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FUZZY SETS AS SET CLASSES

Ton Sales

In remembrance, Joseph Kampé de Fériet (1893-1982).

0. Introduction.

Fuzzy sets have been studied in various forms. We now offer
a presentation of fuzzy sets whereby they are conceived as repre
sentatives of a whole class of sets (that are themselves subsets
of the universe of objects on which the fuzzy set is defined).
Such an approach offers certain obvious advantages for a genera-
lized theory of truth, in whose setting the approach arose. These
advantages are not explored here. We mention here, however, the
intuitive appeal such a theory may exert from the philosophical
side. It allows, in fact, to view vague concepts and imprecise
observations -such as the ones fuzzy set models try to formalize-
as the compaction of a series of classical standard sets represen

ting sharp-edged concepts or observations (as e.g. in ostension).

The approach expounded here derives from a development in
Dempster [v.5] which interestingly was formalized and systemati-
zed in Shafer [5]. It was Kampé de Fériet's merit to treat Shafer's
"probabflities" as measured by a set of observers who were them-

selves valued additively by some super-observer. He was also the

249



Ton Sales 250

first to point out possible links between this set of measures

and Zadeh's membership grade for fuzzy sets ([8]).

The following lines try to extend Kampé de Fériet's scheme
to cover the present author's ideas about fuzzy sets as represen

tatives of set classes.

1. Set Classes.

Suppose a finite set X ("universe') made up of '"objects'" x.
Subsets ACX will be called here '"sets'" (or '"properties'). Any
collection of sets AeP(X) forms a class A4 that is not necessarily
a set (since it may contain repeated occurrences of a given set).
A will be sometimes called set sample. Throughout we suppose 4 is
finite. Each set in the sample will be noted Ay (where y is the

index that identifies each set occurrence).

As is known, a set class can be pictured as a set of pairs
(y,Ay). If we note by Y the (finite) set of indices (we call po-
sitions), this set of pairs define the mapping m:Y = P(X), we
call perspective (on X), where the elements (y,Ay) -we call even-
tualities- are chosen so that they give exactly all the sets Ay

in the sample 4.

Rangem contains all sets considered or observed in the sam
ple. Rangem =P (X) means the whole universe X has been considered
or observed. Alternately, n(y)=Ay means the 'perspective from y'"
or (in Kampé de Fériet's terms) ''the set where a given x€X can be
located (from y)'". In the latter case the characteristic function
of Ay performs the role of a "location rule'": x is located (resp.

not located) in n(y) iff is (resp. is not) in Ay.

The above formal interpretation scheme is similar to the one
proposed by Kampé de Fériet in 1980 ([3]). It allows for several
useful characterizations of sets A of a universe X of objects,

and also several measures on P(X), by means of a (separately cho-
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sen) universe Y of positions. Sets A are then perspectives from
the positions of Y whereas the universe X has its elements loca-
table or not depending on the position from which they are consi-

dered of observed. In this approach, eventualities are just possi

ble paifings of sets A and positions y. As shown later, a given
sample A induces in P(X) a probability measure, which in turn can

be summarized in fuzzy set form.

To complete this section, we mention that the mapping
0:4 > P(Y) such that O= ﬂ-llA is what we call selection function.
The set 0(A) contains those positions from which the set A is con

sidered or observed, or from which all elements xeA can be locat-
ed.

2. Non-Additive Measures on Set Classes:
Probabilities and chance.

Since P(Y) is a Boolean algebra structure (with operations
N,V and C), a valuation v:P(Y) > [0,1] can be defined on P(Y)
such that

i) If ACB then v(A) < v(B) (Monotonicity)
ii) v(#)=0 and v(Y)=1
iii) for any i#j if Ain Aj=ﬂ then v (Y Ai)=Zv(Ai)(Amﬁtiva).

Thus v is technically an additive probability. It can be called

"hierarchy of positions' and used to value any sample A. In the
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observational interpretation of Kampé de Fériet [3], the v func-
tion (he notes by )A) represents the way a distinguished observer
("headquarters' o HQ) values positions; this valuation allows HQ

to locate selectively an object x in given sets €P(X).

An additive probability p:P(X) >~ [0,1] is not aiways defina-
ble on X bu}, we now hypothesize, we can always define two sub-
additive probability measures on X. Following Shafer's usage

([31), we shall hereafter sometimes call epistemic probability

(or probability, for short) every sub-additive probability, and

chance every additive probability.

%
We define now the outer measure O (A) and the inner measure

0,(A) of a set A of P(X). We suppose, as above, X and Y are given

O'*(A)

{yIAvn A+ pl

[

o, (n) = {ylg # AC Al

While O*(A) is the set of positions from which A is (at least partly)
considered or observed, 0*(A) is the set of positions from which
some part (or the whole) of A is considered or observed. In Kam-
pé de Fériet's epistemic interpretation, 0*(A) and 0*(A) give the
set of positions ("observers'" in Kampé's terminology) from which

the statement ''x€A'" is, respectively, plausible and certain.

The following results are immediate:

0*(X)=0*(X) (hence we write Yx=0*(X)={y|Ay})

pCo,(A)Ca (A CY .

*
iIf we now value (by the v function) the o (A) and o, (A) posi

tions we have:

v(o, (A))
P.(A) = sy —
X

v(o"(A))

p (A) = =713
X

(v(Yx) is always non-zero).
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These two new measures is what we respectively call lower and
upper (epistemic) probability or, for reasons that will later be
apparent, belief and plausibility. Interesting properties are:

0<p,(A) <p (A) <1

p,(A) = l-p*(ﬁ) and p*(A)=l-p*(§) (where A is X-A)

or also:

p, (A +p (R) = p"(A) + p,(A)

p,(A)+p, (R) <1 < p"(A) + p (A).
Now, the analogy of both measures to Shafer's belief (or
“"support') and plausibility is striking. Recall that Shafer defi

nes belief in 1976 ([5]) as any function Bel: P(X) » [0,1] satis

fying the following conditions:

i) Bel (@)

L}
o

ii) Bel (X)

1
n
iii) for any n > 1, Bel (UAi) > ? Bel (Ai)-iEJBel(Ain Aj)+'”

+(-1)"*1 Bel(gAi).
From (iii) follows
Bel (A) + Bel (A) <1
Moreover, by definition, we have
PI1(A) = 1-Bel(A)

Shafer's plausibility P1:(X) -~ [0,1] satisfies instead
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i) P1(g)

0

ii) PI(X) = 1

-

> < 1 -z
iii) for any n > 1, P10A) < T oer(a- Eet(Aaap ..

)n+l

+(-1 pl (HAi).

From (iii) follows
PI (A) + PI1(A) =1

Indeed, P, and p* satisfy exactly the same conditions as
Shafer's Bel and P functions. So we feel justified in identify-
ing P, wlith Bel and p* with Pl and giving hereafter p  and p*
the names belief and plausibility. Further support for"it is the
fact that p*(A) and p*(A) is, as we told before, the proportion
of positions from which the statement ''xeA'" is deemed certain and

plausible, respectively.

Further properties are:

- Both p, and p* are fuzzy measures in Sugeno's sense ([6]).

- Zadeh's possibility measure ([8]) is, if normalized (ie.

sug f(x)=1), indeed a particular case of the plausibility p*.
X€

- p, and p* coincide for, and only for, those sets which are a
partition of_X and which are in one-to-one correspondence with
the positions of Y. Then and only then, p¢(=p*) is an additive

probability or chance.

3. From Set Class to Fuzzy Set..

We now explain how the probability distribution induced on
X by a set class or sample of sets Ay defines univocally a fuzzy

set A, which is the summary and representative -though not the
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only possible one- of class 4.

Applying above formulas to the particular case where the

sets ACX are singletons we have

A =ng{x} and X =x?x {x1}

T ({x}) =1y |xe m(y) }.

From both we have:

o (A) = U, d" (1x}) and ¥ =0"(x) =Y, 0" ({x})

Let us recall that a fuzzy set A is any set of objects x
from a reference universe X for which there is a function (called
""characteristic function'") A=X >[0,1] assigning every xeX a va-

lue A(x)e[ 0,1] named membership grade (of x in A), in a generali

zation of the classical notions of set and characteristic func-
tion. (For convenience we use "A(x)'" instead of the more appro-

priate "uA(x)“).

We now define the membership grade A(x) of an object x€X in

a fuzzy set A as the plausibility (=upper probability) p of the
fact that x belongs to it, i.e. the,plausibility associated to

{x} induced by the sample A of sets Ay defined in X. In symbols:

*
A(x) = p#({x}), that is: A(x)= V(S é x1))

X

Clearly A(x) inherits from p* the property of depending on the
point (object) x and of taking values in the [0,1] interval. It
is therefore a ''characteristic function'" A:X » [0,1] of the requir
ed type, and so it defines automatically a fuzzy set A (in X).

The value of A(x) in each point, now conceived as membership grade

takes on the additional epistemic connotation of '"plausibili-

ty'" or '"upper probability'" induced by a set sample 4.
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If we note by A =X »> {0,1} (where Ay(x) =1 if xeAy and zero
otherwise) the (classical) characteristic function of each set Ay
in the sample, we have as a result:

Ly v(y) -Ay(X)

A(x) =

Iy v(y)

This formula characterizes the membership grade A(x) of each ele
ment in a fuzzy set as the (v-) weighted mean of all values of
the characteristic function Ay(x) that all sets in the sample

take in this point x.

In the particular casewhere all positions are equal-valued,

we have:

ZY A (x) a
A(x)= —Y that we can set A(x)= o for short.

card Y
Thus A(x) can be viewed as a mean of cases, or a relative cardinal.

The following illustration shows how a fuzzy set ﬁ is built

up on a sample A4 of sets Ay

L 1 Set class
vy~ [ "]«Ay A
vee Ll1]
F::::J‘A
A A(x) i
" " .
Mua™ ; i Fuzzy set
£ ; : A
] -
X [OR—| X €X
A

Interestingly, this characterization is essentially compati-
ble with those given by Black in 1937 ([1]), De Luca-Termini in
1977 ([ 21) and Kampé de Fériet in 1980 ([3]). What for Black is



Fuzzy sets as set classes 257

the proportion of persons believing “Ax“ (or positive answer to
the question “Ax?“) with respect to the totality (Black writes

"N > =) of surveyed persons (or of responses), for the others

is the proportion of 'positive decisions' (De Luca-Termini) or

of "positive (experimental) tests' (Kampé de Fériet) -for a given
x- with respect to the totality of the |Y| possible decisions or
of the |Y| tests. Leaving aside De Luca-Termini's rather linguis-
tic and formal bias and Kampé de Fériet's clearly epistemological
setting, the above formulas obviously characterize the membership
grade as a proportion of occurrences of an object x in the sets

Ay of a sample 4.

This notion of '"occurrences of an object'" in the frame of
possible occurrences suggests an analogy with the contingency of

a modal proposition in the frame of possible worlds semantics by

Kripke et al. Occurrences or eventualities clearly correspond to
possible worlds, but with a difference: they are always defined

with respect to a reference sample.

We add that, after De Luca-Termini's 1977 definition ([21),
the following function measures the ''unexpectedness' of the Ay»

"decisions'':

,(Ay)d-sf Iyl Ay(x).L(A—‘(7T)+(1'Ay("))‘L(T:»:\_GT)]

where L is a continuous concave function in the [1,+») interval
(e.g. logarithm). We quote this definition because authors say it
allows a direct calculation of the entropy u(A) of a fuzzy set A

via the arithmetic mean

u(A) = mean of the I(A )'s
~ ye Y Y
For all we said, a fuzzy set can be conceived as the infor-
mation summary -or the representative- of a (v-valued) set class
or sample A. This relationship is not one-to-one: a given fuzzy

set is usually the representative for a whole family of set clas-
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4. From Fuzzy Set to Set Class.

We now approach the problem from the opposite side. An easi
ly provable result is this: Given a fuzzy set A (in a finite uni
verse X) we can find: (a) a finite set Y of po:itions, and (b)
an additive valuation v on Y, both Y and v generally not unique,
such that, for any yeY, p ({x}) = A(x); moreover, once Y and v
found we can also find (c) a class A (in general not unique) of

(possible repeated) sets Ay such that, for any xeX,

v({ A1)
A(x) = __y_‘x_e__L
v(Y)

As an example, suppose the membership function A(x) of A is
given pointwise by the following figure and has eight different
values. A ternary position set Y = {y],yz,y3} suffices, as well
as the valuation instance listed below, to define a ternary sam-

ple A={A1,A A3} in the way depicted in the figure.

27
v(g) = 0 A(x) = 0 corresponds to @

\)({YI}) = 1/8 A(x) =1/2 " " {yl}
V({yz}) = 2/8 A(x) =2/8 " " {yz}
vilysh) = 5/8 A(x) =3/8 . " ly,y,}
vily,v,}) = 13/8 T A(x) =4/8 " oo

\)({YIY3}) = 6/8 A(x) =5/8. " n {y3}
v({Y2Y3}) =7/8 A(x) =6/8 " " {ylyB}
V({YIY2Y3}) =1 A(x) =7/8 " " {y2y3}

A(X) = 1 " "n y
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1 L]
L]
L]
a) 2 .
~ L ]
L]
0!
6 8 5 7 2
A(x) = /s 3/5 /8 /8 /s /8 /3
Al [ x X X x | « yl
A Az = X bid 2 1 « Y,
A, = x x] « Y5

Now we propound a simple method, that can -be used
conditions,

in certain
to obtain the class 4 directly from A, using the de-

composition theorem. The latter, also called 'resolution theorem"

by Zadeh, states that every (finite) fuzzy set A can be expressed
in this way:

A=00o. A

where M is the number of different values of A(x) effectively
found in A.

The proposed method consists of just choosing a Y with

|Y|= M positions; if the M values are not equal-distanced, n

equal-distanced values are chosen. Suppose we fix n eventuali-

ties. We then choose tha Ayﬁs so that they coincide with the M

sets Aa . We shall have
i

= w, re w, = o, -0,
w i whe w, n( i al_l)
(wy is the number of repeated occurrences of each A
number of occurrences of Aa ).
i

v’ W, is the
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X; X, x3 Xy
Consider an easy example. Suppose ﬁ=[0.2 0.5 1 0.7). By

virtue of the decomposition theorem we can write:

ﬁ = 0-2+:[1111}Uu0-5:[01 1 1]Uuo0-7-[00 1 1] 1:[0010]

A] A2 A A

3 4

Let us choose an n(=|Y|) such that all products a;n give integer values; we
obtain n=10 (and thus |Y|= 10 eventualities). We also obtain w, o= 2,

w, = 3, w3 = 2 and wy = 3. The resulting class is, therefore:

A ={2Al's, 3A2's, 2A3's, 3Ab.5}

Graphically,

}W4=3
- < B,
eventua } w3=2
lities « A3
->
w2=3
«13
l ¥1=2
A(x) = .2 .5 1 -7
D t 1 '
X
%y Xy X3 4

5. The Coherency Condition.

Unfortunately, a fuzzy set does not correspond to a single
set class but to many, so both formalisms are neither equivalent
now convey the same amount of information. In one case, though,
a standard form can be given for fuzzy sets so that the set clas
ses a fuzzy set represents are fewer, or even reduce to one sin-
gle class. The condition that gives this result is called, follw
ing De Luca-Termini [2], 'coherency condition". It may be stat-
ed in this way:
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(Coherency Condition:) If, for any y and y' of Y and any x of X,
we always have Ay(x) < Ay.(x) or Ay(x) > Ay,(x), then the class

A of the Ay sets is a coherent class.

The coherency condition ("CC", for short, from now on) is
nothing but the formalization of an implicit hypothesis, that of
assuming that each position y is the site of an observer with a
"coherent'! behavior. This supposition is often unrealistic in
practice, since the sets in the sample do not actually present
themse[véé in the form the CC requires. But whérever it can be
safely assumed, the CC gives the fuzzy set some adequate proper-
ties. In a notation more closely related to De Luca-Termini, the

CC can be expressed as follows:

"For any y and y' in Y, either 6y(x,A(x))=<6y,(x,A(x)) or vice

versa''.

The CC amounts to say that (a) there exists a total ordering
of the sets A with respect to set inclusion, and (b) there exists
a total ordering of the positions y in Y. Both orderings are,

moreover, well-orderings.
If the CC is satisfied, we have the following interesting

properties:

1) The plausibility p on X is a possibility measure (in Zadeh's

sense); so then we have, for instance:

p (AUB) = max (p (A), p (B))
p (ANB) < min (p (A), p (B))
%=
2) The belief p, on X (defined by p,(A) = 1-p (A)) has the proper

ties:

p,(A) = inf A(x), and also:
X-A

p,(ANB) > max (p,(A), p,(B))

P*(An B) = min (P*(A), P*(B))-



Ton Sales 262

3) if v assigns all positions y equal values then the CC can be
expressed in the slightly restrictive way of De Luca-Termini

([2]); moreover, the class 4 is then unique.

If the CC and the above (3) condition hold, we have three
substantially equivalent formalisms which correspond one-to-one
among themselves: a set clasi or sample 4 (of subsets Ay of x),
a possibility distribution-p (on X) and a fuzzy set A (with
A:X > [0,1])defined on X. Graphically,

A
p:‘:

A

~

6. Some final considerations.

Often a concept (summarizingly represented by A) derives
from an ostension process, in which a sample 4 of several (possi-
bly repeated) sets Ay allowing yes/no binary membership decisions
are effectively presented to us. We then submit them to a valua-
tion v in accordance with force, frequency or representativeness
of the set, or context. The result is the compaction of all per-
ceived information into some abridged A-type form. This A+ A pro
cess is typical of abstraction, so much of inductive abstraction
from observational yes/no results as of formal or symbolic abs-
traction where several (often merely hypothesized) sharp-edged

Ay's are manipulated and combined to get some smoother-edged,

more general concept.

Sometimes the abstraction process is reversed and gives way
to the inverse A+4 process which we could call ''concretion"
(as opposed to '"abstraction') or, after Artificial Intelligence
terminology, "instantiation'. (where the Ay's in A play the role

of elementary 'frames') (see Minsky [4]). As we found, this de-
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composition process is not unique, save-when the ''concept' A is

structured in the ''coherent' way we described above and every

“"frame' Ay is assigned equal value, a condition that cannot al-

ways be met in real-world conditions.
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