ON A REPRESENTATION THEOREM OF DE MORGAN ALGEBRAS BY FUZZY SETS

F. Esteva

ABSTRACT

Once the concept of De Morgan Algebra of Fuzzy Sets on a universe X can be defined, we give a necessary and sufficient condition for a De Morgan Algebra to be isomorphic to (represented by) a De Morgan Algebra of Fuzzy Sets.

De Morgan Algebras of Fuzzy Sets.

Let X be a universe of discourse. We denote by $L(X)=(P(X),\cap,\cup)$ the lattice of fuzzy subsets of X with values on [0,1] being \cup and \cap the usual max and min operations and $P(X)=[0,1]^X$. It is known that L(X) is a complete, infinitely distributive lattice with maximum X(X(x)=1 for any $x\in X$) and minimum $\emptyset(\emptyset(x)=0$ for any $x\in X$), and also that boolean elements of L(X) constitute the Boolean Algebra P(X) of crisp subsets of X. We denote by δ_X the $\sin \Omega$ gletons of P(X), i.e., $\delta_X: X \to [0,1]$ is defined by $\delta_X(a)=0$ if $a \ne x$, $\delta_X(x)=1$, and by Ω , $\alpha \in [0,1]$, the constant function $\Omega(x)=\alpha$ for any $x\in X$. Then we have:

<u>Definition 1.</u> We say that a sublattice S of L(X) satisfies the Extension Principle (E.P. from now on) if $S \supset P(X)$.

Examples.

Let X be a univers and $J=\{J\mid\{0,1\}\subset J\subset[0,1]\}$. For any family $J=\{J\downarrow\varepsilon J\mid x\varepsilon X\}$ we define:

$$P_{J}(X) = \{A \in P(X) \mid A(x) \in J_X \text{ for any } x \in X\},$$

$$P_J^{\perp}(X) = \{A \in P_J^{\perp}(X) \mid \{A(x) \mid A(x) \notin \{0,1\}\} \text{ is finite} \}.$$

Clearly, both $P_{\mathcal{J}}(X)$ and $P_{\mathcal{J}}(X)$ are sublattices of L(X) such that satisfy the E.P. It is also easy to verify that $P_{\mathcal{J}}(X) = P_{\mathcal{J}}(X)$ if and only if X is finite, and $P_{\mathcal{J}}(X)$ is complete if and only if any $J_{\mathbf{X}} \in \mathcal{J}$ is a complete subchain of [0,1].

<u>Proposition 1.</u> A sublattice S of L(X) satisfies the E.P. iff there exists a family $J = \{J_{X} \in J \mid x \in X\}$ such that $P_{J} (X) \subset S \subset P_{J} (X)$.

Proof: If S is a sublattice of L(X) such that satisfies the E.P. we can define, for any $x_{\varepsilon}X$, $J_{\chi} = \{\alpha \ \varepsilon [0,1] \mid \text{ there exists B}_{\varepsilon}S$ such that $B(x) = \alpha\}$, and we have the family $J = \{J_{\chi} \mid x_{\varepsilon}X\}$. We will prove that $P_{J}(X) \subset S \subset P_{\tau}(X)$.

a) If we denote by $[\emptyset, \delta_{\mathbf{X}}]$ the interval of L(X) defined by $[\emptyset, \delta_{\mathbf{X}}] = \{A\epsilon P(\mathbf{X}) \mid \emptyset \leqslant \mathbf{A} \leqslant \delta_{\mathbf{X}}\} = \{A\epsilon P(\mathbf{X}) \mid \mathbf{A}(\mathbf{a}) = 0 \text{ for any } \mathbf{a} \neq \mathbf{X}\}$, then $[\emptyset, \delta_{\mathbf{X}}] \cap P_{\mathcal{J}}(\mathbf{X}) = [\emptyset, \delta_{\mathbf{X}}] \cap P_{\mathcal{J}}(\mathbf{X}) = [\emptyset, \delta_{\mathbf{X}}] \cap \mathbf{S} = \{A\epsilon [\emptyset, \delta_{\mathbf{X}}] \mid \mathbf{A}(\mathbf{X}) \epsilon \mathbf{J}_{\mathbf{X}}\}$. Taken into account the definition of $P_{\mathcal{J}}(\mathbf{X})$ and $P_{\mathcal{J}}(\mathbf{X})$ it is clear that $[\emptyset, \delta_{\mathbf{X}}] \cap P_{\mathcal{J}}(\mathbf{X}) = [\emptyset, \delta_{\mathbf{X}}] \cap P_{\mathcal{J}}(\mathbf{X}) = \{A\epsilon [\emptyset, \delta_{\mathbf{X}}] \mid \mathbf{A}(\mathbf{X}) \epsilon \mathbf{J}_{\mathbf{X}}\}$, and also that $[\emptyset, \delta_{\mathbf{X}}] \cap \mathbf{S} \subset \{\mathbf{A}\epsilon [\emptyset, \delta_{\mathbf{X}}] \mid \mathbf{A}(\mathbf{X}) \epsilon \mathbf{J}_{\mathbf{X}}\}$. We need to prove that if $\mathbf{A}\epsilon [\emptyset, \delta_{\mathbf{X}}]$ and $\mathbf{A}(\mathbf{X}) \epsilon \mathbf{J}_{\mathbf{X}}$, then $\mathbf{A}\epsilon \mathbf{S}$. Because of the definition of $\mathbf{J}_{\mathbf{X}}$, as $\mathbf{A}(\mathbf{X}) \epsilon \mathbf{J}_{\mathbf{X}}$, there exists a $\mathbf{B}\epsilon \mathbf{S}$ such that $\mathbf{B}(\mathbf{X}) = \mathbf{A}(\mathbf{X})$. Then $\mathbf{A} = \delta_{\mathbf{X}} \cap \mathbf{B}$ which proves that $\mathbf{A}\epsilon \mathbf{S}$ as $\delta_{\mathbf{X}} \epsilon \mathbf{P}(\mathbf{X}) \subset \mathbf{S}$ and $\mathbf{B}\epsilon \mathbf{S}$.

- b) Any A ϵ S satisfies A(x) $_{\epsilon}$ J $_{x}$ for any x $_{\epsilon}$ X, so A ϵ P $_{J}$ (X) and S \subset P $_{J}$ (X).

Reciprocally, if S is a sublattice of L(X) and there exists a family J such that $P_J^i(X) \subset S \subset P_J^i(X)$, then S satisfies the E.P. $(S \supset P_J^i(X) \supset P(X))$.

<u>Definition 2.</u> A De Morgan Algebra $M(X) = (S, \cap, \cup, n)$ is said to be a De Morgan Algebra of Fuzzy Sets on X if S is a sublattice of L(X) that satisfies the E.P.

Examples.

1) Let $X=\{x,y\}$, $J_X=\{1/(n+1)\mid n_{\ell}N\}\cup\{0,1\}$ $J_Y=\{n/(n+1)\mid n_{\ell}N\}\cup\{0,1\}$ and $J=\{J_X,J_Y\}$. We consider the sublattice $P_J(X)$ of L(X). From mappings $n_X:J_X\to J_Y$ defined by $n_X(0)=1$, $n_X(1)=0$, $n_X(1/(n+1))=n/(n+1)$ for any $n_{\ell}N$, and $n_Y:J_Y\to J_X$ being n_Y the inverse of n_X , a strong negation n_X on $P_J(X)$ can be defined in the following way:

$$(n(A))(x) = n_y(A(y))$$
, $(n(A))(\dot{y}) = n_x(A(x))$ for any $A \in P_J(X)$.

It is easy to verify that n is a strong negation and $(P_{\mathcal{J}}(X),\cap,\cup,n) \text{ is a De Morgan Algebra of Fuzzy Sets.}$

2) Let X = {x,y}, $J_x = {0,1}$, $J_y = {0,\frac{1}{2}} \cup {1}$ and $J = {J_x,J_y}$. We consider the sublattice $P_J(X)$ of L(X). From $n_X:J_X \to J_X$, defined by $n_X(0) = 1$, $n_X(1) = 0$, and $n_Y:J_Y \to J_Y$, defined by $n_Y(0) = 1$, $n_Y(1) = 0$, $n_Y(\alpha) = \frac{1}{2} - \alpha$ for any $\alpha \in (0,\frac{1}{2})$, a strong negation n on $P_J(X)$ can be defined in the following way:

$$(n(A))(a) = n_a(A(a))$$
 for any $A \in P_J(X)$ and any $a \in X$.

It is easy to verify that n is an strong negation and $(P_{\tau}(X), \cap, \cup, n)$ is a De Morgan Algebra of Fuzzy Sets.

Remark. Clearly not every De Morgan Algebra of Fuzzy Sets is a subalgebra of a De Morgan Algebra on L(X) (see [2],[3]). For instance, $P_J(X)$ in example 1 is clearly a subalgebra of a De Morgan Algebra on L(X) but this is not the case in example 2 since n_X, n_Y of from example 1 are restrictions to J_X , J_Y of negation functions on [0,1], whereas n_Y from example 2 could never be a restriction of a negation function on [0,1].

A representation theorem.

Given a De Morgan Algebra $A=(A,\Lambda,v,n)$ with maximum u and minimum o, we will find the conditions required so that it is isomorphic to a De Morgan Algebra of Fuzzy Sets on a X.

<u>Definition 3.</u> A De Morgan Algebra A is Said to be of <u>Fuzzy type</u> if there exists a set X and a De Morgan Algebra of Fuzzy Sets S on X, such that A and S are isomorphic.

Note that $f:(A,\wedge,v,n)\to (S,\cap,\cup,\bar{n})$ is a morphism if it satisfies:

- a) $f(a \lor b) = f(a) \cup f(b)$,
- b) $f(a \wedge b) = f(a) \cap f(b)$,
- c) $f(n(a)) = \bar{n}(f(a))$.

<u>Proposition 2.</u> A is of Fuzzy Type iff there exist a universe X and a sublattice S of L(X) which contains P(X) and such that (A, \wedge, \vee) and (S, \cap, \vee) are isomorphic when considered as lattices.

Proof: If A is of Fuzzy type the condition clearly holds. Conversely, if there exists X, a sublattice S of L(X) which contains P(X) and a isomorphism $f:(A, \land, \lor) \to (S, \cap, \cup)$, then A is of

Fuzzy type since $\bar{n}: S \to S$ defined by $\bar{n}(A) = f(n(f^{-1}(A)))$, for any A ϵS , is a strong negation on S and f is an isomorphism between the De Morgan Algebras (A, \wedge, \vee, n) and (S, \cap, \cup, \bar{n}) .

<u>Theorem.</u> A De Morgan Algebra $A=(A, \land, \lor, n)$ is of Fuzzy type if and only if A satisfies the following conditions:

- a) The Boolean Algebra B of the Boolean elements of the distributive lattices (A, v, Λ) is complete and atomic;
- b) For every atom x of B there exists $J_x \epsilon J$ and an isomorphism $\sigma_x : [0,x] \to J_x$;
- c) For every pair of atoms x,y of B such that $x \neq y$, $[o,x] \cap [o,y] = \{o\}$;
- d) For every $a \in A$, it is $a = \bigvee_{X \in X} (a \land x)$, where $X = \{x \in B \mid x \text{ is an atom of } B\}$.

Proof: If A is of Fuzzy type there exists a De Morgan Algebra of Fuzzy Sets S on a universe X such that (A, \land, \lor, n) is isomorphic to $(S, \cap, \cup, \overline{n})$. It is clear that the Algebra of Boolean elements of S is P(X) which is complete and atomic, that the atoms of P(X) satisfy b) and c) and that for every $A \in S$ is $A = \bigcup_{X \in X} (\delta_X \cap A)$, and, therefore, the same conditions must hold for A.

Conversely, if A satisfies the conditions of the theorem, then since B is complete and atomic $B \cong P(X)$ being $X = \{x \in B \mid x \text{ is atom of B}\}$. If we denote by J the family $J = \{J_X \mid x \in X\}$, where J_X are the intervals given in b), we will prove that a one-to-one morphism can be stablished between A and $P_T(X)$.

We define $f:(A, \land, v) \rightarrow (S, \cap, \cup)$ by $f(a) = \bigcup_{X \in X} (\delta_X \cap \sigma_X(a \land x))$.

Firstly it is easy to prove that f is a morphism so it is only necessary to see that $(f(a))(x) = \sigma_X(a \wedge x)$ for any $x \in X$ and to take into account that σ_X is an isomorphism.

Secondly f is a one-to-one morphism since if f(a)=f(b), for any x \in X (f(a))(x)=(f(b))(x) that is $\sigma_{\rm X}(a^{\rm A}x)=\sigma_{\rm X}(b^{\rm A}x)$ that is

 $a \wedge x = b \wedge x$ and so $a = \bigcup_{x \in X} (a \wedge x) = \bigcup_{x \in X} (b \wedge x) = b$.

Lastly $f(A) \supset P(X)$ since f(B) = P(X) because, for every $y \in X$, it is $f(y) = \bigcup_{x \in X} (\delta_x \cap \sigma_x(y^A x)) = \delta_y$.

Therefore f is an isomorphism between the lattice (A, \land, \lor) and the sublattice $(f(A), \cap, \lor)$, of L(X), which contains P(X). In accordance with proposition 1 this proves that A is of Fuzzy type.

Remarks. 1) It is easy to see that, the condition b) can be substituted by: b') "For every atom x of B there exists a one-to-one morphism $\sigma_{\mathbf{X}}[0,\mathbf{x}] \to [0,1]$ ". In that case we take $J_{\mathbf{X}} = \sigma_{\mathbf{X}}([0,1])$ and the proof is the same.

- 2) It is also clear that, in general, condition c) can be replaced by: c') "For every pair of atoms x,y of B such that $x \neq y$, any $\alpha, \beta \in A$ such that $0 \leq \alpha \leq x$, $0 \leq \beta \leq y$ satisfy $\alpha \wedge \beta = 0$ ".
- 3) Besides, it is easy to prove that, for A to be isomorphic to a De Morgan Algebra on P(X) or on any complete sublattice containing P(X) the condition d) should be replaced by: d') "A is complete and infinitely distributive lattice". In such a case d) is deduced form d') as follows:

For every $a \in A$, it is $a = u \wedge a = (\bigvee_{x \in X} x) \wedge a = \bigvee_{x \in X} (x \wedge a)$.

Besides, it can be proved that f is a bijection between A and a complete sublattice SCP(X) as f is onto:

for any A&S there is $a = \bigcup_{x \in X} \sigma_x^{-1}(x \wedge a)$ such that $f(a) = \bigcup_{x \in X} (\delta_x \cap \sigma_x(a \wedge x)) = \bigcup_{x \in X} (\delta_x \cap A(x)) = A$.

Acknowledgements.

. I would like to thank to Professor Trillas and T. Riera their constant help and valuable sugestions.

References.

- [1] H. RASIOWA. "An Algebraic Approach to Non-Clasical Logics".

 North Holland, Amsterdam, 1974.
- [2] F. ESTEVA, E. TRILLAS, X. DOMINGO. "Weak and strong negation functions for Fuzzy Set theory", Proceedings of the I.S.M.V.L.'81, Oklahoma, 23-26.
- [3] F. ESTEVA. "On the form of negations in posets", Proceedings of the I.S.M.V.L.'81, Oklahoma, 228-231.
- [4] F. ESTEVA. "On some isomorphisms of De Morgan Algebras of Fuzzy Sets", to appear in BUSEFAL.

Departament de Matemàtiques i Estadística. E.T.S. d'Arquitectura. Universitat Politècnica de Barcelona. Av. Diagonal 649. Barcelona-28. SPAIN.