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EMBEDDINGS IN ITERATION GROUPS AND
SEMIGROUPS WITH NONTRIVIAL UNITS

Jurgen Weitkdamper

0. Introduction.

The usual interpretation of an iteration group (semigroup)
as a dynamical (semidynamical) system is given in the following
way. Denoting by X the ''state space' of a 'system'" an iteration
(semi) group {f'} describes the transition of the states in M-
me spéns” t. Naturally this interpretation leads to the property
f9(x) = x for the neutral element f° of an iteration (semi) group:
after a zero time span the system is still in the same state. This
may be the reason why in most work on dynamical systems fo(x) = X
is demandéd for all states x. Only recently was it noticed in
work of Sklar and Zdun that iteration groups or semigroups wit-

hout this requirementexhibit interesting properties.

Definition 0.1. Let H be a sub(semi)group of the additive group

of reals. We call a family {ft:X + X; t€H} of mappings an itera

tion (semi)group if
0.2. £° o ft = f5+t for all s,t in H.

An important example is the‘semigroup of natural iterates.
Given a self-mapping fog a set, the natural iterates f7 of f, re
cursively defined by £l o= f, gt fof' neN, from an itera-
tion semigroua} ‘

175
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As a second example consider a set X consisting of two points
X = {1,2} and the mapping f of this set into itself with fixed
point 2 and f(1) = 2. This mapping is idempotent: f o f = f, and
a real iteration group is given by ft = f for all real t. Clear-

ly the unit element f© is different from the identity on X.
A real iteration group consisting of continuous functions
is given by: X = [0,2], and for real t

-t
x(3 ) , xe€lo,1]

Fhx) = 1-t
(-3 ) xel1,2]

In the following we discuss the question whether the discre
te system of natural iterates can be embedded in a time continuous

system.

Definition 0.3. Let f be a self-mapping of a set._An‘iteration

(semi)group {ft;t €H}, 1€H is called an H-embedding of f if
0.4 £lo= f.

Due to the property 0.2 the natural iterates f" of the embe-
dded function coincide with the mappings fY for t = n of the ite
ration (semi)group. The semigroup of natural iterates becomes a

subsemigroup of the embedding.

A self mapping f of a set X defines an iterative structure

on the set. The relation
0.5 x >y <« Im,neN fM(x) = fn(y)

is an equivalence relation; it decomposes X into disjoint classes,
the orbits. Orbits can be considered as directed funtional graphs,
an edge leading from x to y if and only if y = f(x). The only or-

bit of the mapping in the second of the above examples is of the
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form:

10— & 2

A k-cycle consists of k points mapped into each other cyclically
by f, and an orbit may contain at most one cycle. For further in

formation on orbits we refer the reader to chapter 1 in Targonski

[71.

1. Nontrivial Units.

By definition, the unit f° of an iteration (semi)group is
idempotent, £ o f° = f°. For an idempotent mapping the range
coincides with the set of fixed points. Thus the orbits consist

of a fixed point and its preimages; for example

L ]
O< . Since f' = f% o f° for all t and due to the spe-
[ ]

cial structure of the orbits of f° each mapping £t is constant on
orbits of fo, i.e. any orbit of f% is contained in a single orbit

of each ft and any orbit of ft dgc?mposes into orbits of fo, e.g.:
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A further consequence of the (semi)group property 0.2 is
Ran ft C Ran f° for all t. For an iteration group we have
£© ftof_t, i.e. Ran f° C Ran ft, and Ran f° = Ran ft for all t
in this case. We summarize these observations in the following

lemma.

Lemma 1.1. Let {ﬂt; t € H} be an iteration group or semigroup with
a unit. Then ’
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(a) Ran f° {xex; f9x) = x},

(b) Ran £ C Ran O for all te H, and
Ran ft = Ran f° for all t€H if H is a group,

(c) fo(x) = x for all x in Y Ran ft.
teH\ {0}

With (b) the restrictions fi of f' to the set X := Ran £°
ire mappings into Xo' The (semi)group property 0.2 is valid for

these mappings and we have

Lemma 1.2. Let {ft; t € H} be an iteration group or semigroup with

a unit. With XO:= Ran f° the mappings f;:= ft X form an iteration
o

. . o _
(semi)group with fo = ldXO

If H is a group, the mappings fz are bijections on the set

-t . . . t
Xo’ and fo is the inverse mapping to fo'

Proof. From (a), lemma 1.1 we have fg = Idy . If H is a group,
o
_ 0 _ gt St_o-t ot .
then IdXo = fo fo o fo fo o fo for all t in H by the group pro

perty. Thus the mappings f; are bijective and f;t is the inverse
t

of f .
o

With the last lemma the mappings of iteration groups can be

characterized.

Definition 1.3. (Sklar [3]). A self-mapping f of a set is called

ultrastable, if the restriction to its range (as a mapping into

its range) is bijective.

We can thus reformulate the last part of lemma 1.2 as

Theorem 1.4. The mappings of an iteration group are ultrastable.

The orbits of ultrastable mappings are of the following form.
On its range these mappings are bijective, i.e. the restrictions
of the orbits to the range are either cycles or chains, ordered

like Z. The elements outside the range are mapped into these cy-
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cles or chains in one step. Thus the orbits look like:
®

e
oot aoa e o b 1. o1 f\,'/")
AT/ 7\

We shall now discuss the problem what mappings can be added as a
neutral element to an iteration semigroup without a unit (there
exists always such a mapping, the identity). An equivalence rela
tion on X is defined by a ~ b « ft(a) = ft(b) for all t in H, the
equivalence classes are denoted by [a]. Suppose £ is a unit. Sin

L o f° for all t, it maps each equiva-

ce f° has to satisfy £t = f
lence class into itself. The mapping O is idempotent, thus each
class contains at least one fixed point of fo, and points that

are not fixed points are mapped by f% on fixed points in the same
class. Thus all neutral elements can be constructed in the follo-

wing way.

Lemma 1.5. Let {ft; t e H} be an iteration semigroup without a unit
element. . An idempotent mapping e, that maps each equivalence class
into itself, such that the set of fixed points of e contains

U  Ran ft, can be added as a unit to the iteration semigroup.
teH

Under two conditions the identity mapping is the only possi-

ble neutral element.

Lemma 1.6. (cf. Korollar (1.2.3) in Graw [2]). Let {f%; teH} be

an iteration semigroup without a unit element. If for one t in H
the mapping Ftois either injective or surjective, then the only

possible unit element is the identity mapping.

Proof. |f one of the mappings ft s surjective, then

U Ran ft=X, thus with lemma 1.1c. each neutral element is the
teH . '

identity mapping. Let f° be a neutral element and let the mapping

t P . : .
f  be injective for a t in H. Suppose y = f%(x), then F8(x)=f ofO(x)=

=ft(\/), thus x=y, since £t is injective. Therefore f° = Id.
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2. Embeddihgs.

This paragraph consists of three parts. In the first we in-
troduce iterative roots, a notion that is unseparably connected
‘with thebprbblem of embedding. We then prove a theorem of Tabor
on generating a rational embedding by iterative roots. In the se
cond part we consider the role specially chosen neutral elements
for the semigroup of natural iterates play for the problem of em
bedding. In the last part we give a proof for. a condition of

Sklar for embeddability in a real iteration group.

Given a mapping f of da set X into itself and a natural num-
ber n = 2, we call a self-mapping g of X an n-th iterative root
of f and denote it by f]/n:= g, if gn = f. The prgblem of finding
an itérative root was only recently solved by Zimmermann [ 9]. So-
me of these results can be found in Targonski [7]. Now suppose
1. Theén
for all natural numbers n = 2 the mapping ft with t = 1/n is an

{ft}'is‘a rational or real embedding of the mapping f = f

n-th iterative root of f. This can be verified by using the (se-
mi)group property (0.2) n-1 times. We thus have proved.
I

Theorem 2.1. For the embeddability of a mapping f it is necessary

that there exist iterative roots of. f of all orders.

For our further disqussioﬁ we need conditions for the exis-
tence of iterative roots of bijections. The orbits of bijections
are either cycles, or chains ordered like Z. Denoting by Lo the
(possibly infinite) number of chains, and by L, the (possibly in-

finite) number of k-cycles we have.

Theorem 2.2. of Vojasiewicz. A bijective self-mapping of a set has

an n-th iterative root if and only if for every k€ No’ Lk = o or
Lk is divisible by dk' Here d0 = n, and for k >0, dk = n/nk, un

being the greatest divisor of n relative prime to k.
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The theorem does not restrict the number L1 of fixed points, -

since d1 = 1 and L] is always divisible by 1.

In view of 2.1 we need conditions for the existence of roots

of all orders. The preceding theorem yields

Theorem 2.3. Let f be a bijective self-mapping of a set. For the

existence of iterative roots of f of all orders it is necessary
and sufficient that L, =0 or L, = « for all k ENO\ {1}.

Proof. Necessity. Let k # 1 be given and assume that 0<Lk<m.
If k = 0, we shall show that f has no root of order n = 2-L0. In
the theorem of Kojasiewicz dO = n = 2-LO and LO is not divisible
by 2-L0 since LO>O. Thus there exists no 2-Lo-th root.L

If Kk 2 2 the mapping f has no root of order n = k k. In fact
(n,k) = k, ne =1, therefore dk =n = kLk >L,, thus dk dtes not
divide Lk’ and there exists no iterative root of order k k. The

sufficiency follows directly from the preceeding theorem.

We have seen in 2.1 that the existence of iterative roots of
all orders is ainecessary condition for the embeddability of a
mapping. Is it also sufficient? The problem is, how a given sequen
ce of iterative roots generates a rational embedding. If for exam-

£1/2  ang 176

ple the mappings f, are given like

Q} ‘r\ Pl !
O 0 , f 2. C.Dk’. f : {
(3‘:’£) * {:) ’ g

1/6

then the third natural iterate of f (being an iterative squa-

reroot) should be equal to the given square root f]/z.

But clear-
ly these two mappings are differgnt. Thus to generate a rational
embedding we have to choose a set of iterative roots that is in-
dependent in the sense that no contradictions as above occur. One
way to solve this problem is not to use a generating set consis-
ting of roots of all ,orders but to choose a generating sequence

such that an element of this sequence is an iterative root of its
predecessor.
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Theorem 2.4 of Tabor [6]. Let f be a self-mapping of a set, {ri}
a sequence of natural .numbers and

1/r1 1/r1 1/r2 1/r] ]/rn )
f , (f ) yeeoes (o (f Y.o..) a sequence of successi
ve iterative roots. If for any natural number n there is an

i €N Qifh nlrl'...'ri, then the sequence of roots generates an

embedding of f in a rational iteration semigroup.

1/r] ]/rn l/r]...r
Proof. Abbreviation: (... (f Y...) =: f n,
Undgr the premisses of the theorem there are m,i eN with
men = orgc..tr, for every positive rational number r = p/n,p,neN,
thus p/n = mp/r1'...’ri. Wé define a mapping frox > x by
. 1/r1...ri m-p / 1/r]...ri
fo=(f ) (m-p-th natural iterate of f_ ). This
definition does neither depend on the special representation
r = p/n of the rational number nor the special choice of the num
ber i. To check the "time-one' condition 0.4 we can choose
1 . 1/r]r]
i=1, m = rys 7 = 1 and we have by definition f = f = (f ) =f.
For two numbers r],r2 ng, rj =ApJ./nj with natural numbers pJ.,nj
for j = 1,2 there exist natural numbers i,m such that
n1n2|r]~...-ri, n]qzm.= rl"'f'ri' Setting m, = mn,, m, = mn, we
have by definition
r, - r 1 /ry...r, m_p 1/r,...r. mp
£ 1 o f 2 _ (f 1 |) 1 10 (f 1 1) 272
1/r1...ri mip +myp, :
= (f ) (composition of natural itera-
1/r1...ri
) tes of f )
1/r ...r. m(n,p,+n. p,)
= (f 1 0 271 172
rytr ) n,Py*n P,
= f , since r +r, = ————————
1 2 n,n

172

Therefore {f'; re@') is a Q+-embedding of f. Since every member

f7 is a finite composition of members of the original sequence,
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the embedding is generated by this sequence.

Remark. As we have seen in the proof, the condition in Ta-

bor's theorem guarantees that the sequence 1/r 1/r1r2 generates

] b
the additive semigroup of positive rational numbers.

The theorem of Tabor does not answer the question whether a
mapping having roots of all orders is Q+-embeddable. This is still
an open question. For embeddings in rational groups the problem

is solved.

Theorem 2.5. For the embeddability of a bijection in a rational
iteration group it is necessary and sufficient that L, = 0 or

k
Lkﬁ= ® for all k # 1.

Proof. The necessity follows directly from theorems 2.1 and
2.2. let L =0 or L, = ® for all k # 1. The sequence {ri} with

r = i+1 fulfills the conditions of the theorem of Tabor. We know

from the theorem of Kojasiewicz that f possesses an r. -th iterati

1/r !

ve root f It is now necessary to cite a result from the work

of Zimmermann [9].

g;é; An n-th iterative root g of a bijection is bijective. The or
bits of g are unions of a finite number of orbits of f. A cycle
of g is a union of cycles (all with the same order)of f (the or-
der of the f-cycles does only depend on n and the order of the
g-cycle), and a chain of g is the union of chains of f. ‘

Thus we have the following orbit structure of f1/r1.

If L =0,
1/!‘1 °

then there are no chains of f if L0 = o then there exists in

finitely many chains of f1/r1, since each of them is a union of on

nyinitely many chains of f. If Lk = o for some k = 2, these cy-
cles of f give rise to infinitely many cycles of f]/rl
1/[‘]

with a cer

tain order k'. Thus the mapping f fulfills the assumptions of

theorem 2.3 and has therefore an [terative root of order
1 /r, 1/r

1 2
ry: (f ) .

we obtain a sequénce of consecutive iterative roots that genera-

The same argument applies to this function and
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<

one acyclic orbit of f and since the cycles of fl are the cycles

of f we get the necessary condition of theorem 2.9.

Let now f be ultrastable and fulfill the conditions on the
number of orbits. We choose a neutral element e according to Lem-
ma 2.8 for the sémigroup of natural iterates with Ran e = Ran f.
The bijecfive mapping fo = f Ran f fulfills the criterion on the
numbers of orbits in Theorem 2.5, since the chains of fo are the
restrictions of the acyclic orbits of f to Ran e, and the cycles
of fo and f coincide. Thus f0 is embeddable on Ran e, and with
Lemma 2.7 the mapping f is embeddable in a rational iteration

group.

We now use a method of Sklar [5] for reindexing a given ra-
tional iteration group as a real iteration group. Let B be a Hamel
basis for the real numbers containing 1. For a regl number t let

h(t) be the coefficient of the basis element 1 in the expansion

of t with respect to the given Hamel .basis, i.e. if

t = r]-l + rz'b2+...+rn'bn for some n €N, bZ""’bn € B and
rI,..a,rf Q, then h(t) = r Since the expansion is unique, we Hg
ve h(r) ='r for rational r and the mapping h is a group homomor-
phism from (R,+) onto (Q,+). Let {f"; reQ} be a rational iteration
group, then the mappings ft i= fh(t) for real t form a real itera-

tion group that contains the given rational group. We have thus

proven

Theorem 2.16 (sklar [3]). For a self mapping of a set to be embed-
dable in a real iteration group it is necéssary and sufficient
that the mapping be ultrastable, the number of its acyclic orbits
is either 0 or «, and the number of its k-cycles, k = 2, is either

0 or o,

. ;- . . At .
It is not (in general) possible to extend a given Q@ -itera-
. . + . . ’ .
tion semigroup to an R -semigroup in an analogous way, since there
exists no Hamel basis for the positive real numbers (Aczél, Erdos

[11).
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3. Embedding in One Dimensional Zdun Semi-Flows.

In this section we turn our attention to iteration groups
and semi-groups that satisfy certain continuity conditions. Exten
sively studied (Zdun [8], the main results can be found in Targons
ki [7], chap. 3) have been 'continuous iteration (semi)groups',
CIS or CIG for short, consisting of continuous functions £t on an
interval such that the mappings .t - ft(x) are continuous for all
x in the interval (see the third example in the introduction fO(
an example of a CIG). We shall discuss iteration semigroups on in
tervals demanding continuity only in the time parameter. On cer-
tain subintervals the continuity in t will imply the éontinuity
in x, i.e. the restriction of the semigroup to such a subinterval
is a CIS. This is a feature due to the special structure of R and
an analogous result cannot be expected in higher dimensions. The

following definition is due to Sklar [4].

Definition 3.1. Let | be a closed interval. An iteration semigroup

{ft; t 20} is called a one dimensional Zdun semi-flow if for x in
Ran % the function h s [0,0) > | defined by hx(t) :=ft(x) is con-
tinuous.

Example. | = [=~-1,1],

fh(x) = ' t >0.

In the following theorems we are going to characterize the

functions in a one dimensional Zdun semi-flow.

Theorem 3.2. (Sklar [4]).

(a) Every funcgtion £t s nondecreasing on the set Ran fo,

o

(b) let % be in Ran f | f there is an s>0 such that f°(x) = X,

then ft(x) = x for all t =2 0, and the function hx is constant,
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(c) for any x in Ran £°, either hX is strictly monotonic on [0,=),
or there is an s 2.0 such that_hx"is strictly monotonic on
[0,s] and hx(t) = hx(s) = ft(hx(s)) for all t = s.

Remark. The second part states that a fixed point x of one
of the fﬁnctions fs, s>0 is already a stationary point of the
flow (i.e. ft(x) = x for all t). This rules out the possibility
of closed orbits for the flow. This is intuitivaly clear, a clo-
sed orbit of a flow must be homeomorphic to the circle, but there

exist no subsets of R homoemorphic to a circle.

Proof. (a) Let x,y be in Ran £f° with x<y, then with 1.1
f%(x) = x and fo(y) = y. Assume that for a t>0, ft(x)>ft(y). The
mappings h_ and hy are continuous with hx(0)=x<y = h_ (0) and
hx(t)>h (t). Thus there exists an se(0,t) with hX(s) = h (s). It
follows that ft(x) = ft_s(fs(x)) = ft_s(fs(y)) = ft(y) in contra-
diction to the assumption. Thus the mappings ft are nondecreasing

on Ran f°.

(c) Let x be in Ran f° and suppose that hx is not strictly monétg
nic. Then there are s,tel 0,o), s<t with hx(s) = hx(t) =: y. Then
with the semigroup property 0.2 T := t-s is a period of the func-
tion hx restricted to [s,»). It can be seen that the positive pe-
riods of hX restricted to [s,») form a semigroup that is either
equal to R;, has a smallest element, or is dense in R;. By the
continuity of hx the third possibility is ruled out. Now assume
that hX is not constant on [s,»). Then there exists a smallest pe
riod T>0 of hx restricted to [s,»). Then hx is injective on
[s,s+1), since otherwise T would.not be minimal. Thus hX is stric
tly monotonic on [s,s+T). But hx is continuous on [s,») with

hx(s) = hx(s+T), therefore hx is constant on [s,®).

Let So > 0 be the smallest number such that hx is constant on

[so,w). I f s, = 0, then {(c) is proved. Let 5,0 and assume
hx(u) = hx(v) for u,ve[O,so], u<v, then hX =y on [u,o) with the
same argument as above - contradiction to the minimality of S,

Thus hx is strictly monotonic on [0,50].
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(b) Let x be in Ran f°. Then f%(x) = x with 1.1, and hx(0)=hx(s)=x.

With (c) the function hx is constant on [0,=).

Definition 3.3. Let x be in Ran f°. The set T(x) :={ft(x); t = 0}

is called the trajectory of x, and the set Tc(x) := T(x)

U {zeRan f%; xeT(z)} the complete trajectory of x.

With the properties in Theorem 3.2 it can be seen that two
different complete trajectories are either disjoint or have exact
ly one point in common, and this point is a fixed point. In the
sense of the interpretation in the introduction, the trajectory
of a state contains the '"future', and the complete trajectory, in

addition, the '"past' of this state.

Lemma 3.4.

(a) Let x be in Ran f°. Then T(x) and Tc(x) are invariant under

the mappings ft.

(b) Let x be in Ran f° with f](x) # x. Then T(x) and Tc(x) are

intervals.

(c) Let x be in Ran £f° with fl(x) # x. Then the functions f' are

continuous on Tc(x).

Proof. (a) Let t = 0 and y e T(x). Then there is an s > 0 with
y = f°(x) and we have ft(y) = ft(fﬁ(x)) = fs+t(x) € T(x), thus T(x)
is invariant under f'. Now let y be in {zeRan f°; xeT(z)}, then
x = f>(y) for some s = 0, and we have x = £3(y) = fs—t(Ft(y)), i.e.
f5(y) e {z e Ran f%; xeT(z)}, if t<s, and fi(y) = FE75(F5(y)) =
ft—s(x) €eT(x) if t 2 s. Thus Tc(x) is invariant under fr.

(b) The trajectory T(x) is an interval, since it is the image of

the interval [ 0,%) under the continucus mapping hx'

Now suppose f](x)>x. Then hx is increasing (cf. (c), Th. 3.2).
(1) Let h, be strictly increasing. Then T(x) =1 x,y) with
y = lim ft(x). With the semigroup property and theorem 3.2 it can

t >0

be shown, that all hz’ z eTc(x) are strictly increasing and that
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T(z) = [z,y). Since TC(X) = T(x)VU U T(z) the complete trajec
x €T(z)
tory is an interval that is open on the right side with end point

Y-

(2) Let h, be strictly increasing on [0,s] for some s >0 and
constant on [s,®). Then T(x) = [x,y] with y = hx(s). It can be
shown that h_, for z eT_(x) is strictly increasing on [O,sZ] for
some s = 0, constant on [sz,w), and T(z) = [z,y]l. Thus the com-
plete trajectory is an interval that is closed on the right with

end point y..

In the case fl(x)<x, i.e. hx is decreasfng, we get analogous

results by interchanging '"left" and "right'.

(c) Suppose f](x)>x (the argument for f](x)<x is analogous) and
%
assume for simplicity that the interval Tc(x) is closed on the

left side Tc(x) = [z,y) resp. [z,y].

(1) Let h, be strictly increasing, i.e. T(z) = [z,y) with (b).
~Then there exists the inverse mapping h;lz T(z) - [0,») and this

mapping is continuous. Then we have for y eTC(x) and t 20
=1

- h, (y) -
Fy) =t ) = fRFEE T (@) = h (een ()

Thus f~ is continuous as a composition of continuous mappings.

(2) Let h, be strictly increasing on [0,s] and constant on [s,=)
for some s 2> 0. Then there exists a continuous inverse h;I:T(z) -
[0,s] of h, restricted to [0,s]. With the same argument as in (1)

the functions f' are continuous on T(z) = Tc(x).

We can now characterize the functions of a Zdun semi-flow.
The set Ran f° is a union of complete trajectories and fixed points.

The form of the mappings ft on each trajectory is described in ~

Theorem 3.5. Let x be in Ran f° with fl(x) # x. Then the functions

ft, t 20 are of one of the following forms on the complete trajec

tory (all functions f' are of the same form ).
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T (x) = (y,b] or (y,b), lim f%(z) =y, lim ft(z)<b,
¢ zry+ z+b-

£t strictly increasing on Tc(x),

T (x) = (a,y) or [a,y), 1lim ft(z) y, lim ft(z)>a,
¢ Zry - z>a+

£t strictly increasing on TC(x),

T (x) = Ly,b) or [y,bl, f5(y) =y, 1im £(z)<b,
z+b-

there exists a Cy € (y,b] with £t

ly,c ]E y and £t s
* Tt )

strictly increasing on [ct,b) resp. [ct,b].

T (x) = (a,yl or [a,y], ft(y) =y, lim ft(z)>a,
¢ z>a+

strictly increasing on (a,ct] resp. [a,c ].

Tc(x) = (a,b), £t strictly increasing on (a,b),

Tim ft(z) = a, lim ft(z) = b,
z>a+ z+b-

T (x) = [y,b), Tim £5(2) = b, f'(y) =y,
zrb-

t

there exists a c, € (y,b) with ft =y and f is

t ly,c.l

tly increasing on [Ct’b)’

T (x) = (a,yl, 1lim f8(z) = a, f5(y) =y,
z+a+

there exists a c. € (a,y) with £t [ = vy and £t s

_ ceovl
tly increasing on (a,ct].

191

stric-

stric-

Proof. We on1y prove two exemplary cases. Assume f1(x)>x, i.
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h is increasing, and let Tc(x) be closed on the left side,

x
~
1]

[a,y) resp. [a,yl.

(1) Let hx be strictly increasing, Tc(x) = [la,y) = T(a). As we

have seen in the proof of (3.kc), ft(y) = ha(t+h;1(y)), thus f°

is strictly increasing as a composition of two strictly increa-

sing mappings. Since ft is strictly increasing the lTimit
lim ft(z) =: w exists.
z>y-
Thus we have w = 1lim ft(fs(a)), since lim f°(a)= y- and
] g >
we have w = lim ft+s(a) = y. This proves that ft is of the form
S—»m
P1(b).

(2) Let h, be strictly monotonic on [0,s] and constant on [s,=)
for some s = 0. Let h;l: Tc(x) +~ [0,s] be the inverse mapping of
h, restricted to [0,s]. Then ft(z) = ha(t+h;1(z)) for t 2 0 and

z € Tc(x). | f t+h;](z) = s for all ze€ Tc(x) then f' is constant
on the complete trajectory, i.e. of form P2(b). Otherwise there

is an ue Tc(x) with t+h;](z) < s for zela,ul, and t+h;](z) Z s

for zelu,yl. Thus fC is strictly increasing on [a,u]l and cons-
tant on [u,yl. Since ft(y) = f5(f%(a)) = 3% (a) = y, y is a fi
xed point of fY and % is of the form P2(b).

We now turn to the problem of embedding a function in a one

dimensional Adun semi-flow.

Theorem 3.6. Let f be a self mapping of a closed interval |, |

o
a subset of | such that f(1) = f(lo) C Io. If there is a decompo

sition of IO into intervals having at most a fixed point of f in
common and fixed points such that f is of one of the forms P1-Pk
of Th. 3.5 on each of these intervals, then f is embeddable in a

one dimensional Zdun semi flow.

Proof. With the condition on the set I0 and Lemma 1.5 there
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exists a unit f° for the semigroup of natural iterates of f with
Ran f° = lo. We are going to construct an embedding of f separa-
tely in each of the intervals. We only demonstrate the construc-
tion in the case P1(b) and refer the reader to Zdun [8] for the
other cases. Let f be of the form P1(b) on the interval J and

assume J is closed on the left side, J = |a,y). We are going to

construct an invertible solution A:J > [0,») of the Abel equation
(3.7) A(f(x)) = A(x) + 1 for xe€e J.

Let A_: [a,f(a)] - [0,=) be an arbitrary continuous, strictly in
creasing function with Ao(f(a)) = Ao(a) + 1. Since J =1la,y)

U [fn(x),fn+](x)) is a disjoint unioh, one can define a conti-
ne NO
nuous function A: J »> [0,x) by A(x):= Ao(x)+n if xe€ [fn(xlfwn(xﬂ
for some ne No' This mapping satisfies (3.7), is strictly increa-

sing and surjective.

Setting ft(x) 1= A_1(t+A(x)) for x€ J and t = 0, we have de-
fined an embedding of f restricted to J. Since A and A-1 are con-

tinuous, the embedding is a Zdun semi-flow.

In this way we have constructed an embedding of f on the set
lo (if there are any fixed points outside the intervals we put
ft(x)=x for all t > 0). With lemma 2.7. we can use the specially

chosen f° to construct an embedding on the whole interval 1.

I1f we extend the notion of Zdun semi flow to Zdun flow in
the obvious way, this leaves only P3 as the possible form of the
mappings ft on each complete trajectory, and if permit only the
form P3 in theorem 3.6, then the function f is embeddable in a
Zdun flow.

We shall now describe the orbit structure of functions of

the forms P1 - PhL.
Pl There exist uncountably many chains ordered like N.

P2 The whole interval is one single orbit, since each point



P3
P4
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reaches the fixed point in finitely many steps. The orbit
consists of a fixed point with uncountably many, unramified
branches or either the same finite length, or uncountably ma
ny of length n, and wuncountably many of length n+1 for some
n€N,

There exist uncountably many chains ordered like Z.

The whole interval is one single orbit. It consists of a fi-
xed point with infinitely many, infinitely long, unramified

branches.

The orbits just described are restrictions of orbits of ft

to Ran f°. As we have seen in section 1, points in I\Ran £ are

mapped into Ran f° in one "step ‘by f. In the cases P3 and P4

each point of the orbit restricted to the complete trajectory

may have arbitrary many preimages in I\Ran f°. In the cases P1

and P2, only points having a preimage in the complete trajectory

under ft may have arbitrary many preimages in I\Ran f° (cf. lem-

ma

1.5). For example in case P2:

e

Y
2@
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