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DECOMPOSITION OF TWO PARAMETER MARTINGALES

D. Nualart

ABSTRACT

In this paper we exhibit some decompositions
in orthogonal stochastic integrals of two-pa-
rameter square integrable martingales adapted
to a Brownian sheet which generalize the repre
sentation theorem of E. Wong and M. Zakai (l617.
Concretely, a development in a series of multi
ple stochastic integrals is obtained for such
martingales. These results are applied to the
characterization of martingales of path inde-—
pendent variation.

0. Introduction.

Stochastic integration with respect to two-parameter martin
gales was first developed by R. Cairoli and J.B. Walsh [1]. It
was observed that certain types of integrals are only defined’
for strong martingales, which.in the Brownian case can be written

as MZ=IR ¢dW. These martingales have path independent variation,
z

and it was conjectured that path independent variation is another

characterization of strong martingales.

A.M.S. subject classification: 60G45, 60HO5.
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The Wong-Zakai representation ([6]) of a two-parameter squa
re integrable martingale adapted to a Brownian motion states
that Mz=[R ¢dw+fR ]R PdWdW. In [1] it is shown that if Mz has

z z 'z

path independent variation and w(g],zz) depends only on z,vz,,
then ¥=0. This result is extended in [5], assuming weaker condi-

tions on the process .

Using the notion of stable subspace of two-parameter square
integrable martingales introduced by M. Zakai ([ 9]), we generali
ze the Wong-Zakai representation, and a development in a series

of multiple orthogonal stochastic integrals is obtained.

This decomposition is used to show that under -some regula-
rity conditions a path independent variation martingale is

strong.

We remark that in [9] another class of two-parameter martin
gales is introduced (martingales of orthogonal increments) which

characterize the strong martingales in the Brownian case.

1. Shbspaces of two-parameter square
.integrable martingales

Let W ={wz, zeT}l, T =[0,l]2, be a two-parameter Wiener pro-
cess in a completed probability space (Q,F,P), that is, a Gau-
ssian separable process with zero mean and covariance function
given by E[w51t1'wsztz] = (s]Asz).(t]Atz).

I f (sl,t]),(sz,tz) are points of T, we will consider the
usual order (sl,tl)<(sz,t2) if and only if s;<s, and t<t,.

and t. <t and we will write

1°72 1" "2
A .
(st ))A(s,,t,) if s;S s, and t,>¢t,. If z<z,,

(sl’tl)<(52’t2) means that s. <s
(ZI’ZZ] denotes

the rectangle {zeT/z1<z< z,}-
Denote by {FZ, zeT} the increasing family of g-fields gene-

rated by W and the null sets of F. For each (s,t)eT we will con-

sider the families
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1 2
F =
st Ue[(y,ll Foy-

st = tel0,11Fst  and F

Let E_ be the set {(s,t)eT/s=0 or t=ol}.

Let M ={Mz, zeT} be a Fz-adapted, integrable process null

on Eo’ and for each z,<z,, zl=(51,t1), zz=(52,t2) we put

M(z,,z, 1= M_ - M -M + M_ .
1°°2 z, (sl,tz) (sz,t]) z,
We recall the following definitions:

1. M, is a martingale if E{MZZ/Fz }=Mz , for all z]< z,.

1 1

2. M_-is a strong martingale if E{M(z,z ]/FlvE’2}= 0,
172 z, 'z,

for all zl< z,.

3. M, is a weak martingale if E{M(ZI’ZZ]/F zl}=-0,

for all z1< z,.

Denote by m2 the space of all square integrable martingales

(we identify as usual two versions of the same process) which is
a Hilbert space isometric to L2 (Q,F,P). Let m§ be the closed

subspace of m2 formed by the strong martingales.

The definition and properties of stable subspaces of m2 is
analogous to the one parameter case, using the notion of stopping

set instead of stopping times (see [91]).

Definition 1.1. A simple stopping set D(w) is a map from Q to the

subsets of T, of the form

D(w) = ¥ (z
'{(i,j)/meAij}

1,

ij? Zi+t,j+1

IE Zi+1,j+1].ls a partition of T (these rectangles will

be closed if zijeEo), Aijer , and for all wef, z€eD(w) implies
ij

where (zi
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ch D(w).

| f Msm2 and D is a simple stopping set we will write
M(D) = Z M(z.., z. L a1 .
. ij ij i+1,j+1 Aij

Definition 1.2. A closed linear subspace ¥ of m2 is said to be

stable if Meil implies {M(RZF\D), zeT}edl for all simple stopping
sets D. )

Two martingales M,Nem2 are said to be strongly orthogonal if

MZNZ is a weak martingale, and this implies that M and N are ortho

gonal in m2. It can be proved (see {9]) that if x is a stable sub-
space of mz, ¥ is also stable and ¥ and are strongly orthogo-
nal.

Let Li be the class of all F}-adapted and measurable proces-
‘ses @ ={¢z, z€T} such that

IT E {ﬂ(z)z} dz<o.
Let sz be the class of all processes

v = {Y(z,2'), z,2'eT} satisfying:

(i) Y(z,z';w) is measurable and F;vz,-adapted,
(ii) ¥(z,2z') = 0 unless zaz',
(Giii) ff E{¥(z,2")2} dz dz'<=,

TxT

The representation theorem of E. Wong and M. Zakai ([6]) sta-
tes that for all Me'm2 there exists two unique processes ¢€L§,
2
wewa such that

Moo= IR B(z)d W+

st Y(z,z"') dw_dw_, . (1.1)
st t

/I
RstXRs

Denote by m:Cm2 the closed subspace of all martingales of
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the form.

2
]
M Y(z,z') dwzdwz, , wewa.

= JJ
st RstXRst

With this hotation, the theorem of E. Wong and M. Zakai can

be expressed as follows.

Proposition 1.1. mi and mi are orthogonal stable subspaces of m2
and m2=m§ ® mi. The decomposition g iven by this direct sum coinci

des with (1.1).

Proof: The only thing to prove is stability, and it is a conse-

quence of propos}tion 5.1 of [7].

Let Ei be the class of all Fz-adapted and measurable proces=
ses § = {ﬂz, z€T} such that IT E {ﬁ(s,t)z} st ds dt<e,

2
J

Denote by m C3m2 the closed subspace of all martingales of

the form

= 2
Mop = R;fo p (zvz') d W, d W, geL .
st” st

From proposition 5.1 of [7] we know that m% is stable; denote

by m2

x its orthogonal complement in mi (which is also stable).

Proposition 1.2. For each martingale Memz, the decomposition given

by the direct sum m2 = m§ ® m? ® m2 is

k

m, =4 s@an, + S e Guznau an o+
st st st

w(z,z')dwzdwz, , (1.2)

+
Rg{XRst

2 2 2
where ﬂeLw, ﬂleLw, wewa and {st¢(x,t;s,y)dxdy =0 a.s., for all

(s,t) €T except on a set of Lebesgue measure zero.
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Proof: We have only to prove that a.martingale ]f Y(z,z')dw_dw_,
_— RStXRst z 'z

belongs to m2 if and only if the process wewa verifies

k

jR W(x,t;s,y)dxdy = 0, for all (s,t)eT and wef, a.e.
st

Indeed, a(s,t) = [ (x,t;s,y)dydx verifies
R
st

!T E{a(s,t) B(s,t)} dsdt = 0,

for any bounded measurable process B.

In particular, let f(u,z): R x T - R be a function with con-

tinuous partial derivatives fL, f&',f&" , satisfying
2 . 2
af L1 . g_; -0 , 2,1, ﬁ—g = o, C(1.3)
ds 2 Ju ot 2 du

and such that f' (w ,z)eL2 and f''(wW ,2)612.
u z w u z W

Then we know (see [8]) that the process

Xst = f(wst,s,t)-f(O,p,t)-f(O,s,0)+f(0,0,0)

belongs to mi ® m?, and

= 1y " |
X IR FLW,,2)dw + ijxR FI(W, o zvz')dW v, .

st st st st vz

In the next section we will generalize this kind of orthogo-
nal decompositions.
2. Decomposition theorem.

Denote by Lﬁ, n=1, the class of processes
{W(Z,ZI,...,Zn); z,z1,...,zneT} such that
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(i) w(z,zl,...,zn;m) is measurable and Fz-adapted.

(ii) w(z,z],...,zn)=0 unlessAxsixn< X o_q veo

YqV...Vy <y, where z=(x,y) and

zi‘= (xi,yi), i=1,...,n.
... 2
(iii) {nil{W(z,zl,...,zn) }dz dz ...dz <.

For each process WeLﬁ we can define the following multiple
stochastic integral, .

n+1\P(z,z],...,zn)dwzdwzl...dwzn, (2.1)
t .

M J
st (R
s

where (s,t) €T.

The process {Mz,zeT} is a martingale of rn2 such that

. 2
E(MS,) = ({{ CEW(z,z, 000,207 ) dz dz

st

1...dzn

Let Jg(:mz, n>1, be the closed subspace of all martingales

.of the form (2.1) with WGL:. These subspaces are no longer stable

but they are mutually orthogonal and strongly orthogonal to mz be
cause J('nCmfl for all n=21.

Theorem 2.1.

= o o X
m Mg (n >1 -n)'
Proof: We have only to prove that m2 = ®_ ¥ . Fix a martingale
— w n>1 n

of m_,
w

Mst = Rfij V(z,z') dwzdwz,, with WGL:W,
st st

and define
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wl(z,zl) = E{w(z,z])/Fz}, for all z,z.eT.

Taking a measurable version of this process, we obtain WleLl.

Next we make the following decomposition

w(z,zl)=¢](z,zl)+[w(z,zl)-wl(2.21)]=¢1(2,21)+£' _RGZ(Z.zl.zz)dw22
X,y z

where {az (2’21’22); z,zl,zzeT} verifies

(i) az(z,zl,zz;w) is measurable and Evzz-adapted,
(ii) uz(z,zi,zz) = 0 unless x<x2<x1 and y,vy, <y,

(iii) 13 E{az(z,z],zz)z} dz dz1 dzz<“.
T

The existence and properties of this process o, would follow

from a procedure analogous to the one used by R. Cairoli and J.B.

Walsh in [ 2].

Then we have

Mo, = JJ Vo (zoz )W du + [ a,(z,z .z,)dW W dv
R_. xR 1 (R_,)3 12
st” st st

where the first integral belongs to Jq.

Now we repeat this decomposition successively; that means,

for instance,

2
¢2(2.21,22) E{az(z,z],zz)/Fz}eL2 , and

ay(z,20,2,) = ¥,(z,2,,2,)+ J a3(z,zl,zz.23)dwz ,
R - R 3
X,y 2

and we obtain in general,
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Mst = f ¢1(z,z1)dwzdwz +.o..+ ] wn(z,z

yeeosz )dW_dW_...dW_ +

1 n+1 1 n z "z, z,
(Rg,) (R,,)

+ I O.n+1(zsz

(R )n+2

],...,Zn+1) ‘dwz"dwz .. .dW
st

; (2.2)
1 zn+1

Observe that the first n integrals on the right member of
(2.2) belong respectively to Jﬁ,. .,m%.

Denote by L%n) the class of processes
{a(z,zl,.f.,zn); Zyse- ,zn,zeT} verifying properties (ii) and
(iii) in the definition of L:, and also satisfying

(i) a(z;zl,...,znag) is measurable and F, _-adapted.

n
Let R(n) be the closed subspace of mz, of the martingales

Moo = [ alz,z,,.

n+1
(R_,)

dw

1 Zn

.,Z_)dW_dw
n z 'z

with aeL%n).

With this notation, aneL%n) for all n>1 and we have obtai-
ned the orthogonal decomposition

m- = ¥ e

W 1 ...QJ('nQ

For each n=21,

H(n+1)

2

denote by Ph and p(n) the projections of
m, on ‘..Kn and M(n)’

respectively. Then, we want to prove that

1..:‘m P(n) (M) =0
The sequence

1Py M2

f E{a (z,2,,

A 1 )z}dzdz ...dz
n+1 n 1 n
T
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is decreasing because of the orthogonality of the decomposition
(2.3).

Let TN be the set of all sequences £= (z,z],...,zn...) of
points of T provided with the product Lebesgue measure. We can
consider the sequence of funcions ¢n(E) = E{an(z’zl""’zn)z}

defined on TN. These functions verify

[ 0, (8) d& = p (M2

TN

For each n, ¢n(E) is zero except in the set .

N
An={EeT /x<x <X _;...<x, and yIV--oVYngy}-

-]
Let A = N
n=1

An' The sets An form a decreasing sequence, and
the product measure of A in TN is zero because

" .
A C{EeT /x1>x2>...>.xn>...}.

Therefore, the sequence ¢n(E) converges to zero almost eve-

rywhere.

Moreover from

an(z,zl,:..,zn)=wn(z,z1,...,zn)+ fan+1(z;z1,...,zn+1)dwz

Rx- Rz
nY

n+1

we deduce that

_ 2
¢ (&) = Ely, (z,z,...,2 )" }+ {‘Pn”(z)dzn”.
Thus, {¢n(£),l1>1} is a positive supermartingale and, thefefore,

lim [ ¢ (g) dg = 0.

n TN

In particular, let f(u,z): R x T + R be a function with con

tinuous partial derivatives with respect to u of all orders, sa-
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) 2 2
. . 1 1
tisfying (1.3) and such that fu(wz,z)eLw, fu (wz,z)GL2 and

2
fén)(szzn,zAzn)eLn for all n>3. Suppose also

ffl")(o,o,y) = vfﬁ")(o,x,o) = 0 for all n>0.

Then, the martingale Ms =f(wst,s,t) has the following decom

t
position

mo=/ £l ,z)dW, + ] fr(w,,z)dw dw — +

st 2 1
Rst (Rst)
+ I f f(")(w ,zhz ) dW_ dW_...dW
u zA2z n z z z
n>3 (R )n+1 n 1 n
st

Remark. |f we fix the points z and L the infinite expansion
for W(z,zl) obtained in theorem 2.1 can be deduced by conside-
ring the development of w(z,z1) into multiple Wiener integrals
(see 1t8's theorem 4.2 of [3], which holds for a two-parameter
Brownian motion). These multiple integralS can be represented as
iterated stochastic integrals of F;t-adapted processes (this is
the analog of 1td's theorem 5.1 of [3] to the two-parameter ca-
se). Using this fact we could evaluate thesdifference

¥(z,z,) -'E{w(z,z1)/Fz} and get the desired expansion.

3. Martingales of Path Independent Variation.’

Let v the set of all continuous increasing curves on T star
ting from (0,0). A martingale M€m2 is said to be of path indepen
dent variation if the quadratic variation of M, as a one parame-
ter martingale, along every curve of y depends only on the end
point of the path.

It is easy to see that M is of path independen variation if

and only if there exists a unique (excepting modifications) pro-
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cess {AZ, zeT} continuous and increasing on each curve of Y, such

2 . .
that A(Q,O) = 0 and MZ AZ is a martingale.

We know (see [1]) that each strong martingale has path inde-
pendent variation. The reciprocal of this result is not true as
it has been proved in [4]. That means, m: is a proper subset of
the class of path iﬁdependent variation martingales, which is a

closed subset of m2+

The object of this section is to use the preceding results
on martingales decomposition in order to prove this reciprocal

in some particular situations.

Let Mem2 such that

M=) o(z) aw + S/ V(z,z')dw_dw_, (3.1)
st R z z R xR z,z ¥4 z

st st st

where el and VeL? .
w ww

In [5] it is shown that if M is of path independent varia-

tion, then

xl
J¥(z,z1) [8(z) + / W(z,z]) dW, ] dx =0 (3.2)
0 R.' -R 1
Xy 'z
for all z' = (x',y')eT, yely',1], almost everywhere.

Theorem 2.1 of [5] can be expressed as it follows

Proposition 3.1. If Meﬂa and M is of path independent variation,
then M = 0. ‘

This proposition can be extended to martingales with a fini

te deterministic integral representation.

Proposition 3.2. Let Memz @H] ®, . .90 J% be a martingale of path
independent variation. If the functions@(z), W](z,z1),”.,%42,z]“,zJ

are deterministic, then M is a strong martingale.
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Proof: We proceed by induction on n.

For n=1, taking expectations in equation (3.2) and using

the fact that #(z) and wl(z,zl) are deterministic we obtain
f:ip, (z,2') ® (2) dx = 0.
Thus,
f:l'l’](z,Z‘)[fR v, (z,2,) dwzll dx = 0.

x'y 'z

Now we can commute the integrals because wl is determinis-
tic, and we obtain

o ; _
fo '411(2,2 ) lPI(Z’Z‘) dx = 0)
for all ye[0,1], z‘,zleT, we R, almost everywhere with respect to

the product Lebesgue measure times the probability P.

Integrating with respect to z' and z,, we have for any Bo-
rel subset B of T,

fB ¥, (z,2') dz' = o0,

for all zeT, weQ, a.e., and this implies w1 = 0. Therefore,

Mem:, and the proposition holds for n=1.
Suppose the proposition proved up to n - 1.

From equation (3.2) we obtain

x' n
[ v.(z,2',2,,...,2,_.) dW_ ... dW 18 (z) dx +
Io iEIITi-I' ! i-1 z4 Zi

x! n
+ [ z (2,22 000,z ,) dW_ ...dW 1 .
Io i=1 ii-lwl BE i1 z, Zi (3.3)

n
[ - 0.
L fu(2,00,0,,00,95) duy o dWp T dx =0
J=] TJ 1 J
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Taking expectations recursively in (3.3) we should arrive

to an equation of the form
x! .
fo an(Z,Z ’zl""’zn-l)wn(z’¢1""’¢n)dx= 0 (3-"‘)

for all (z',z ,2 )y et”, (Wl,---,¢n)€Tn, yel0,1], and weR,

100
almost everywhere.

n=-1

To simplify we are going to deduce equation (3.4) only for
n=2. In this case the stochastic differential calculus applied

to the product of multiple stochastic integrals of (3.3) give

rise to
Ix'l ( Jv 1o
v,(z,2') + (z,z',z,) dW % (z) dx +
x.[ Y ¢
+ fo ITzwl(z,z ) ¥, (2,%,,%,) dup +

+ {3¢2(21,2',z]) b, (2,9,,9,) du,

1 1 2
+ ITzwz(z,Z',wl) b, (z,0,,0,) do, dw¢2 +
+ szwz(z,z',wz) ¢2(z,¢1,¢2) dy, de1 I dx = 0.

Taking expectations we obtain

x

f wl(z,z') # (z)dx = 0, and the rest of terms is of the form
0

J_ a®) dW,, soal®) =0 a.e.
T

That means



+

+

/

(

(

x
wz(z,z',zl) B(z)dx + f [j
0 T

Decomposition of two parameter martingales

R.-_R_)
X1y'2z

R, -R
€,y 2

X !
f U ) (z,2',0)0,(2,0,,9,) dx] do, +
T o

xl
+!TUO Yy (2,2',9,)0,(2,9,,9,) dx] do,

where ¢2 = (Ez,nz).

+ 1

X
+{ f [j wz(z’zlyzl)wz(zg‘p],‘pz) dX] dwz +

+

R

R

By a similar argument, we have

X L]
IO WI(z,x')wz(z,w WZ) dx +

‘l’

xl
/ [Io Vy(zaz',z2 )0, (2,9,,9,) dx] du,

x;sz
i
- R
gy 2
[}

X
/ [Io Yolz,z'yz )u, (2,0,,9,) dxl dW,

x;y z
Finally we obtain

X
fo Volz,z',z )b, (2,0 ,0,) dx

1

1

1

}

X 1
/ zlJa¢h(z,z‘,zl)w2(z,¢1,¢2) dx] W, dV

1

1

"3

'I[E

2

2’

xl
Ow,(z,Z‘)wz(z,wl,wz)dXIdW¢

x
/ zlfowz(z,z',zl)wz (z,vl,wz) dx]dW, dW_ +

1

2

l](x])

+

147

}.llo’gzl(x]) = 0.

0
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for all (z',z])eTz, (¢|,¢2)€T2, ye[0,1]1, weQ, a.e., and, therefo-
re, (3.4) holds for n=2.

Now, from (3.L4) it is immediate to show that wn = 0. Indeed,

integrating with respect to (z',z ,zn_l)ETn and (¢l,-~,¢nFTn

A EEEE
we obtain, given a Borel set B of Tn,

[y ¥ (z,0) do = o,

for all zeT, We, a.e. Therefore, Wn= 0.
Then, Mém_© . © ...® ¥ and, by recurrence, Mem
[ 1 n-1 s

The deterministic property can be replaced by a regularity

condition as it is shown in the next proposition.

Proposition 3.3. Let M€ms @ ﬂae - ﬂ; be a martingale of path

independent variation. If the functions ¢1(z,zl),.“,wn(z,zlp..,zn)
are continuous and have continuous partial derivatives with res-
for all wef and z,z

pect to x 1,...,znéT, almost everywhere,

1 ’
then M is a strong martingale.
Proof: Like before we proceed by induction on n.
For n=1, consider the equation (3.2).
1
The term J* Wl(z,z') @(z)dx is derivable with respect to
0

x', for all ye[y',1], z'€T and wWef2, almost everywhere.

Then, if we write

X
a(Y.z',zI) = IO ¢1(z,z')¢l(z,21) dx .and

Y(x',w) = i a(y,z',z1) dw, -,

RxTsz 1

we obtain, using the mean value theorem
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Y(x'+E) - v(x') = [ E-g—(,"(.(y,Z',z])dwz]+
R(x'+€,y)-Rz
+ o(y,z",z,)dW
R R Z‘
(x'+8)y 'x'y

So, the limit

lim L f a(y,z',z])dwz , exists a. e.
E>0 & R(X'+ETYRX'Y 1

and, therefore, a(y,z',z]) = 0. Thus, as in proposition 3.2.

this implies‘wl= 0, and so Mems.

Suppose the proposition proved up to n-1 and start with
equation (3.3). Using recursively a reasoning analogous to the
preceding one we would obtain equation (3.4) and the proof would
follow as in proposition (3.2). We omit the details of this pro;

cess.

From these two propositions we could conclude that non
strong path independent variation martingales, which certainly
exist (see [4]) cannot have, however, a finite representation of
the preceeding form with deterministic or regular integrating

processes.
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