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ON THE MEASUREMENT OF THE ACTIVITY OF
A RADIOACTIVE SOURCE AND A RELATED
STOCHASTIC PROCESS

J. M. F. Chamayou.

ABSTRACT

A method is presented to compute the activity
of a radioactive source. The principle of the
method is based on the "tuning” of B, the ti-
me constant of the RC circuit of the detector
with A being the rate of emission of the sour
ce, using a statistical argument.

The stochastic process involved refers to the
distribution of the following random voltage:

v, =1 v, oRtty)
o<t, <t v

where the t. are Poisson dates of emission and
the Y. are %andom or deterministic pulse heights.
The case of Y; gamma distributed is investiga-
ted. This method could replace a crude counting
for the case of a very intense source where
this kind of measurement would be delicate due
to the problem of rapid data acquisition.

1) Introductian.

From the results presented in [1], see also [11], we propo-

se the following experiment. Particles are emitted according to a
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Pocisson process with rate A, these particles are counted by a de-

tector included in an electrical circuit with a time constant
1
B=_
‘RC
The calibrated pulses of the detector (W) delivered at
Poisson random dates are recorded during the time interval (¢,t].

Then, the voltage measured at time t is:

where U, = exp (-8(t-t;)),

and the t, are Poisson random variables representing the dates at

which the particles are detected.

In the stationary case for which t»w, the conditional distri
bution

< 1]

Pr[v <v /V
0 = o

is uniform for v€e[0,1], see [6], where Ui’ V are expressed in
unit of calibrated pulse W. In practice, if t is sufficiently
large, i.e. equal to n/) where n ~ 10 and if we reject all the
pulses anx>l, a sample of pu]sesAVn/x given by an amplitudes
selector will be asymptotically (n»>») uniformly distributed.
(see (8) for the distribution of Pr(vn< 1)).

I1) Experiment.
(see scheme)

The experimental choice will cover the following situation:

1) The radiocactive source (whose emission is Poisson distributed),
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its quality (a,B,Yy), its emission rate A, the value of the so-
1id angle used to perform the measurements. A possible appli-
cation could be the measurement of the intensity of a X-rays

beam.

2) The detector used to deliver the calibrated pulses of W volts
(Geiger, p-n diode, scintillator,...) its efficiency and its
associated electronic circuits and particularly the variable

time constant cf the circuit B, such that

3) The value n sufficient to coasider the behaviour of vn/A as
stationary. (i.e. for a sufficient time of storage of the

pulses).

4) The value of the calibrated pulses W such that, when discrimi-
nated, the pulses inferior to W analyzed by a multichannel am-
plitudes analyzer are not too much perturbed by the noise of

the device, discriminated also at a threshold wo<<w.

I11) Analysis.

After having collected in the multichannel analyzer a suffi-
ciently large number of pulses Vn/A’ we will test using a non-pa-
rametric test [2], whether the conditional distribution is uni~
formly distributed as predicted by the theory. If V
form (B # A):

n/a is not uni

1) NON UNIFORM CASE:

I1f A and B are different, the conditional distribution is gi

ven by: (see [6])

Prfvgv /v, 2 1] = v}‘/B , vel[o,1]

o= [}
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Y
e-l/B
F(% +1)

and Prlv, 211 =

where Y is the Euler constant ( = 0.577).

Pr [v,> 1] represents the percentage of rejected pulses by
the amplitude discriminator. In that case A can be easily deter-
mined from the sample of pulses using the conditional average

theoretically equal to:

L = A8
A/ B+
and the estimated value:
A=S%\‘
T-u

where yu is the observed value of the conditional mean. Then the

conditional distribution could be tested using [4].

2) UNCALIBRATED PULSES.

If the pulses delivered by the detector are not calibrated
but rather randomly distributed with a distribution stochastica-
Ily independent of the arrival dates, 'the Laplace transform of

the probability density of the stationary signal V_ is given by

~ s
f (s) = exp{ % f h (8) - 1 dg}
° g

where h~ is the Laplace transform of the pulses heights distribu-
tion [6]. (see also ref.(18)).

Let us take an example, suppose h is gamma distributed with

a parameter §:

e X xG-l
hix) = *=—> — , x320 ,8>0

r(s)
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Then _ h~E) = (1 +g)° 8

a) CASE &= 1 see [1].

b) CASE &= 2.

We get for f after 'straight forward integration:

N A8
f (s) = =———— exp {A/B(1+s)}.
(“_5))\18

The corresponding probability density for V_ is:

- - (.X/a-l)/z
f(t) = e M B et (ﬁi) I _,(2/Xt78), t20.
A A

where I is a modified Bessel function.
v o
c) CASE 6= 0.5.
We get for £ after straight forward integration:

. A/B
f (s) = 4

(1+ q:;TZA/B

The corresponding probability density for vV is:

1

3A/8 , -t/2 A/B -
f(e) =/ 22 A t D (/7t), t > 0
1 B -(1+21/8)

where Da is the parabolic cylinder function. This parabolic cylin

der density appears for instance in [5].

In these cases the value A can be deduced from the expecta-
tion of these densities in the same way as previously: i.e. repla

cing in the theoretical expression the mean by the observed mean.



J. M. F. Chamayou 182

d) CASE 8= 1.5.
We get for f after straightforward integratioh:
~ hk/B

f(s) =——— 2v/8 exp {2 % ( LI, 1)},
(1+7/1+s) S+1

The corresponding probability density for V_ is:

AB -20/8
f(t) = —¢ [ fe,
2/nT (2y/8) t3/2 ©

2
o A41_E°/ht
£ 73 ¢3(2A/BZA/6;-E;2 %ﬁ)d

o 2 g . A/B
- Jee M o meRnD) ey (2he, 22/85-/ERon? s 2hVE ) ande |
o o
since the original of g (/5%1) is: (see [31).
oo 52 ] Ez ]
— 1 1 fge” 2te(e)ae-fee” /Mt fu (n)f(/EZ-nZ)dndE]
2v/n t3/2 o o o !
and the original of F(s) = 5 exp(i) is :
s (l%)a s
b-1

t
r'(b)

h(t)

¢3(a,b;ct,dt)

where @B is a confluent hypergeometric function of two variables
(see [101).

e) CASE &= 3

We get f after a straight forward integration:

"~ e-BA/ZB 1 1
f (S) = m exp{)\/B (1_+S- + 2_(1_+;)'2)}
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but the original of

—ia exp (%) is (%)(a~1)/21u_,(2f Yt)

and the original of

2
o€ is (see [91) of2 (1,172, 1%—)

f{t) is then the convolution of these two distributions multiplied
-t
by e 7.

-1
(t-2)2 (éi)x/zs
X

t
- ."3A/28 -t 1A
f(t) = € e £0F2(1,2’BT)

1,/8-2 (20 XE/B) d&
for t=20.

Where qu is a hypergeometrical function.

3) BOTH SIGNS PULSES.

If the pulses delivered have both signs with equal probabi-
lity, then the Laplace transform of the probability density of
the stationary signal V_ is given by [6]

~ . s , ~ ~ .
f (s) = exp {E% ! h (g) + 2 (-£) 2 dE}.
o

Suppose h is gamma distributed

a) CASE 8= 1 see [1].
b) CASE &= 2. '
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We get for f after a straight forward integration:

-x28
2)X723 exp

( A

£ (s)
) 28 (1-52)

(1-s

The corresponding probability density for V_  is: [3]

. , K
2 W/EB-1) /2 n=o ni T (A/2B+n)2%n MEL 4,

f(t) = 2 (| t]) -w<t<te

Where Ka is the modified Bessel function of second kind,
i.e. |Vw| is then distributed according to the difference of 2
non central x2 with A/B degrees of freedom and a non-centrality
parameter equal to A/B. Another example of both signs pulses can
be found in ref. [7].

CASE 6= 0.5.

M8

f(s) =
2T ((arTes) (14/75) ) 20 /B

but

F, (a,a-1/2; 2a; s)

(]+V1'S)1-za
21 2

where 2F1 is the hypergeometric function
a = )A/B + 1/2

The product is expanded into (see (12)).

(a)  (a-1/2) _ (a)_(a+1/2)
al, \a n %n *° n (-sZ)" ,Fq (atn, a+n-1/2;2(a+n);s%)

©
X

n=o (2a)n (Za)2n n!

by the Legendre duplication formula we get:

(a), (a*1/2)

1
_Kn

(Za)Zn
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using the Meijer G function (see (12)) we get:

1_ 1, 2(a+n)  _ I(a+n) r(a+n-1/2)

G I -
S2 a+n, a+n-1/2 r(2(a+n))

e
2

2F1 (a+n, a+n-1/2; 2(a+n); 52)

using an identity of the Meijer functions, we get:

" 2a-1,__ © ’ -
F(s) = 2— (a-1/2) & L(_Z(a_*")l%n Gi’; ('lzl; ";_fj;")
e n=o T(2a+n)n! ’ s ’
But the original of
i G2,3 (_l |o,]/2,1/2-n,2a+n-1/2)
s 4,b4 S2 a-1/2, a-1, o, 1/2

is known to: (see (13)).

i /2,1 (_tz |1/2=n, 2a+n-1/2

— G

2 2,4 "% 'a-1/2, a-1,0,1/2
Then we get:
(1) = 22a-1(a_1/2) C r(2(a+n)) 1 n 62! (_tzll-n, 2a+n )
|t n=o T'(2a+n)n B 2,4k Ta-1/2,a,1,1/2
Gi’i which is a linear combination of generalized hypergeometric

functions can only be easily calculated for special cases, for
instance: A/B =1, 1/2.

In section 2 and 3, the analysis was restricted to the values
of the parameter § for which a closed form for the density has

been found.
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L) GENERAL FOQRMULA.

Differentiating the Laplace transform of the stationary den-

s5ity of probability, we get (see (6) and (18))

~ ~ s~y
af (s) _ % h (s)-1 exp {% £ h (i) LI £)

ds s

Then we get the mean:

u=-(£._(s—))s=o = _A_]im ]'_h(_S_)___%\)
9s s>o s

~

since the integral cancels for s*o, h being the Laplace trans-

form of a density probability and v the mean of this density.

If w and v are known from samples of observations we get the

following estimate:

>
i

<OIE D>
hos)

The accuracy of this formula is subject to the errors on the

measurement and to the variances on U and V.

IV) Conclusion.

This experiment is not only of academic interest since it is
possible to try, using a circuit with variable time constant, to
measure the parameter A of the Poisson distribution corresponding
to an unknown radioactive source, where N is the number of parti-

cles emitted during the time t.

e'kt()\t)n

n

Pr (N=n) = n=, 0,1,...

using B= E%’ the time constant and refering to the previous ana- .

lysis.
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This method doesnt pretend to replace a crude counting du-

ring a given period of time.

But this method could be of interest when the data acquisi-
tion system is not sufficiently rapid to count the particles
emitted by a source with a high rate, since in that case the re-
cords are only made after a time interval (0,n/)) (where n»e),
in view to calculate the mean of the distribution of vn/k and to

compute A from B.

BIBLIOGRAPHIC NOTE.

Additional results concerning stochastic models giving rise
to sum of products of random variables can be found in referen-
ces 14, 15, 16, 17.

A reference text book on the physical generators of random

numbers is given in ref. (19).
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