NOTA BREVE

QUASI-METRIZATION AND COMPLETION FOR PERVIN'S QUASI-UNIFORMITY

V. Gregori and J. Ferrer*

ABSTRACT

R. Stoltenberg characterized in [2] those quasi-uniformities which are quasi-pseudometrizable, as well as those quasi-metric spaces which have a quasi-metric completion. In this paper we follow Stoltenberg's work by giving characterizations for quasi-metrizability and quasi-metric completion for a particular type of quasi-uniform spaces, the Fervin's quasi-uniform space.

Introduction.

In the following (X,T) will be a topological space. U_p will be Pervin's quasi-uniformity associated to (X,T), i.e., the one generated by the subbase $S=\{S_G:G\in T\}$, where $S_G=(GxG)\cup (X^*GxX)$. (X,U_p) will denote Pervin's quasi-uniform space. The elements of a quasi-uniformity will be called bands; if U is a band U(x) will represent the set $\{y\in X: (x,y)\in U\}$.

We say that (X,T) is quasi-pseudometrizable if there is a quasi-pseudometric d on X whose deduced topology, $T_{\rm d}$, is T. In an

^{*} This paper has been done under the help and constant orientation of Professor M.López Pellicer to whom the authors are grateful.

analogous way, (X,U) is quasi-pseudometrizable if there is a quasi-pseudometric d on X whose deduced quasi-uniformity, U_{d} , is U.

<u>Proposition 1.</u> (X, U_p) is a quasi-pseudometrizable space if and only if T is a countable family.

 $\frac{\text{Proof.}}{\text{Se}} \text{ If } \mathcal{U}_{p} \text{ is quasi-metrizable then it has a countable base, } \{\mathsf{U}_{n}\}_{n=1}^{\infty}, \text{ see } [2]. \text{ For each } n, \text{ there is some finite number of open subsets } \mathsf{G}_{1}^{n}, \mathsf{G}_{2}^{n}, \ldots, \mathsf{G}_{k_{n}}^{n} \text{ such that } \cap \{\mathsf{S}_{i}: 1 \leqslant i \leqslant k_{n}\} \subset \mathsf{U}_{n}.$ Let's consider the families $S_{n} = \{\mathsf{G}_{i}^{n}: 1 \leqslant i \leqslant k_{n}\}, S = \{S_{n}: n \geqslant 1\} \text{ and let } \mathcal{J}(S) \text{ be the family of finite intersections of members of } S.$ Obviously, $\mathcal{J}(S)$ is countable and it suffices to show that each proper open subset of X is a finite union of members of $\mathcal{J}(S)$.

Let G be a proper open subset of X, then there exists n such that $U_n \subseteq S_G$. For each $x \in G$, the set $I_x = \{i:1 \le i \le k_n, x \in G_i^n\}$ is non-empty, otherwise $X = \bigcap \{S_i(x):1 \le i \le k\} \subseteq U_n(x) \subseteq S_G(x) = G$ which is a contradiction. Next we prove that $\bigcap \{G_i^n:i \in I_x\} \subseteq G$; if $y \notin G$ then $(x,y) \notin S_G$, thus $(x,y) \notin \bigcap \{S_i:1 \le i \le k_n\}$ and therefore $(x,y) \notin \bigcap \{S_i^n:i \in I_x\}$ consequently, $y \notin \bigcap \{S_i^n(x):i \in I_x\} = \bigcap \{G_i^n:i \in I_x\}$. Consider now the family of subsets of $\{1,2,\ldots,k_n\}$ given by $I_G = \{I_x:x \in G\}$; this family is finite and $G = \bigcup \{\bigcap \{G_i^n:i \in I_x\}:x \in G\} = \bigcup \{\bigcap \{G_i^n:i \in I_x\}:I_x \in I_G\}$.

Conversely, suppose T is countable, then so is the family of finite intersections of its members, therefore $U_{\rm p}$ admits a countable base (see [1]) and thus by Theorem 1.6, page 228 of [2] $U_{\rm p}$ is quasi-pseudometrizable.

Consequences.

- 1.1. If T is countable, (X,T) is quasi-pseudometrizable.
- 1.2. There are quasi-uniform spaces which are not quasipseudometrizable.
- 1.3. Pervin's quasi-uniformity $U_{\rm p}$ is quasi-metrizable if and only if X is T $_{\rm 1}$ and T is countable.
- 1.4. If $U_{\rm p}$ is quasi-metrizable then X is countable.

 $\underline{\text{Proof.}}$ The three first statements are direct consequence the former proposition.

Define a correspondence f from X to T such that $f(x)=X_{\sim}\{x\}$, since X is T_1 f is a one-to-one function. Countability of T implies the same for X.

How we are going to study the quasi-metric completion for any Pervin quasi-uniform space. Before doing this we need a few definitions and results given by R. Stoltenberg in [2], we use the same references:

- $\underline{\text{2.2. Definition.}}$ A quasi-uniform space (X,V) is U-complete iff each U-Cauchy net converges to a point in X relative to T_U .
- $\underline{5.3.}$ Theorem. A quasi-metric space (X,d) has a quasi-metric d-completion if and only if all d-Cauchy sequences in (X,d,d')

which converge relative to $T_{\rm d}$, also converge relative to $T_{\rm d}$. (X,d,d') denotes the bi-quasi-metric space where d'(x,y)=d(y,x).

In order to achieve our own results we introduce a new concept: U_p^S will denote Pervin's symmetric quasi-uniformity associated to U_p , i.e., the one whose subbase is $S'=\{S_G':G\in T\}$ and $S_G'=(GxG)\cup(XxX\sim G)$. The topology T_S induced by U_p^S in X is usually different from T and it will be called the symmetric topology of T. Needless to say, (X,T_S) will be the symmetric topological space of (X,T).

<u>Proof.</u> Consider F as a non-empty closed subset of (X,T); let $G=X\sim F$. For each x in F we know that $S_G^+(x)$ is a T_S^- neighborhood of x; if $y\in S_G^+(x)$ then $(x,y)\in (GxG)\cup (XxX\sim G)$ and therefore $y\in X\sim G$, thus $S_G^+(x)\subset F$ and F is T_S^- open.

Now we show that every T_s -open set is a union of T-closed sets. Let G' be an open set of T_s with $G' \neq X$. If $x \notin G'$ then by construction of T_s there is a finite family $\left\{G_i\right\}_{i=1}^n$ of T-open sets such that $\bigcap_{i=1}^n S_G^i(x) \subset G'$. Now, $S_G^i(x)$ is either X, if $x \notin G_i$,

or $X \sim G_i$ if $x \notin G_i$. Then if we call $I_X = \{i: 1 \le i \le n, x \notin G_i\}$, we obtain $\bigcap_{i=1}^n S_G^i(x)$ is X, if $I_X = \emptyset$, or $\bigcap_{i \in I_X} (X \sim G_i)$ if $I_X \neq \emptyset$; but $G^i \neq X$, so $i \in I_X$

I
$$_{\mathbf{X}}\neq\emptyset$$
. Then $\mathbf{x}\in\bigcap_{\mathbf{i}=1}^{n}\mathbf{S}_{\mathbf{i}}^{\mathbf{i}}(\mathbf{x})=\bigcap_{\mathbf{i}\in\mathbf{I}_{\mathbf{X}}}(\mathbf{X}\sim\mathbf{G}_{\mathbf{i}})\subset\mathbf{G}^{\mathbf{i}}$. Obviously,

$$\cap$$
 (X~G;) is T -closed.

Consequences.

- 2.1. If X is a T_1 space, then T_s is the discrete topology.
- 2.2. If X is a regular space, then $T_{_{\mathbf{S}}}$ is finer than T .

 $\underline{\text{Proof.}}$ The first consequence is quite obvious from last $\underline{\text{pro}}$ position.

Now, if G is T-open, for each x in G there is $G_1 \in T$ such that $x \in G_1 \subseteq \overline{G}_1 \subseteq G$. The set $G_2 = X \sim \overline{G}_1$ is T-open and $x \in X \sim G_2 \subseteq G$. Since S_{G_2} $(x) = X \sim G_2$, then S_{G_2} $(x) \subseteq G$ and thus G is T_S -open, for it is a T_S -neighborhood of each of its points.

Theorem.

If a Pervin quasi-uniform space (X, U_p) is quasi-metrizable then it has a quasi-metric completion.

<u>Proof.</u> Let d be the quasi-metric in X which generates U_p and therefore induces T. The symmetric quasi-metric d'induces T_s , since d'induces U_p^s . By consequences 1.3 and 2.1 T_s is the discrete topology.

Now, let $\{x_n\}_{n=1}^{\infty}$ be a d-Cauchy sequence d'-convergent to x. Since T_s is the discrete topology, for some positive integer n_o we have $x_n = x$ for all $n \ge n_o$; clearly $\{x_n\}_{n=1}^{\infty}$ converges to x relative to T, i.e., $\{x_n\}_{n=1}^{\infty}$ is d-convergent. The conclusion follows from Theorem 5.3 of [2].

References.

- [1] PERVIN, W.J.: Quasi-uniformization of topological spaces. Math. Annalen 147, 316-317 (1962).
- [2] STOLTENBERG, R.: Some properties of quasi-uniform spaces.

 Proc. London Math. Soc. (3) 17 (1967) 226-40.

Cátedra de Matemáticas (E.T.S.I.A.). Universidad Politécnica. Camino de Vera, s/n. Valencia. SPAIN.