INVOLUTIONS IN FUZZY SET THEORY*

S. V. Ovchinnikov

To Lotfi Zadeh on the occasion of his 60th birthday.

ABSTRACT

All possible involutions in fuzzy set theory are completely described. Any involution is a composition of a symmetry on a universe of fuzzy sets and an involution on a truth set.

The most widespread models for negations in fuzzy set theory are involutions (see [1] - [4]). Usually, some special kinds of involutions are considered as negations. All involutions in fuzzy set theory are fully described below.

Let X be a finite set and L - a complete distributive lattice with universal bounds 0 and I. Fuzzy sets with universe X are regarded here as mappings A: $X \rightarrow L$. A lattice L is supposed to be a directly indecomposable, i.e. L is not represented as a direct product of non-trivial lattices. For example, any bounded chain is a directly indecomposable lattice and, therefore, classical fuzzy set theory is included in the framework considered.

^{*} Research sponsored by the Department of Energy Contract EC-77-S-01-5105 and the National Science Foundation Grant ENG78-23143. The author is grateful to L. A. Zadeh for discussions.

We denote $P(X) = L^X$ a set of all fuzzy sets with universe X. P(X) is a complete distributive lattice with respect to an ordering induced by L. In particular, $\phi(x) \equiv 0$ and $X(x) \equiv I$ are universal bounds in P(X). Let us denote $P(X) = 2^X$ a set of all crisp subsets of X. Then P(X) is a Boolean sublattice in the lattice P(X).

The following lemma is based on [5], III, 8.

Lemma 1. P(X) is a center of P(X).

<u>Proof.</u> Follows immediately from Theorem 11, [5], III, 8, because L is a directly indecomposable lattice.

Let $\theta: P(X) \to P(X)$ be an involution, i.e. a dual automorphism of period two ([5],p. 3). We denote $\bar{A} = \theta(A)$. It is easy to verify that

$$\overline{\cup A}_{i} = \bigcap \overline{A}_{i}, \text{ and}$$

$$\overline{\cap A}_{i} = \bigcup \overline{A}_{i}$$

in P(X).

Since the definition of a direct product is invariant under dual automorphisms, the restriction of θ on P(X) is an involution in P(X). The following construction gives a description of involutions in P(X). Let us denote

(2)
$$\delta_{a}(x) = \begin{cases} I, x = a, \\ 0, x \neq a. \end{cases}$$

Then δ_a are atoms in a Boolean lattice P(X). Let A' denote a complement of A in P(X). The $\theta(A') = \theta(A)'$ and ϕ : $A \to \theta(A')$ is an automorphism of P(X). Hence, we have $\bar{A} = \phi(A)'$. It is evident that each automorphism of a finite Boolean lattice is determined by some permutation s of the set of atoms. In particular, we have

(3)
$$\bar{\delta}_{a} = \bigcup_{x \neq s(a)} \delta_{x}.$$

Since θ and a complementation in P(X) have period two, s is a symmetry on X, i.e. a permutation of period two.

We will describe now an important class of involutions in P(X). Let s be a symmetry on X and $\Theta = \{\theta_x\}_{x \in X}$ - a family of dual automorphisms in L such that $\theta_{s(x)} = \theta_x^{-1}$. In particulary, θ_x is an involution if s(x) = x. Then the following formula defines an involution in P(X)

(4)
$$\bar{A}(x) = \theta_x(A(s(x))).$$

Involutions, defined by (4), will be called decomposable involutions.

Theorem 1. Any involution in P(X) is a decomposable involution, i.e. is defined by (4) for some s and \widehat{H}

<u>Proof.</u> Let us define a fuzzy set σ_{α} by

$$\sigma_{\alpha}(x) \equiv \alpha$$

for each $\,\alpha\varepsilon\,\text{L.}$ Then any fuzzy set A can be represented as

$$A = \bigcup_{a} (\delta_{a} \cap \sigma_{A(a)}).$$

We have, by (1),

$$\bar{A} = \bigcap_{a} (\bar{\delta}_{a} \cup \bar{\sigma}_{A(a)}).$$

Let us denote $\theta_{x}(\alpha) = \bar{\sigma}_{\alpha}(x)$. Then, by (3),

(5)
$$\bar{A}(x) = \bigwedge_{a} (\bar{\delta}_{a}(x) \sqrt{\bar{\sigma}}_{A(a)}(x)) = \theta_{x}(A(s(x)))$$

for some symmetry s. We have

$$\alpha \leqslant \beta \Leftrightarrow \sigma_{\alpha} \leqslant \sigma_{\beta} \Leftrightarrow \sigma_{\alpha} = \sigma_{\alpha} \cap \sigma_{\beta} \Leftrightarrow \bar{\sigma}_{\alpha} = \bar{\sigma}_{\alpha} \cup \bar{\sigma}_{\beta} \Leftrightarrow \bar{\sigma}_{\alpha} \geqslant \bar{\sigma}_{\beta} \Leftrightarrow \theta_{\mathbf{x}}(\alpha) \geqslant \theta_{\mathbf{x}}(\beta).$$

Hence, θ_{x} is a dual automorphism. For A = $\bar{\sigma}_{\alpha}$ formula (5) gives

$$\alpha = \theta_{x}(\theta_{s(x)}(\alpha))$$

i.e.
$$\theta_{s(x)} = \theta_{x}^{-1}$$
, Q.E.D.

If we would like to use involutions as a model for negations in fuzzy set theory it is natural to involve so-called Extension Principle, i.e. an assumption that a restriction of a negation on P(X) is a usual complementation. Then s(x) = x and we obtain the following

Corollary 1. ([4]) Any involutionary negation $A \rightarrow \bar{A}$ in fuzzy set theory is defined by

$$\bar{A}(x) = \theta_{x}(A(x))$$

for some family H = $\{\theta_{\mathbf{x}}\}_{\mathbf{x} \in X}$ of involutions in L.

Note in conclusion that the assumption that L is a directly indecomposable lattice plays an essential role in our considerations. For example, let us consider the case when $L=2^7$, where Y is a two-point set, and let X be a two-point universe set. Then $L^X=P(X)$ is isomorphic to 2^Z , where Z is a four-element set. It is easy to calculate that there are 10 involutions in 2^Z , but only 8 decomposable involutions in P(X). Hence, there are two involutions in P(X) which are different from that defined by P(X).

References.

- [1] Lowen, R. (1978), "On fuzzy complements", Infor. Sci., 14, 107-113
- [2] Trillas, E. (1979), "Sobre funciones de negación en la teoría de conjuntos difusos", Stochastica, III 1, 47-60.
- [3] Yager, R. R. (1980), "On the measure of fuzziness and negation. II. Latti-ces", Inform. Contr., 44, 236-260.

- [4] Ovchinnikov, S. V., "General negation in fuzzy set theory", (to appear in J. Math. Anal. and Appl.).
- [5] Birkhoff, G. (1967), "Lattice Theory", AMS Colloquim Publ., v. 25.

Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California, Berkeley, California 94720.