NOTAS BREVES

CONDICION NECESARIA Y SUFICIENTE PARA LA EXISTENCIA DE FUNCIONES CONTINUAS, NO CONSTANTES DE X EN [O 1].

Enrique Tarazona Ferrandis (*)

ABSTRACT

This paper deals with the existence of non constant continuous real valued function on a topological space X. The main results are related to closed covers and order properties.

Una E-relación ([3]) es una relación binaria (<), definida en un conjunto X con más de un punto, tal que:

- 1°) Para cada $(x \ y \ z) \in X^3$ con $(x \ne z)$, se verifica: Si (x < y) e (y < z), entonces (x < z).
- 2°) Para cada $x \in X$, existe $z \in X$, $(z \neq x)$, tal que (x < z) y $\overline{(z < x)}$, o bien (z < x) y $\overline{(x < z)}$. Donde $\overline{(x < z)}$ representa que (x z) no pertenece al grafo de (<).

Los conjuntos $R(x)=\{x\}\cup\{z: (x<z)\ y\ (z<x)\}$, al variar x en X, forman una partición de X, cuyo cociente representaremos por (X/R). Una E-relación definida en un espacio topológico X, se d<u>i</u>

^(*) Este trabajo ha sido realizado bajo la dirección del profesor Dr. D. Manuel López Pellicer, a quien agradezco su constante ayuda.

ce compatible con la topología de X, si el cociente (X/R), es totalmente ordenado, y la proyección φ de X sobre (X/R), dotado de la topología del orden, es continua, ([2] C. 1-Pr. I).

Teorema 1. La condición necesaria y suficiente para que exista una función contínua, no constante de un espacio topológico X en [0 1], es que exista una E-relación compatible con la topología de X.

Demostración. Si f es una función continua, no constante de X en [0 1], entonces el cociente asociado a la E-relación: (x<y) si $(f(x) \le f(y))$, es totalmente ordenado, con más de un punto. Para la proyección φ sobre dicho cociente, se cumple que

$$\{\varphi(x):\varphi(x)<\varphi(y)\}=\{x:\ f(x)< f(y)\}y\{\varphi(x):\varphi(x)>\varphi(y)\}=\{x:\ f(x)> f(y)\}$$

por lo que φ es continua. Recíprocamente, si (X/R) es el cociente totalmente ordenado asociado a la E-relación compatible con la topología de X, entonces X es perfectamente normal ([1] P.39) por lo que la família de las aplicaciones contínuas de X en [0 1], distingue puntos. Por definición de E-relación (X/R) tiene al menos dos puntos \hat{x} y \hat{z} diferentes. Por tanto $f(\hat{x}) \neq f(\hat{z})$, para alguna aplicación de la família anterior. La composición de f con la proyección φ de X sobre (X/R), es continua y no constante.

Si f es una función continua, no constante de un espacio topológico X en [0 1], llamaremos <u>E-relación correspondiente a f</u>, a la definida por (x<y) si $(^c(x) \le f(y))$.

Teorema 2. La condición necesaria y suficiente, para que exista una función continua, no constante, de un espacio X en $[0\ 1]$ es que exista una E-relación compatible con la topología de X, tal que (X/R) sea homeomorfo a un subespacio compacto de $[0\ 1]$.

Demostración. Por el teorema anterior, solamente es necesario probar, que si f es una función continua y no constante de X en [0 1], existe una E-relación compatible, con cociente homeomorfo

a un subespacio compacto de [0 1]. Si f es continua y no constante, existe $(x y) \in X^2 y$ (a b) \in [0 1] 2 tales que f(x) < a < b < f(y). Sea $g(x) = (avf(x)) \land b$, entonces $g(X) \subseteq [a b]$. Si g(X) = [a b] el cociente (X/R), asociado a la E-relación correspondiente a g, es compacto. Si φ es la proyección de X sobre (X/R), entonces la aplicación in yectiva g de (X/R) en [0 1], tal que $g = g.\varphi$, conserva el orden. Si existe pe a p b tal que $p \notin g(X)$, consideremos el subespacio de [0 1], Y = [a p[U] p b]. Sea Ψ la función continua de Y en $\{0,1\}$ tal que $\Psi(z) = 0$ si $\{z < p\}$ y $\{y\}$ = 1 si $\{z > p\}$. La función $\{z < p\}$ de $\{z < p\}$ y $\{z > p\}$ a cociente asociado a la $\{z < p\}$ el cociente asociado a la $\{z < p\}$.

<u>Definición 1.</u> Sea X un espacio topológico. Un cubrimiento no trivial M de X, formado por una família de cerrados totalmente ordenada por inclusión, se dice E-cubrimiento, si $\bigcup \{M \in M: x \notin M\}$ es abierto para todo $x \in X$.

<u>Proposición 1.</u> Si R es una E-relación compatible con la topología de X, entonces los conjuntos $\{x \in X : \varphi(x) \leq \varphi(z)\}$, cuando z varia en X, es un E-cubrimiento de X.

Lema 1. Si M es un E-cubrimiento de un espacio topológico X, entonces existe una E-relación compatible con la topología de X, tal que los cerrados de M son φ -saturados.

Demostración. Si M es un E-cubrimiento de X, entonces la relación (x<y) si (y \in M \rightarrow x \in M) \forall M \in M es una E-relación. El que dos puntos de X estén en una misma clase del cociente asociado (X/R), es equivalente a que dichos puntos, están en los mismos cerrados de M. Por consiguiente:

$$\varphi(z) = (\bigcap \{M \in M : z \in M\}) - (\bigcup \{M \in M : z \notin M\})$$

luego:

$$\{x \in X : \varphi(x) \leq \varphi(z)\} = \bigcap \{M \in M : z \in M\}.$$

$$\{x \in X : \varphi(x) < \varphi(z)\} = \bigcup \{M \in M : z \notin M\}.$$

y en consecuencia la E-relación, es compatible con la topología de X.

Para cada punto $z\in X$, las condiciones $z\in M$ y $\varphi(z)\subset M$ son equivalentes. Por tanto:

$$M = \bigcup \{x \in X : \varphi(x) \subset M\} = \varphi^{-1}(\varphi(M)) \ \forall M \in M.$$

<u>Corolario 1.</u> En un espacio topológico X, la existencia de una E-relación compatible con la topología de X, es equivalente a la existencia de una E-cubrimiento.

 $\underline{\text{Teorema 3.}}$ La condición necesaria y suficiente para que exista una aplicación continua, no constante de un espacio topológico X en $[0\ 1]$ es que X, admita un E-cubrimiento.

Sea M un E-cubrimiento orden completo ((2), C-0;9) para la relación (\subset) , y J un conjunto de índices en biyección con los miembros de M. Representemos $M=\{M_i: i\in J\}$. La relación (<), definida en J por (i<j) si $(M_i\subset M_j)$ y $M_i\neq M_j$, es de orden total. El conjunto (J<), dotado con la topología del orden, diremos que es el espacio de índices asociado al E-cubrimiento M. Evidente (J<) es orden completo.

<u>Teorema 4.</u> Sea el E-cubrimiento $M = \{M_i : i \in J\}$, y (J<) el espacio de Índices asociado a M. La aplicación f de X en J tal que: $f(x) = \inf.\{i : x \in M_i\}$ es continua, y el E-cubrimiento correspondiente a f, coincide con M.

Demostración. La aplicación f está definida en X y no es constante. Para f se verifica que f(x)=f(y) si, y solo si, x e y están en los mismos cerrados de M. Sea la E-relación (x<y) si $(f(x)\leqslant f(y))$. Entonces si (X/f) es el cociente asociado a f y Ψ es la proyección

de X sobre (X/f), se verifica que:

$$\Psi(\mathbf{x}) = (\ \cap \ \{\mathsf{M}_i: \ \mathbf{x}_{\ell} \mathsf{M}_i\}) \ - \ (\mathsf{U}\{\mathsf{M}_i: \ \mathbf{x}_{\ell} \mathsf{M}_i\})$$

Del lema 1, se deduce que el cociente (X/R), asociado a la E-relación: (x y) si $(y_{\ell}M \to x_{\ell}M)$, coincide con (X/f), por lo que Ψ es continua, y los cerrados de M son Ψ -saturados. Sea \overline{f} la aplicación de (X/f) en J, tal que $f=\overline{f}$. Ψ . La aplicación \overline{f} es inyectiva, pues si $\overline{f}(\Psi(x))=\overline{f}(\Psi(y))$, entonces f(x)=f(y) y $\Psi(x)=\Psi(y)$. Si $\Psi(x)<\Psi(y)$, entonces f(x)=f(y), luego $f(\Psi(x))<\overline{f}(\Psi(y))$, de lo cual se deduce que f conserva el orden. Por tanto f es continua, y por consiguiente también lo es f.

Bibliografia.

- [1] LYNN ARTHUR STEEN and J. ARTHUR SEEBACH, Jr. Countrexamples in topology. Second edition. Springer-Verlag (New York-Heidelberg Berlin, 1978).
- [2] KELLEY J.L. Topología General, Endeba (Buenos Aires).
- [3] TARAZONA FERRANDIS E. Relaciones entre orden, normalidad y completa regularidad. Stochastica, V-2 (1981), 125-129.

Escuela Técnica Superior Arquitectura. Universidad Politécnica de Valencia. Camino Vera. VALENCIA (22).