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ON m-DIMENSIONAL STOCHASTIC PROCESSES
IN BANACH SPACES

*
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ABSTRACT

In the present paper the authors prove a weak
law of large numbers for multidimensional pro-
cesses of random elements by means of the ran-
dom weighting. The results obtained generalize
those of Padgett and Taylor.

1. In the last decade Taylor, Padgett and Wei [2], [3], [41,
[ 5] and other authors have promoted the study of the convergence
of sums of random elements, i.e. random variables in Banach spa-
ces, and in particular they proved laws of large numbers and re-
lated theorems; In this short note we generalize some results by
Padgett and Taylor to the case of muitidimensional processes of
random elements and particularly we prove a weak law of large

numbers by means of a suitable random weighting.
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We start with the standard definitions and notations as in

the papers of cited authors.

Let W be a Banach spacé.with norm Il and Tet B{W) the Borel
o-field generated by open subsets of W.

Let (Q,A,P) be a probability space and let V be a function
from Q into W. If V-I(B)eA.for every BeB(W), then V is said to

be a random element in W.

We consider a multidimensional random process (Wong [ 6]) of
random elements as a family {Xt} of random elements on W, with

index t belonging to the positive integer lattice Ng of R™.

Let {Uk, keN} be a sequence of finite subsets of Ng

a partition of NT, the process {Xt} is said to be identically dis

which is
tributed with respect to the partition Uk’ if

P( Z X,) =P(z X_) for all n,k such that n#k and

t t
te Uk te Un
for all BeB(W).
(e.g. U, is {teNT: |t| = k}, where |t| = t, +...+ t )

k 0 1 n

A process {Xt} is said to be independent if every finite sub
set is independent. From theorem 3.3.2 of Chung [1] and lemma
2.3.5 of Padgett and Taylor [2], follows that the sequence
{ = Xt’ KeEN} is independent for all partitions U

te U,

Finally, let {ak} be a sequence of random variables, if we

K

assume the weighted process {Xt teUk} is independent and

ak,

identically distributed with respect to U we are able to prove

k’
a weak law of large numbers for the original process Xt'

2. We first state the following useful lemma:

Lemma: Let (Q,A,P) be a probability space and let Xt an indepen-

dent and identically distributed (with respect to Uk) m-dimensio
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nal process of random elements in the Banach separable space W

and let {bnk;n,kEN} be a double array of random real variables.

Set V, = L X,, we suppose that
k t
teu
k
a) "Vk" is integrable, for all keN,

n
. 2 .
b) llmnsup % |bnk| <t oo a.s. in Q,

then

lim n-1
n k

[ =]
o
<
]

o
[
(7]
3
2

1 nk 'k

Proof: The proof is the same of that of theorem 3 of [5] and is
mitted for the sake of brevity.

Now, we are in condition to prove the result of the paper

Theorem: Let (%,A,P) be a probability space and let W a separable

*
Banach space having a Schauder basis(

Let Xt be the above defined m-dimensional process of random

elements in W and let {ak} a sequence of real random variables.

Set V, = £ X_,
k teu, t

c) the weighted process {ak X

we assume that

e téUk} is independent and identi-

cally distributed with respect to Uk’
| .- 2
d) lim sup I |a, - 1|%<+o a.s. in Q
n 3
k=1
and a, =c (ce R-{0}) : a.s. in Q ,
e) E(Hvlﬂ) <+ and E(ak Vk) = E(al V]) for all keN,

(%) A sequence {bn}C W is said to be a Schauder basis for W i{f
there exists a unique sequence of scalars {tn}such that
= I
w= o tkbk for all wewW.
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then the following conditions are equivalent

n
f) the sequence of random real variables lIn ! Z(Vk-E(V]))H tends
. ey s k=1
to zero in probability.

n

g) the sequence of random real variables n L K f.(v, -E(v.)),
k=1 " itk 1

where fn is a sequence of coordinate functionals, linear and

continuous (e.g. a sequence defined by letting fn(w)=tn, for

all weW), tends to zero in probability.

Proof: We denote by £ the set of sequences {Zk, k=>1} of random
elements on (£,A,P) into W such that the following conditions are

equivalent to one another

n
h) the sequence of random real variables [n ! Z'Zkﬂ tends to ze-

ro in probability, k=1

i) for every coordinate functionals fi the sequence of random

real variables n-1
k

N M3

fi(zk) tends to zero in probability.
1

It is evident that £ is a vector space. We shall prove that
the sequence {(Vk - E(V1)), k= 1} belongs to L.

First, we assume a; = 1. We have

-1

v K

- E(VI) = a V, - a, V, + a

a Yk k 'k

K Vi mE(agvy)=

k k

-1
(ak —l)ak Vk+ak Vk -E(ak Vk).

By applying theorem 5.1.1 of Padgett-Taylor [2] to the weigh
ted process, the difference (ak Vk - E(aka)) belongs to £.

On the other hand, also the sequence {(a;1 - 1)ak V£ belongs
toL: in fact, putting bnk = a;‘ - 1 in the lemma, we have that

the sequence of the real random variables

-1
k

v i

-1
(a, -1) a, vy

I'n K

n ™3

1
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tends to zero a.s. in Q.

Now, if a]=ceR-{0}, then from condition e) we can derive
E(Vl) = E(c-1 a, Vk)'

By employing the result of lemma 2.3.3 of Taylor [ 4] the
process {c”! aItIXt,
buted. Hence the proof.

teNg} is independent and identically distri
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