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TRIANGLE FUNCTIONS AND COMPOSITION OF
PROBABILITY DISTRIBUTION FUNCTIONS (*)

Claudi Alsina

ABSTRACT

The equations of left and right distributivity
of composition of distribution functions over
triangle functions are solved in a restricted
domain.

+
Let D be the set of all probability distribution functions of non-nega-

tive random variables, i.e.,
D+={FlF:[-w,w ]+ [0,1], F(0)=0, F is non-decreasing and left-continuous
On [ —w’m) },

+

1. be the subspaces of 0" defined by

and let DT and D
DT={F|FeD+, F(1) = 1},

D: i={FlFeDT, F is strictly increasing on F‘1(0,l)}.

(*) This paper was presented at the 19th |nternational Symposium on Functio-
nal Equations (Nantes (France), May 1931).
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Note that both DT and DT ; are closed under composition, i.e., if F and
G are in DT, then the function FoG defined by (FoG) (x)=F(G(x)) is in DT, and
+

similarly for D] P

Among the elements of D+ are functions €4 and AZ respectively defined,
for a 20 and be[0,1], by: .

’

<
c (0 - 0, t<a, Aa(t)= 0, t<0,
a 1, t>a, b b, 0< t<a,
1, ac< t.

A mapping T from D+ X D+ into D+ is a triangle function if the following
conditions are satisfied for all F,G,H and K in D+:

() t(Fe) = F,
(ii)  t(F,6) <T{H,K) whenever F<H, G<K,

(iti) T(F,6) = t(G,F),

(iv)  T(T(F,6),H) = T(F,T(G,H)).

Triangle functions have been studied in detail in connection with trian-

gle inequalities for probabilistic metric spaces (see [2,3,4]).

Our chief concern in this paper is to solve the following functional
equations:

+
]s
+
],

(t) T(FeH, GeH) =7 (F,G)°H, for all F,G,HeD

(r1) T (HoF, HoG) = Hot(F,G), for all F,G,HeD

where, in each case T is a triangle function to be found. Such equations ari-
se in the investigation of isomorphisms of probabilistic metric spaces and

are also of interest for the techniques used in their solutions.

In this paper we let Z denote the set of continuous t-norms, i.e., the
set of continuous binary operations T on [0,1] which are commutative, associa
tive, non-decreasing in each place with 1 as a unit and 0 as a null element.
Correspondingly, L0 will denote the set of two-place functions L from

[0,9]x 0,»] onto [0,0] which are commutative, associative, continuous on the
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domain, increasing in each place, and have 0 as a unit.

A triangle function T will be called L-strict if it is continuous with
respect to the modified Lévy metric (see [31]) and there exists L in L0 such

that T(ex,ey) for all x and y in [0,+o].

=EL(x,y)’

Any element T in Z induces the triangle function m_ defined by

T

"T(F,G) (x) = T(F(x), G(x)).

For T in Zand L in Lo’ we define the L-strict triangle function TT L

by

Tr L(F,6) (x)=
’ sup{T(F(u),G(v)) |L(u,v)=x}, x > 0.

We note first that T is a solution of (I) for every T in Z. Our immediate

aim is to show that ﬂT is the general solution of (I), i.e., that we have:

Theorem 1. A continuous triangle function T is a solution of (I) if and only

if there exists a t-norm T such that T=T_.

To prove Theorem 1, we begin with two lemmas.

Lemma 1. If a continuous triangle function T satisfies (I), then

TE )

=€
xCy Max (x,y) ’ for all x,ye[0,1].

Proof. For x,ye(0,1), define Hx yeDT by:

o, t <o,
X= .
= +
Hx’y(t) %E;H(,—y) t + Min(x,y), 0 < t < Max(x,y),
t, Max(x,y) < t < 1,
1, 1< t.

Then,
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EMin(x,y)o Hx,y = 5% and EMax(x,y)o Hx,y = El“lax(x,y)’

and using (1) we immediatly obtain

eMax(x,y) =T(G:Max()(,y)’eo) =1:((‘:Max(x,y) ° Hx,y’EMin(x,y)0 Hx,y)

=T(€x,€y) o Hx,y'

Thus T(Ex,€y)(Max(x,y))=0, and whenever t>Max(x,y), we have

T(Ex,€y)(t) = (T(ex,ey) o Hx y)(t) = EMax(x,y)(t) =1.

If x=y=1, we have

1(91,51) =1(1im €1o1/n’ Tim 51_1/n) = lim T(E]_I/n, e]_]/n)_
N->o0 N->oc0 N-oo
= Him €y =5

n-)co

Analogously when x=1 and y<1 it follows T(Ey,el) = €.

Lemma 2. |f a continuous triangle function T satisfies (I),then there exists

T€Z such that for all x,y€(0,1), we have

A1/2 A

/2, _ .1/2
x ’y ) AT(x,y) )

T(

A1/2

Proof. First note that for any z€{0,1) we have €1/2 < 5 <€0, so

that it follows from the preceding lemma that

) < 1‘_(A1/2 A1/2

€172 7120512 x ' Ny

< =, .
) < T(eo,eo) €

Now let a,b be any numbers in (0,1/2) such that a<b. Let Ka beDT be given by:

o, t <0,
Kab(t)= la)-t, 0 <t<x<a,
’ b, a<t<1/2,
1, 1/2 < t.
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_ a1/2
OKa,b = Ax

1/2

Then we have Ax for all x€(0,1), whence

T(AI/Z, A;/z)(a) _ T(Al/?. oK A1/2

X X a,b’ 'y OKa,b)(a)

= /2 A (K, a=ta/2 A ),

X
- T(Allz, A;/z) is constant on (0,1/2). Thus if we define
Toy) = 1’2, a0, (2)

(1) follows and a short computation shows that TE€Z

Now we can solve (1) completely.

Proof of Theorem 1. Assume that T satisfies (1) and consider T as defined

by (2). We need to show that for all F,GED+

1 and for any x>0 we have

T(F,6) (x) = T (F(x), G(x)). (3)

Obviously, if x>1, then F(x)=G(x)=1,‘and (3) follows from Lemma 1. So let

x€(0,1]. In this case,

1/2
G(x)?

1/2 1/2 1/2

F o Ax = AF(X) and G ° Ax =A

whence, by (I) and Lemma 2, there is a T in Z such that:

T(F,6) ()=t (F,6) (A/2(1/2)) = (z(F,6) « Al/?)(1/2)

=t o A2, 6 e A (172)
172
F(x)’

1/2

b (r2) = e (1/2)

=t(A T(F(x),6(x))

A

= T(F(x), G(x)),

and the theorem is proved.
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We turn now our attention to (1I). We recall that the duality theorem
of [1] shows that the L-strict triangle function Ty L (where M(x,y)
)

=Minimum(x,y), and LGLO) admits the representation

‘A

[Ty (F.O] = L(F,6Y, 0)

where for any F in D+, F " denotes the quasi-inverse of F (see[ 1]).

Lemma 3. is a solution of (II).

TM,L
+

Proof. If F,G and H are in D1 then we have, for all x>0,
Ty (HoF, HoG)(x) = sup  M(H(F(u)), H(G(v)))
M,L
L(u,v)=x

= sup  H(M(F(u),G(v)))
L(u,v)=x

H( sup  M(F(u),G(v)))
L(u,v)=x

= (HOTM,L(F’G)) (X) ’

where in the first and third equalities we have used, respectively, the fact

that H is non-decreasing and left-continuous.

We note that if an L-strict triangle function T satisfies (II), then
for all x,y €0,1) we have,

T(Ex ° F, EXO G)=€X° T(F’G)’ (5)
and

T(H o €0 H o )=H o T(e € ), (6)

for all F,G and H in DT.

Now we can solve (II).

Theorem 2. A triangle function T which is L-strict is a solution of (1) if

i + +
and only if T—TM,L on D] X D1.
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Proof. First we note that if T is L-strict then L can be defined by
L(a,b) = t(e,,g) (1/72), (7)

for all a,b=>0. We need to show that whenever T satisfies (1I) then T=t
+
. 1,i
HY is equal to the left quasi-inverse H" because H" is continuous. In this
+
° = =g, €| . i .
‘case, € H E4v(x) “EH"(x) for all x€(0,1). Then for any F,G in D and

1,
xe(0,1), (5) and (7) yield :

M,L"

In order to do this, we remark that when HeD then the right quasi-inverse

TR0 =ley o v ] (172) =le e T(F,6) 1 (1/2)

T, oF e °6) (1/2)

TE 0 ) (12) = L (),6 ()

T = v

[Ty L(F.O] () = [T, (F.O)]Y(),

. + + . Lo A .

|.e.,‘r=TM L on D] P X D] i Using the continuity of T it is possible to ex-
’ ’ ’

‘tend this conclusion to the space DT-x DT because any function F in DT can

be obtained as the weak limit of a sequence of distribution functions in

+

D1 P The theorem is proved.
’

To end this paper we can show that the conditions assumed in the above

theorem are natural.

Theorem 3. If a triangle function T satisfies (1I) then there exists a func-
tion L from (0,1)x(0,1) into [0,+0] such that T(aa,sb)=gL(a
a,b€(0,1).

b))’ for all

Proof. If HeDT then H € =€ s for all x= 0. Thus if a,be(0,1) and T

satisfies (II) we have by (6)
T(ea,Eb)=T(H°€a, H°€b)=H°T(Ea,£b), (8)

for all HGDT. If there were a point X, > 0 such that T(€a,€b)(xo)e(0,l),
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the upon .replacing H in (8) by the uniform distribution function

0, t
t/T(ea,eb)(Xo), 0

’

>
1, t=t(e,,e ) (x),

<0
<t

Uo,T(ea,eb)(xo)(t)= si'r(ea,eb)(xo),

we would obtain

T(ea’eb) (XO)=(U OT(ea,Eb))(xo) =1,

0,t(e_,ep ) (x )
which is a contradiction. Thus the range of T(ea,eb) must be {0,1}, i.e.,

there is a constant k = 0 such that T(Ea,Eb)=€k. Using the fact that .
€;(1/2)=k, we can define L from (0,1)x(0,1) into[0,*] by L(a,b)=T(€a,€bY(l/2).

Then the above argument shows that the theorem holds.
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