsilon_{\mathbf{x}}$, which proves that Φ is continuous.

(ii) ϕ^{-1} is continuous. Assume $\varepsilon_{\mathbf{X}(\mathbf{n})} \overset{\forall}{\to} \varepsilon_{\mathbf{X}}$ i.e. $d(\varepsilon_{\mathbf{X}(\mathbf{n})}, \varepsilon_{\mathbf{X}}) \to 0$, with \mathbf{X} , $\mathbf{X}(\mathbf{n})$ $\epsilon \bar{\mathbf{R}}$ (n ϵN). One ought to show that $\mathbf{X}(\mathbf{n}) \to \mathbf{X}$ in the usual topology. $\varepsilon_{\mathbf{X}(\mathbf{n})} \overset{\forall}{\to} \varepsilon_{\mathbf{X}}$ means that

$$\lim_{n\to\infty} (t) = \begin{cases} 0, & t < x, \\ \\ 1, & t > x; \end{cases}$$

the limit is undefined at t=x.

If one assumes, <u>ab absurdo</u>, that $\{x(n): n \in N\}$ does not converge to x, then one can find $\delta > 0$ and an infinite subset J of N such that $|x(n)-x| \ge \delta$ or $x(n) \notin]x-\delta, x+\delta[$, whenever $n \in J$. Then, if $n \in J$, one has for all $a,b \in Q$ with $a \le x-\delta$ and $b \ge x+\delta$

$$\begin{split} \left| \int\limits_{\bar{R}} \varphi_{ab} \, d\epsilon_{x(n)} - \int\limits_{\bar{R}} \varphi_{ab} \, d\epsilon_{x} \right| &= (b-a)^{-1} \left| \int\limits_{\bar{R}} \left\{ \epsilon_{x(n)}(t) - \epsilon_{x}(t) \right\} dt \right| \geq \\ &\geq (b-a)^{-1} \lambda \left(\left[a, b \right] \cap \left[x-\delta, x+\delta \right] \right) = 2\delta / (b-a), \end{split}$$

where λ is Lebesgue measure. Now, if b ϵ [x+ δ ,x+ 2δ] and a ϵ [x- 2δ ,x- δ], one has $2\delta/(b-a)>1/2$ so that a denumerable subset K of N exists such that, if n ϵ J,

$$d(\varepsilon_{x(n)}, \varepsilon_{x}) \geq \sum_{r \in K} 2^{-r} \delta(r, n) \geq (1/2) \sum_{r \in K} 2^{-r} > 0$$

which contradicts the assumption. Therefore $x(n) \rightarrow x$ in the usual topology and ϕ^{-1} is continuous. Q.E.D.

Theorem 2. E is separable.

Proof. The subset D:={ ϵ_q : q \in Q} \subseteq E is denumerable and dense in E, by the previous result, and $\bar{Q}=\bar{R}$. Q.E.D.

The following result can now be proved in the same way as the classical one for $(\Delta_{\circ},d_{\parallel})$ (see, e.g., [1] exercise 25.4): d_{\parallel}

is the Lévy metric on Δ_{\circ} , the space of "proper" d.f.'s.

Theorem 3. For every $\delta>0$ and for every $F\in\Delta$ there exist a number $n\in\mathbb{N}$, a probability distribution (a_1,a_2,\ldots,a_n) and $x(1), x(2),\ldots,x(n)\in\mathbb{R}$ such that

$$d(F, \sum_{i=1}^{n} a_i \varepsilon_{x(i)}) < \delta$$

An immediate consequence of the two previous theorems is the following

Corollary. The metric space (Δ,d) is separable.

The results of this note, as well as those of [5], may be regarded as an explicit realization, by elementary methods, of the results in section II.6 of [3], realization which is convenient in the setting of probabilitatic metric spaces ([4]).

Bibliografy

- [1] P. BILLINGSLEY, "Probability and Measure", Wiley, New York, 1979.
- [2] M. LOEVE, "Probability Theory", Van Nostrand, New York, 1963; 4th ed., Springer, New York-Heidelberg-Berlin, 1977-1978.
- [3] K. R. PARTHASARATHY, "Probability Measures on Metric Spaces", Academic Press, New York-London, 1967.
- [4] B. SCHWEIZER and A. SKLAR, "Probabilistic Metric Spaces", Elzevier, New York, 1983.
- [5] C. SEMPI, "On the Space of Distribution Functions", Riv.Mat. Univ. Parma (4) 8, 243-250 (1982).

Dipartimento di Matematica Università C.P. 193 - Lecce, Italia 73100