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ON THE LAW OF LARGE NUMBERS FOR
CONTINUOUS-TIME MARTINGALES AND
APPLICATIONS TO STATISTICS.

Hung T. Nguyen*and Tuan D. Phaﬁﬁt

ABSTRACT

In order to develop a general criterion for
proving strong consistency of estimators in
Statistics of stochastic processes, we study

an extension, to the continuous-time case, of
the strong law of large numbers for discrete
time square integrable martingales (e.g. ieveu,
1965, 1972). Applications to estimation in dif
fusion models are given.

§1. Introduction.

In statistics of stochastic processes, the problem of esti-
mation in diffusion models has been extensively studied in recent
vyears, using maximum likelihood method for the parametric case
(e.g. Brown and Hewitt, 1975; Delébecque and Quadrat, 1975, 1978;
Feigin, 1976; Liptser and Shiryayev, 1977, 1978) and kernel me-
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thod for the nonparametric case (e.g. Banon, 1978; Banon and
Nguyen, 1978, 1981a, 1981b; Pham, 1978; Geman, 1979; Rao, 1979).
Most of these estimators are defined in terms of lto stochastic
integrals and to establish their strong consisteﬁcy, one is led
usually to show that Mt/Nt goes to zero almost surely, as t-oo,
where (Mt’ t >0) is a martingale and (Nt,t >0) is some stochas-

tic process. In general, Nt is of the form

ft G(s,XS)ds with 6(.,.) >0, and (XS, s>0) is an observed pro-
0
cess; and it is required that Nt->oo almost surely, that is

(1.1) f G(s,Xs)ds = almost surely

0
For example, in some applications, Nt = <M>t, the natural increa
sing process of a square integrable martingale Mt’ then the con-

dition (1.1) is sufficient for Mt/ <M>t+ 0, almost surely, as

t> .

In genera!? Nt might be different from <M>t' The condition
(1.1) is no longer sufficient for this purpose, but one can add
some new conditions in order that Mt/Nt -+ 0, almost surely. One
way to do this is to find a suitable function 9, such that gt/Nt
is bounded almost surely and sufficient conditions for Mt/gt+ 0,

almost surely, t—> o,

These considerations led us to derive some appropriate
forms of the strong law of large numbers for contfnuous-time
square integrable martingales. We shall extend results in Neveu
(1965, 1972) on discrete-time case and also the almost sure sta-
bility criterion for second order random functions in Loeve

(1963), see also Nguyen (1979), to the present case.

As applications, we shall prove the strong consistency of a
class of recursive nonparametric estimators of the drift coeffi-
cient in the diffusion model, proposed in Pham (1978), and also
study some parametric estimation problems. For implementation

and simulation studies of these estimators, see Nguyen and Pham
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(1981), and Banon and Nguyen (1981b). Some of our results have

been announced in Nguyen and Pham (1979).

2. Law of Large Numbers.

In the sequence, all the random variables are real-valued
and defined on the same probability space (Q,F,P). (Ft,t;zo) de-
notes a non decreasing family of right continuous sub-g-fields
of F (as usual, each Ft is completed by the P-null sets from F).
By increasing process of a right continuous, square ‘integrable
martingale Mt, relative to (Ft,t2=0), we mean the increasing pro

cess associated with the non-negative submartingale (Mz,t;ao) in

. t
the Doob-Meyer decomposition.
We will need the following lemma (its proof is immediate)

in the proof of our main theorem below.

Lemma 1. (Generalized Toeplitz Lemma). Let (ut,t2=0) be a
left continuous, non decreasing function tending to infinity as
t>e, and (¢t,t2=0) be a function such that f¢sdus exists for

[0,t)
all t. If ¢S+-O as t-w, then

" f¢sdus» 0 as tow.

u
Yt qo,t)

Theorem 1. Let (Mt,tgao) be a right continuous, locally squa
re integrable martingale® on (Q,F,P), realtive to (Ft’t >0), with
natural increasing process (<M>t,t>0). Let (utﬂ:>0) be a non de-
creasing process, adapted to (Ft,t;ao). Then, as t-w, Mt/ut+ 0 al

most surely on the set

" i.e., there exists a sequence of stopping times Tn,‘r-n++ao as
n> +o, such that, for each n, (MtAT ,t>0) is a square integra-
ble martingale. n
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o o o) 2
{u_=®IN[ UL [ u “d<M> <+w
© t- t
n=1{ n
Proof: Replacing uy by U, which is less than u,, we can
suppose, without loss of generality, that u, is left continuous.

t
Let n>1 be such that un>0, and m be an integer.

. . _ -2
(i) Dgflne. Bt = j(n,t]us d<M>s, t>n.

and T, = inf {ﬂt;m, Bt>m}, wi'th T = if Bt<m for all t.

Since {TmSQt}={Bt>m}'by the right continuity of t= B,, and since
B, is predictable (Liptser and Shiryayer, 1977), the stopping ti
me Tm-is predictable. Thereforev(Dellacherie and Meyer, 1978, p.

132) there exists a sequence of stopping times Tﬁ i such that
T <T L, T .4T as i»x almost surely. Now, B <m so that the
m, m’ m,i m tATm i
stochastic iﬁtegral f u_1 dM_ is well-defined and is a
(n,tATm i] s s :
square integrable martingale.
Def'ine the process Zém), n<t<'rm by the condition
(m) - -1
Zeat - j(n,tAT 1Ys dMg
m, m, i
Clearly Zém) is right continuous and admits left limits. We will

show now that, almost surely on the set {Tm=m}, Zim) also admits
a limit when t-wo. By replacing Tm i by and appropriate sub-sequen

b
ce, one can assume that

g{rm =, TS it<2 ', i =1,2,.
Therefore, by the Borel-Cantelli lemma, T i>i for i sufficient-
ly large, almost surely on {Tm=w}. Set g, =myv (tATm,[t]+])’
where [t] is the integer part of t. The family of stopping times
Ot is increasing and bounded by T’ hence Zém) is a martingale
with natural increasing process BO . Since BO< m for all t, it

t t
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is a uniformly integrable martingale (Neveu, 1965, p. 130), and
hence tends to limit as t=>», But ot=t for t sufficiently large,
almost surely on {Tm =}, which proves the result.

z(m)

. < R L.
Define Zt’ n\~t§T IlmTTm by the condition ZtA N

m
Clearly Zt is right continuous, admits-left limits and 1im Z

. t-o
exists almost surely on

Y
Ut = =k={f u %d<M> < =},
m
Thus we have shown that, for almost all w of the above set, Zt(w)
is right continuous, has left limits and has a limit as tsw. This

implies that t+Zt(w) is bounded (Doob, 1953, p. 361).

(ii) Set tgk) =n + (T-n)i/k, T>0, we have
; )
R B (‘“t(k)' 0 00 2 a0 o)
i l-l | |-1 i |-1
T
_fz(k) o g
n
where Zik)= z (k)’ uék) = ut(k) for tff% tgk).
i i-1
Since Z( )+ Zt and Z(k)'is bouﬁded for all t, all k, almost

surely, by Lebesgue dominated convergence Theorem, as k- o«
T- T-
(k)
oz du > [ 7 4duy
n n :

In the same way, since uik)+ u,_ and uék)

t bounded for all t< T, k,

as k +» o
f (k) T - -1 T

4z, ~+ [ u, dz, = [ u (u dM) = [ dM
n n n t t t n t
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Therefore

. -1
Tim u_ M_ =
T T T

T- T-
. -1 . -1
lim {Z_-u_" f Z_,du }=1im{(Z_ -2 )-u (Z,4-2 )du, }.
Tow T T n t t Toe T 0= T In t o= t
So by lemma 1, MT/uT+ 0 almost sdrely, on the set{lmqu=mL

as T +» . This completes the proof of the theorem.

Corollary 1. Let (Mt,t;=0) be a right continuous, locally
square integrable martingale relative to (Ft,t;ao), with natural

increasing process (<M>t,t;=O), and let (ut,t;=0) be a non de-

creasing process, adapted to (E%,t;iO). If for some n=1,
® -2
E f u d<M> < =
- s
n s
then dt]Mtf 0, almost surely on the set {u_ = =}, as t> o,

Corollary 2. Let (Mt,t> 0) be a right continuous, square in
tegrable martingale relative to (F},t} 0), with natural increa-

sing process (<M>_,t>0), and (gt,t> 0) be a non decreasing func

t,
tion tending to infinity as t>o such that for some n>1

oo

-2
fngt_ dyt< @ where Ye T E<M>t

then u;1Mt -+ 0, almost surely as t »> o,
Proof: It follows.simply from the fact that, if (gt,t> 0) is
non random, then
) ® -2
E [ g ° d<M> = / g, dE<M> .
n ot n

‘Corollary 3. Let (Mt,t> 0) be a right continuous, square in

tegrable martingale relative to (F ,t> 0), and (gt,t>=0) be a non
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negative increasing function tending to infinity as t+ o . If

there exists a sequence of non negative real numbers (anﬂ1>1)

increasing, tending to infinity and such that

then

ving

oo
Ly /g2 <+o  where y, = E<M>_,

t t
=1 "m+1 m

g?Mt > 0, almost surely, t »> .,

In particular, the same result holds if for some a>0,

/g2 < +w,

Iy
=1 (m+1)? p°

m

Proof: The result follows from the Corollary 2 by obser-
that '

Remark. This corollary 3 is an extension of the almost sure

stability criterion in Loéve (1963, p. 486), see also Nguyen

(1979). To illustrate the extension of the proof used in Loéve,

the corollary 3 can be proved directly as follows:

For a < t <o we have:
) m m+1

g-1 M = g_1 M+ Z(a t)

o t o a m’

m m m
where Z(a_,t) = g ' (M - M ). set U(a )= sup | z(a t5|2;
m’ o t a ' m m’
m m am< t<< am+l

2

Since {lZ(um,t)} , te[um,am+1]} is a sub-martingale, we have

(Neveu, 1965, p. 133), for c»0:

cPlUla ) e} <Elzla,a ) 1%= o % (v, v, ).
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"~ 8

Since Yo > Ya

, the condition (2.1) implies that
m+1 m :

P U(am)>c}<w,

m=1

and hence by Borel-Cantelli lemma, U(am) > 0 almost surely as

m - o, On the other hand,

feed o
el mo 1P = 1 ety

< Ooby (2'1)9
o
1 m m m=1 m m

and therefore, by Borel-Cantelli lemma again, g-] M - 0 almost
an  Op
surely, as m > o,

We oﬁtain the desired result by observing that

-1 -1
|9, Mt|<|9am Mol

Corollary 4. In the notation of the corollary 3, if for so-

me § >1, a>0 we have Yét/gi = O(t-a), t > «, then g;lMt+ 0 almost
B8 2B8-0

surely, t > o». The same conclusion holds if gt“t ’Yt=0“
with @ > 0, B>0. '

), t 7,

Corollary 5. In the notation of the corollary 4, and suppo-
se that there exists a non decreasing measurable function
f:(0,°)~> R* such that f(Yt) = O(Qi), t > ©°, and

(o]

f f_l(u)du < ® for some n=>1,
N ,

then g;lMt» 0 almost surely as t - o,

o
Proof: It is enough to check that f g;Z dyt< o for some a.
u

We have f(Yt)g;2< c for t sufficiently large, t=a, say. Therefo

re

® -2 o -2 -1 ®
,Iagt dy, = [af(Yt)gt £y )dy < c jaf (v,)dy, -

Set a(x) = inf{t:yt> x}, then a(x)<t is equivalent to
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t
dy . Thus:
t

Y, =2x, and hence the image of the measure dx by a is the measure

JE v par, = S5 ) dx<f F k) dx
v -

a(x
a {a(x)=a} a

since o(x)>a is equivalent to x;zYa_ and Yu(x)>:x’ the result

follows.

As an application of corollary 5, we have

Corollary 6. If for some € >0, Yt(Loth)]+€= 0(gt , in par-

. -€ ;
ticular if y, = 0(95 ) as t » «, then Mt/gt+ 0, almost surely,

t
t > »,
Corollary 6 has an interesting interpretation, it says that
if 9, converges to infinity more rapidly than ¢Yt, in a certain

sense, then Mt/gt+ 0 almost sureiy as t > ®. Note that /Yt is

the L2 norm of Mt'

Corollary 7. With the same notation as in Corollary 3 and
suppose that there exists a measurable, non-decreasing function

f: (0,®) ~» R* such that f(<M>t) = O(Ui) as t - o, almost surely,

and

o : o

[ f " (u)du< +w

a
for some a=0. Then Mt/ut+ 0 almost surely on {um_= +x), as trw.

- ' 1+€ 2, .
Corollary 8. If for some € > 0, <M>t(Log<M>t) = O(Ut)’ in

particular if <M>t = O(ui_CL as t > ®, almost surely, then

Mt/ut *+0 almost surely on {um;= +o} as t > .

The proof of these results is the same as that of corolla-

ries 5 and 6, using the fact that t- <M>t is right-continuous.
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Remark. |If Mt has continuous sample functions and <M>w= ©,

almost surely, then MT ,t>=0, where
t

T, < Inf{u: <M>u>t}

is a Brownian motion. Thus by the law of iterated logarithm

lim sup (MT // 2t log log t) =1
t

t > o

or equivalently

1/2
lim sup [M /(2<M> 1log log <M> ) =1
u u u
u > o
- -(1+€
Hence Mu<M>u1/2[Iog <M>u](1+)/2 + 0, as u .+ «®, almost sure-

ly. Corollary 8 says that this result still holds for non conti-

nuous martingales.

§3. Applications.

3.1. Consider the estimation of parameter in parametric mo-
del of diffusion process

= . =
dXt ue(Xt)dt + O(Xt)dwt, t=0

6 being the unknown parameter to be estimated (eeC)CRd). Now, if
the function ue(') is linear in 6, then the log likelihood func-
tion is quadratic in 8 and the maximum likelihood estimate eT of

‘9 , based on Xt’ 0<t<gT, satisfies:

T) = IT(GT-G) + lT(e)

where QT(G) and I_. are the vector of first derivatives and the

T
matrix of second derivatives of LT(G), the log likelihood func-
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tion based on X , 0<t<T. Thus 8.-6 = 12'2.(8) where £ (8) is
in general a square integrable martingale (Feigin, 1976). Thus
to show the strong consistency of eT’ we are led to show the al-
most sure convergence to 0 as T > ® of random variables of the
form MT/]V.r where Mt,t>o is a martingale and [/t,t>0 is some ran
dom process. In the scalar case, that is the case d = 1,

Nt = It = <2(6)t = <M>t’ so by corollary 6, a sufficient condi-
tion for the strong consistency of ST is I__= @, almost surely

(see Liptser & Shiryayev, 1978, p.206, Feigin, 1976).

However, in the above example_Vt would be different from
<M>t in the vector case (d > 1). The same situation occurs in

the non parametric estimation of u(x) of the model

(3.1) dx, = u(x)de + o(xt)dwt

where the proposed estimate is (Pham, 1978)

(3.2) (x) jT (Xt_x IT (Xt_x)
3.2 u xX) = H. K YdX, H, K dt
T 0 t ht t 0 t ht

Here K is some probability density, Ht>=0,ht>=0 with ht+0 as
t - o and

T
(3.3) 9; = fochtdt < + o

tending to ©» as T » ». Using (3.1), it is seen that the estimate
(3.2) is of the form

F_(x) = p + ot
T WTIx5 JVT(xj

where NT(x) is the denominator of (3.2) and

T Xt-x
(3.4) aq(x) =_f°HtK( Ht Julx, )dt
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T Xt X
(3.5) by (x) = foHtK( ) o (X, )dwW,
Since bT;TEZO is a martingale, we are led to the same pro-

blem as above.

3.2. We now return to the first example in'§3.1 and consi-

der the simple model
X = >
dXt, SXtdt + dwt,t =20, 6 €R.

Here the maximum likelihood estimate eT of 8 satisfies

f X, dw //& Xxcdt = /<M> , say

So all we need is to show that <M>_ _ o, For this we shall find
a suitable function gt.tendlng to infinity, such that gT/<M>T

tend to a finite limit almost surely, as T -+ o.
Suppose 6< 0, by ergodicity, we have

12
Tim T'fv Xtdt = lim E(X ) -0

T 0 tsoo
(see Feigin, 1976), therefore it suffices to choose g, = t.

Suppose 6 >0, then (Feigin, 1976)

2 20t

x2 = 280z 4 x )% + 0(e2%h)

’

~

almost surely as t » o, where Z is independent of~X0 and diffe-

rent from 0 almost surely. Therefore it suffices to choose

9, = ezet to have

T
[ x2dt > 20(z + X )2
ot 0

by the lemma 2.
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Note that we can also show, by corollary 1 or 4, that

9;1 gXtth > 0 almost surely, as T > ® since Yt = 0(t) if 6<0
and O(ezet) if 8 > 0. Thus one can obtain the result without

using corollary 6.

Finally, the case & = 0 needs a special treatment. We have
= ¥ +* 2 = oo N
Xt X0 + Wt, hence to show that IO Xtdt +® almost surely, we
need only to verify that fgm(xo + Wt)zdt = +® almost surely. Now

let A(t,x) be the Brownian local time (Freedman, 1971, p. 138),

we have

+ x)2 A (T,x)dx

and since A(T,x) increases to +o, as T » +», for almost every X,
almost surely, the result follows. See also Nguyen and Pham

(1979) .

Remark. Using Fubini's theorem, it is easy to show that if

A(+o,x) = 4o, a.s., ¥x, then A(+w,x) +o, for almost every x,

almost sureliy.

3.3. We now show the strong consistency of the estimate
(3.2). It is known that under suitable conditions, there is a
stationary solution Xt,t >0, of (3.1). So we suppose that the
observed process Xt is stationary and we denote by f the common
density of the Xt. It is interesting to note that the recursive
Kernel type estimators of f(x) based on Xt’t e[0,T], is of the
form (Banon, 1978, Nguyen, 1979)

T Xt-x

frix - 9 Io ek he

)dt

where 97 is given by (3.3). So, the estimate uT(x) can be written

as
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a_(x) B_(x)
_ T T
1'IT(X) - fT(x) + fT(x)

where @ (x) = a (x)/g,B (x) = bT(x)/gT,aT(x) and b_(x) being
defined in (3.4), (3.5).

In Banon and Nguyen (1978), it is shown that fT(x) is stron
ly consistent. The same technique can be used here to show that
aT(x) converges strongly to M(x)f(x). The proof is reproduced

briefly here.

Lemma 2. If f is continuous and either K has compact support
or f is bounded, then EfT(x) + f(x) as T * ®. More generally, if
Yf is continuous and either K has compact support or Yf bounded,
then

-1 T 'Xt-x
Elgr IOHtK(—F——)w(xt)dt}
t

tends to P(x)f(x) as T > =,

Proof. The first part of the lemma has been shown in Nguyen

(1979, proposition 1), using Toeplitz lemma and the fact that
JK LF(x + hy) - f(x)}dy> 0
as t > o, The second part is an easy .generalization and has been

proved in Pham (1978).

From now on we shall suppose that the Xt process satisfies
the condition G, of Rosenblatt (1970), namely
2 s 2
<
E[E{¢(Xt+5)|Xt}] 87 E¢(X,)

for some s > 0,0 < § <1 and all ¢ such that E¢(Xt) = 0. Using
the Markov property of the Xt process, it can be shown (Banon ¢
Nguyen, 1978) that G, implies:
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s 2 2 1/2
lEo(x, , WX ) < C8%{EQT (X JEPT (X))

where C is some constant and ¢, Y are such that E¢(Xt)=E¢(Xt)=O.

Now, let us put

Xt-x
Z, = WK u(x,)
t
Fst = cov(Zs,Zt).

- t-s | N1/2
<cel :
Then the above condition means that ]Fs,tl C§ (Fssrtt)

But if ¢2 satisfied the condition of lemma 2:

_ 2 2

= Hih, Jriy)p®(x + hyy)fx + h y)dy
p— 2 fee]

= O(cht)’ t >

’ A - A~
and hence |T | <CH_H _/h_h 6|t SI, where C is some constant.
s,t x t s t .
We now use the almost sure convergence criterion in Nguyen

(1979), which we recall here.

Theorem 2. ''Let Zt,t >0 be a measurable second order process
and gt,t =20 a positive measurable function with 9, > 0 for t> 0

and gt* ® as t> . Let

1 [T
u, = — (2 -E Z )ds
t gt 0 S S

Suppose that

(i) 9, ~ tB, t > with 0 < B< 1

(ii) For sufficiently large t, var(Zt) < ¢ and
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Ly d
— cov{z ,z_,}dsds']| < —
£28 0 o 53 L YB

where c,d,y,B are strictly positive constants with yB8 > 2(1-8).

Then Ut + 0 as t > o, almost surely.

Theorem 3. Suppose that

(i) F;pf,pzf are continuous and either K has compact support or
f,pf,uzf are bounded

(ii) Either a) or b) below is satisfied
a) H, is bounded and 9, ~ tB, with 2/3 < B<1

b) H, = 0(h1t/2) and g~ B with 3/4 <8< 1.

Then fT(x) > f(x) and aT(x) > u(x)f(x) almost surely as

Proof. By lemma 2, EfT(x) -~ f(x) and EaT(x) > u(x)f(x). To

show that fT(x) - EFT(x) and o_(x) - EaT(x) tend to zero almost

T
surely, we shall use the almost sure convergence criterion in

Theorem 4. Set

X, -x
t
—Ivix,)

t

Zt = HtK(

where V() =1 or Y(-) = pu(-). Then we have seen that for large
s,t

|[cov{z_,z }| <const.H_ H_vh_h Slt_sl
s st st

t

So, by a) or b), var(Zt) is bounded as t » « and

TOT © o
Ifo focov{Zs,Zt}dsdt[ <2 fO[f0|cov{Zt,Zt+u}|du]dt
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which is O(QT) under a) and O0(T) under b), as T+ » . Therefore
conditions (ii) of Theorem 1 is satisfied with y= 1 in case a)

and y= 2 - 1/B8 in case b): The result follows.

Corollary 9. Under the condition of the Theorem, if f{(x)>0
then uT(x)/fT(x)+ p{x) almost surely as T+ « .
It remains to show that BT(x) + 0 almost surely as T >,
Now BTgx) = bT(x)/gT where bT(x) is given in (3.5). Set
t X -x

_ _ 2 5
Y, = E <by = E[IOHSK( b

)o(Xs)ds]-

Suppose that the function o{°) satisfy the assumption of Temma

2, then the same proof as that of this lemma shows that

Yy = 0([ H h ds)

and hence vy = 0(g£) under the assumption a) and Y¢ = 0(T) under
the assumption b), of Theorem 3. The application of Carollary 4
or Corollary 6 then shows that bT(x)/gT(g) > 0 almost surely as
T~ @, provided that g . tP with g>1/2. We thus obtain

Theorem 4. Suppose that of is continuous and either K has
compact support of of is bounded. Then under the assumption a)

or b) of Theorem 3, BT(x)-*O almost surely as T o .

Corollary 10. Under the assumptions of Theorems 3 and 4 sup

pose that f(x) > 0, then uT(x), given by (3.2) is a strongly con

sistent estimator of u(x).
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