NOTAS BREVES

A NOTE ON THE CONSTRUCTION OF MEASURES TAKING THEIR VALUES IN A BANACH SPACE WITH BASIS

Maria Congost Iglesias

ABSTRACT

If E is a Banach space with a basis $\{e_n\}_{n\in\mathbb{N}}$, a vector measure $m: \mathbf{a} \to E$ determines a sequence $\{m_n\}_{n\in\mathbb{N}}$ of scalar measures on \mathbf{a} named its components. We obtain necessary and sufigicent conditions to ensure when given a sequence of scalar measures it is possible to construct a vector valued measure whose components were those given. Furthermore we study some relations between the variation of the measure m and the variation of its components.

A sequence of elements in a set X will be indicated by $\{x_n\}_{n\in\mathbb{N}} \text{ or } \{x_n\} \text{ simply. In a normed space it will be used } \Sigma x_n \text{ instead of } \frac{\Sigma}{n} x_n \text{ to indicate a series. For the results from: measure theory used in this paper, see (2). }$

Let (E,||||) be a real of complex Banach space. The sequence $\{e_n\}$ is said to be a basis for E if for every $x \in E$ there is a unique sequence of scalar numbers $\{x_n\}$ such that $x = \sum x_n e_n$, this series beeing convergent with respect to the norm topology in E. Let π_n be the n-projection on E defined by $\pi_n(x) = x_n$. If $m : a \to E$ is a vec-

tor measure on a σ -field α of subsets of X, we consider the set $\{m_n\}$ of scalar measures on E defined by $m_n = \pi_n \circ m(n \in N)$. Then $m(A) = \sum_{n} m_n(A) e_n(A \in \alpha)$.

The total variation of m is the real measure $V\left(m\right)$ on a defined by

$$v(m)(A) = \sup \{ \sum_{i \in I} ||m(A_i)|| \},$$

where the supremum is taken over all finite partitions $\{A_i\}_{i\in I}$ of A on α (that is to say: I is an arbitrari finite index set and $A_i \in \alpha$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $\bigcup_{i \in I} A_i = A$, whenever i.iely. In the same way $V(m_n)$ will indicate the total variation of m_n . All the measures m, m_n and $V(m_n)$, $n \in \mathbb{N}$, are bounded (2) but V(m) may be not finite (2,3). Let us consider the real numbers $M = \sup\{\|m(A)\|: A \in \alpha\}$ and $M_n = \sup\{\|m(A)\|: A \in \alpha\}$, $n \in \mathbb{N}$.

Proposition 1. a) $V(m)(A) \leq \sum V(m_n)(A) ||e_n|| (A \epsilon a);$

- b) If $\inf\{\|e_n\|; n\in \mathbb{N}\} \neq 0$, then there is a constant K>O such that, for every $n\in \mathbb{N}$.
 - (i) $M_n \leq KM$,
 - (ii) $V(m_n) \leq KV(m)$.

Proof. For every Banach space with basis there is a constant H>0 such that

$$\|\mathbf{x}\| \leq \Sigma \|\mathbf{x}_n\| \|\mathbf{e}_n\|$$
 and $\|\mathbf{x}_n\| \leq \frac{\mathbf{h}}{\|\mathbf{e}_n\|} \|\mathbf{x}\|$

for each x&E. Hence,

$$M_n \leqslant \frac{H}{\|e_n\|} M$$
 and $V(m_n) \leqslant \frac{H}{\|e_n\|} V(m)$;

if $a=\inf\{\|e_n\|; n\in N\}\neq 0$, for $K=\frac{H}{a}$, we obtain (i) and (ii). Now, let $\{A_i\}_{i\in I}$ be a finite partition of a set A on a. Since

 $\sum_{i \in I} \| m(A_i) \| \leqslant \sum_{i \in I} \sum_{n \in N} \left| m_n(A_i) \right| \| e_n \| \leqslant \sum_{n \in N} \| e_n \| \sum_{i \in I} \left| m_n(A_i) \right| \leqslant \sum_{n \in N} \| e_n \| V(m_n) (A) ,$

we have $V(m)(A) \leq \Sigma V(m_n)(A) ||e_n||$.

A vector measure $m: a \to E$ determines a sequence $\{m_n\}$ of scalar measures on a. We may ask if a sequence of scalar measures on a determines a vector measure or not (the space E and the basis $\{e_n\}$ are supposed fixed). By the uniqueness of the expression $x = \sum x_n e_n$, it is necessary that $m(A) = \sum m_n(A) e_n$, that is to say, the series $\sum m_n(A) e_n$ must be convergent, whenever $A \in a$. This is also sufficient:

Theorem 1. Let E be a Banach space with basis $\{e_n\}$. If $\{m_n\}$ is a sequence of scalar measures on a σ -field α such that $\Sigma m_n(A)e_n$ is convergent in E for every $A\epsilon\alpha$. Then the set function $m:\alpha \to E$ defined by $m(A) = \Sigma m_n(A)e_n$ is a vector measure on α such that $m_n = \pi_n \circ m$ for every $n\epsilon N$.

Proof. For every $n \in N$, we can consider the set function $S_n : \alpha \to E$ defined by $S_n(A) = \sum_{i=1}^n m_i(A)e_i$. Thus $m(A) = \lim_i S_n(A)$ and $(x' \circ m)(A) = \lim_i (x' \circ S_n)(A)$ for every $x' \in E'$, so that, by the Vitali-Hahn-Sacks theorems $x' \circ m$ is a scalar measure for every $x' \in E'$. Hence, by the Pettis theorem, m is a vector measure. Because of the uniqueness of the expression of an element in a Banach space with basis, we conclude that $m_n = m_n \circ m$, $n \in N$.

The next theorem gives us a sufficient condition in order to obtain a vector measure from a sequence of scalar measures:

Theorem 2. Let E be a Banach space with basis $\{e_n\}$. If $\{m_n\}$ is a sequence of scalar measures on a σ -field α such that $\sum M_n \|e_n\|$ is convergent, then the set function $m:\alpha \to E$ defined by $m(A) = \sum m_n (A)e_n$ is a vector measure of bounded variation; furthermore the series defining m is absolutely and uniformly convergent on α .

Proof. The series $\Sigma m_n(A)e_n$ is clearly absolutely and uniformly convergent so that, by the previous theorem, defines a vector measure m. Since $V(m_n) \le 4 M_n$ (see (2)), we have $V(m) \le \Sigma V(m_n) \|e_n\| \le 4 \Sigma M_n \|e_n\| < +\infty$, and m is of bounded variation.

This note ends with two examples showing that the inequalities obtained in Prop. 1 cannot be improved. Morever, the first one shows that $\Sigma M_n \|e_n\| < +\infty$ is not necessary to obtain a vector measure of bounded variation.

Example 1. Let $E=c_0$ with basis $\{e_n\}$, where $e_n=(0,0,1,0,\ldots)$. Let α be a σ -field of subsets of a non empty set X and $m_0:\alpha \to R_+$ a finite measure such that $m_0 \neq 0$. Since $m_0 \geqslant 0$, we have $V(m_0)=m_0$. Let $a=\sum a_n e_n$ be an element in c_0 with $a_n \geqslant 0$ for all $n \in \mathbb{N}$, and $\sum a_n = +\infty$. Let us consider the real measures on α , $m_n = a_n m_0$. Then the set function $m:\alpha \to c_0$ defined by $m(A)=\sum m_n(A)e_n$ is a vector measure on α , because of $\sum m_n(A)e_n = m_0(A)\sum a_n e_n$ is a convergent series in c_0 . Furthermore, if $\{A_i\}_{i \in I}$ is a finite partition of A, then

$$\sum_{i \in I} ||m(A_i)|| = \sum_{i \in I} \sup_{n} |m_n(A_i)| = \sum_{i \in I} \sup_{n} |a_n| |m_o(A_i)| \le i \in I$$

so that $V(m)(A) \le \|m(A)\|$ and m is of bounded variation. However because of $M_n = \sup\{|m_n(A)|; A \in a\} = \|a_n\| \cdot \sup\{|m_o(A)|, A \in a\} = a_n M_o$ and $\sum a_n M_o = +\infty$ $(M_o \ne 0)$, the series $\sum M_n \|e_n\|$ is not convergent.

With respect to the inequalities in Prop. 1 we observe that, for the measure in the example, we have $V(m)(A) \neq \sum V(m_n)(A) \| e_n \|$ in a) while in b(ii) we have just the equality, with K=1, because of $\sup V(m_n)(A) = \sup |m_n(A)| = \|m(A)\|$ and $\|m(A)\| \leq V(m_n)(A)$. But, generally, we can only obtain the inequality in b(ii) as the following example shows.

Example 2. Let $E=\ell_1$ with basis $\{e_n\}$, where $e_n=(0,\ldots,0,1,0,\ldots)$. Let $\{p_n\}$ be a sequence of elements in a set $X\neq\emptyset$. Let $\alpha=P$ (x) and

 $\{a_n^{}\}$ a sequence of real numbers, two of them nonzero at least, such that $\Sigma\,|a_n^{}|<\!+\infty.$ For every ne N. Let $m_n^{}$ be the measure weighted $a_n^{}$ at $p_n^{}$:

$$m_{n}(A) = \begin{cases} a_{n}, & \text{if } p_{n}^{\epsilon}A, \\ 0, & \text{if } p_{n}^{\epsilon}A. \end{cases}$$

Since $\Sigma M_n \| e_n \| = \Sigma |a_n| < +\infty$, we have that $m(A) = \Sigma m_n(A) e_n$ is a vector measure $m: \alpha \to \ell_1$ of bounded variation. From $V(m_n)(A) = |m_n(A)|$ and Prop. 1, a), we see that $V(m)(A) \leqslant \Sigma V(m_n)(A) = \Sigma |m_n(A)| = \|m(A)\|$. Thus $\|m(A)\| = V(m)(A) = \Sigma V(m_n)(A)$. To see that there is no constant K>0 such that sup $V(m_n) = K V(m)$ we can observe that, since $V(m_n)(p_i) = |a_i|$ and $V(m)(p_i) = \Sigma V(m_n)(p_i) = |a_i|$, it should be K=1, but sup $V(m_n)(x) = \sup |a_n| = \|m(A)\| =$

References.

- [1] BATLE, N.:"Una nota sobre la construcción de medidas vectoria les". Actas de la XI RAME, Publ. CSIC (183-188), 197.
- [2] DUNFORD, N.- SCHWARTZ, J. T.: "Linear Operators, Part I". Interscience. New York, 1967.
- [3] GOWURIN, M.: "Uber die Stieltjesche Integration abstrakter Funktionen". Fundamenta Math. 27 (254-268), 1936.
- [4] MARTIN, J. T.: "Introduction to the theory of bases". Springer Verlag, 1969.

Dept. Matemàtiques i Estadística, E.T.S. d'Arquitectura, Universitat Politècnica de Barcelona, Av. Diagonal, 649, BARCELONA-28. SPAIN.