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A GENERAL DEDUCTION THEOREM

(*) (**)

Salvatore Guccione - Roberto Tortora

ABSTRACT

In this paper we present a very general deduc-—
tion theorem which - based upon a uniform no -
tion of proof from hypotheses ~ holds for a ve
ry large class of logical systems. Most of the
known results for classical and modal logics,
as well as new results, are immediate corolla-
ries of this theorem.

1. The usual formulation of the Deduction Theorem for a formal system,

the following:

"If there is a proof from the hypotheses A1,A2,...,An

() for the formula B, then there is a proof from the hy-

potheses A1,A2,...,A for the formula An D B.M

n-1

of course in every statement of the type (*) the informal notion of proof

from hypotheses is involved

is

As we know, in classical logic, the notion of proof from hypotheses is

independent from the particular system in which we are working. On the con-

trary there are logical systems - for instance modal systems - for which it

seems that every attempt to prove a Deduction Theorem in the form (%) requi-
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res a formal definition ad hoc of proof from hypotheses. Zeman, for example,
introduces different clauses depending on the specific system (see [11, p.

194/197) .

In this paper we will follow a different approach: first we define a uni

form notion of proof from hypotheses, second we demonstrate a General Weake-

ned Deduction Theorem. This theorem holds for a very large class of systems.

Finally we are able to derive, as particular cases of the theorem, the well-
known Deduction Theorems for classical logic and some weakened Deduction Theo

rems for most important propositional and first-order modal systems.

A point of view similar for many respects to ours, is followed by
Perzanowski [2],[3]. However some essential differences occur between our and
Perzanowski's approach. For example he is interested only in modal propositio
nal logic and he proves different .theorems for several calculi. On the contra
ry we prove a unique general theorem for classical and modal (propositional

and first-order) logics.

On the other hand Perzanowski is interested in sufficient and necessary
conditions for a deduction theorem, while we investigate only sufficient con-
ditions. Moreover, our use of the notion of 'to depend upon' allows some of

our results to be a bit more refined than Perzanowski's.

2. Let S be an axiomatic formal system and RS the set of the rules of infe-

rence of S.

We follow Mendelson's definitions of rule of inference and of direct con-

sequence ([ 4], p.29).

Definition 1, A finite sequence 31,...,6m of wfs is called a deduction
or a proof from hypotheses I' (where I' is a set of wfs) in S of the wf B if
and only if B is Bm and for each i < m: either Bi is an axiom of S, or Bi be-
longs to T, or Bi is a direct consequence by virtue of some rule of inference,

of some of the preceding wfs in the sequence.

Definition 2. Let T be a set of wfs of S. Let Bl’ BZ,...,Bm be a deduc-

tion from I' in S, together with a justificacion for each step of the deduction.



A General Deduction Theorem -191-

ifa is awf inT we say that Bi’ i< m, depends upon a if and only if: eithet
Bi is a and it occurs in the deduction as an element of T'; or Bi is justified
as a direct consequence, by virtue of some ¢ GRS, of some preceding wfs of the

sequence and at least one of these formulas depends upon o.

For the sequel, we assume that the system S contains a symbol "D' for

implication and satisfies:

1) a2 (BDa) for every o, wfs of S;
1) la D> Y)] D@2 B)> (@Dy) for every o,B,y wfs of S;
I11) Modus Ponens (MP) is a rule of inference of S.

No additional condition is required for S.

We list here some easy properties of every system S satisfying 1/111.

I' is a set of wfs of S,a,R, Yj’ § are wfs of S, r is a natural number = 0,

P1) If F'*Sa then F*—SBD o for every B.

P2) I_S o Do for every a.

P3) Let (i1,...,ir) be a permutation of (1,...r).

- . : > o8)
If T s Y4 D(YZ D... D(YrD §)...), then T s Yi]D (YiZD...J (yigja,...).

— -
P4) If T s V1 D(Yz D... D(YrD (@ DB)...) and T T Y2 (YZD :)(YrD a)...).

—
then T "¢ v, D(Y2 D...D (Yr OB)...).

P5) If T '-S oDB and T i—s B DS ,then T '—s o DS.

Definition 3. A rule of inference ¢ is said to be reinforcing (monoto-

nic) if and only if ¢ has only one premise and it has the form Caa
()
a OB . . .
( —==5—, respectively), where o and B are wfs os S and the prefix
Ca-CR
[ 14
C¢ - uniquely determined by ¢ - is a string of symbols from the language of

S such that for each wf y of S, C¢Y is a wf of S.
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3. Let S be a system satisfying I/11l and also the following two hypotheses:

IV) The only non-reinforcing and non-monotonic rule of inference of S is MP.

V) For every ¢eRS(¢# MP), and for every wfs g,B of S the following holds:

—

N C‘p(OLDB):) (C oD CwB)-

¥

Then it is possible to prove the following:

Theorem 1. Let ' be a set of wfs of S,a,B wfs of S and suppose T,a FEB’

Let ProresPiae sy bé the ordered list (possibly with repetitions) of
the rules distinct from MP which are applied in the deduction to wfs depending
upon @, and denote by C]"'"’Ci"“"ck their prefixes. Then there exists an in
teger p 20 such that

(1) T

(t)

Ck k-1"'ci"'c1 cancelling some (0,1,...,k) of the prefixes Ci'

where every "multiple prefix'' C is obtained from the "total prefix!"

Proof. Let 81’62""’Bn= B be a deduction of 8 from T,a in S.

We prove by induction that yi<n

(2) g cMane®@a o oelPilase). )

where PPoser P is the ordered list of the rules (#MP) applied to wfs de-
: i
pending upon o in the deduction BI’BZ”"’Bi' Moreover, every C?t) in (2) is
obtained from the string Ck Ck _1.,.C1 cancelling some prefixes.
i

We must distinguish several cases depending upon the justification for Bi
in the deduction.

(i) Bi is an axiom of S, or Bi €l or Bi is a. We can easily prove, using Pl
and P2, that:
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I\ ad
=28

(p;)

that is, (2) with pi=1 and Ci the null prefix.

(i) wﬁi is a direct consequence by MP of g, and Bj (h<i, j<i, B, is Bj DBi).
By induction hypothesis

r‘_s Clgl)ocD (Cl_(lz)aD LoD (CrEph)a_‘) Bh).. .) and

Mg C}”cx 5@y 5. 5 Pyo By)een).

J e J

u

From these, using P1 and P3, we obtain:

Fg cé‘)aa(c‘gz)a:)..a (Céph)a D(c}‘)a S... D(C}pj)a 28.).+.),

Tig cr(‘”a 3(c£2)a o... D(Céph)a D(Cng)u o... D(CJ.(pj)u 28) -+ 1),

since g, is Bj DBi, an application of P4 gives (2).

(iii) Bi is a direct consequence by the monotonic rule ¥ of a wf Bh which

k.
i
depends upon a. (h<i, Bh has the form y 26.) By induction hypothesis

(2)

p e, D (céph)aash)...).

g CI_(‘l)oc S5(c

An application of D gives:
i

(3) I ckicr(]”aacki[ Cr(IZ)“:"“ D(Cr(lph)aDBh)...)]

from which, by iterated use of (V), P1 and P4,

. ckiclg')aa(ckiclgz)oo...;(ck Clgph)on:)(ckiy:ck‘d))...).

r

But Ck nyCk § is just Bi and every C C(t) is obtained from the string
i .

k."h
i i
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Cx € —q---Cq as required. Therefore (2) holds.
i i

(iv) Bi is a direct consequence by the reinforcing rule P of a wf Bh(h<i)
i

which depends upon a. As in case (iii), the inductive hypothesis and an appli-

cation of ¢ give:
ki
(1) (2) - (py)
I"S—Cki[ch aD(Ch a.)...D(Ch hOLDBh)---)]

By (V) and MP we obtain (4), and using as above (V), P1 and Pk,

- (1) - (2) — (p.)
Ik ckich oc.)(ckich a_)...:>(ckich hopcki gh)...).
B i (t) . . .
But CkiBh is Bi and every C, C is obtained from the string Ckicki_1...c]

k. h
i

as required. So (2) follows.

(v) Bi is a direct consequence, by a monotonic or reinforcing rule, of a wf
which does not depend upon o. It is easy to prove a lemma analogous to Propo-
sition 2.3 in [4], p.60. Therefore T Hé B;-

Remark. Given a particular deduction Byse-+9By of g from I'ya, it is al-
ways possible to determine effectively how many and which are the wfs C(t)a
occurring in the corresponding instance of (1). This is a direct consequence

of the constructiveness of our proof.

Now suppose that the system S satisfies a further condition:
VI) For every cpeRS, ¢# MP, and for every wf a of S, '_S C¢a3a.

Theorem 2. (General Weakened Deduction Theorem). Let S be a system satis-
fying conditions I/VIl. If T,o “56, then T Fg i Cy=q-+-Cqa 8.

Proof. We only sketch the proof which is analogous to that of Theorem 1.

This time we show by induction that



4 General Deduction Theorem -195-

(4) r FS Ckicki_]...C]GZ)Bi

In the cases (i) and (v) of Theorem 1, (4) follows easily from the obser

vations already done, with the aid of P5 and the new condition VI.

In the case corresponding to (ii), the inductive hypotheses are now

I € C _1...C]u:>8h and
h ™!
FFSCHC%-I”'HQDBf

Since kh<§ ki and kj<§ ki’ by virtue of P5, VI and P4, we obtain (4).

Finally, in the cases (iii) and (iv) of Theorem 1, the induction hypothe
sis is
'+~ C€C C _,...CCa.DB.
S kh kh 1 1 h

Since kh<ki (Bh depends upon o), we can write, as above,

I cki_]cki_z...c]an By -

and (4) can be easily obtained.

L, We list here some corollaries of our theorems.

The symbols are taken from [ 5] for the systems CPC, CPI, T, Sh, S5, LPC,
LPC+T, LPC+Sh, LPC+S5, from [6] for Lemmon's K and from [7] for Lemmon's E2.

Corollary 1.1, S is K.

If T, a’; B and m =0 is the number of times the rule N of necessitation

is applied in the deduction to wfs depending upon ¢, then

t1 t2 -t
I gL ad(Lad...0( PuoB)...)
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where 0<ti <m for every i(1 < i <p).

Corollary 2.1. S is CPC or CPIl.

If I,a l—SB then T FaD B.

Corollary 2.2. S is T (E2).

If T,a FS Band m=> 0 is the number of times the rule N (RM) is applied
in the deduction to wfs depending upon o, then T PS LMo, D B.

Corollary 2.3. S is Sk or S5 and the other hypotheses are like the case
S =T of Corollary 2.2. Then

[ La>B if m0 and T o DB if m=0.

Corollary 2.4. S is LPC.

If T',o s B then T F-S VX VXyenn kaafDB where for each i=1,2,...,k,

the variable X occurs quantified in some application of the rule GEN to some
wf depending upon q. Moreover, every prefix VX, corresponding to a variable
x; not free in o can be erased. If, in particular, no application of GEN

uses a variable free in o, then T Fga:>B .

Corollary 2.5. S is LPC + T.

If T,o s B then T s C1CZ...quZ)3 where each Ci(i=1,2,...,k) has the

form L or yx,. The same restrictions of Corollary 2.4 apply. If, in particu-

lar, no application of GEN has, as its quantified variable, a free variable

|.—
S
applied to wfs depending upon g,.

of a, then T L"o, DB, where m < k is the number of times the rule N is

Corollary 2.6. S is LPC + S4 or LPC + S5.

As in Corollary 2.5, we have in the general case T s C1C2...CkaIDB with

obvious simplifications among prefixes. In barticular:

T HSLQD B orT HSQDB.
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5. In any Hilbert-type system the inference rules can be viewed either as
theoremhood rules - say T-rules, - or as deducibility rules - say D-rules.
(See, for example, Smiley [8],[9]). Modal rules, for example, are generally
considered T-rules (see, for the rule N,[5]), while Modus Ponens in CPC is
always treated as a D-rule. According to some authors, even the rule GEN of
the Classical Predicate Calculus has to be used as a T-rule ([8]). Elsewhere
it is given as a D-rule (e.g. in [4]). More often this distinction is under-

valued or simply ignored.

In our opinion, it is useful to differentiate two kinds of deductions: a
free deduction, the one adopted in this work, modelled as in [4], and a condi -
tioned deduction, in all analogous to the previous one, except for some res-
trictions on the use of at least one of the inference rules (for a typical
example relative to the rule GEN, see [10], p.112 and [11], p. 31). A stimula
ting discussion about this problem can be found in an interesting paper of

Henkin and Montague [12].

Till now all concerns the syntax of a system. The semantical counterpart
of the syntactical notion of deducibility, at least for those systems which

admit a tarskian semantics, is the classical notion of logical consequence.

As usual, the expression 'a[R' means that B is a logical consequence of
a. It is well~known that if a|=8 then |=aDB, i.e. the wf aDB is logically

valid.

The corresponding syntactical property is the Deduction Theorem. A sound
notion of deduction must guarantee that if ar—B, then ~0DPB The free deduc-
tion does not meet this request in all cases. For example, in the classical
first-order predicate calculus the Deduction Theorem suffers from some limita-
tions (see [4], p.61), due to choice of a free notion of deduction. For this
reason some authors prefer to consider GEN as a theoremhood rule, as far as
GEN preserves the truth (relative to a given interpretation) but not always the
satisfiability. On the contrary, a standard Deduction Theorem can be derived
for the classical predicate calculus introducing a suitable conditioned deduc

tion, as in Kleene [10].

An analogous problem arises in connection with the modal rule N. If the

rule is used as a D-rule - ‘as in the present paper -, the following happens:
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(i) fl preserves the truth in a model.
a

Obviously, the validity is also preserved.
(ii) f% does not preserve the truth in a single world.

Unfortunately for modal systems no natural syntactical restriction seems

available for a notion of deduction.

A proposal could be to extend whenever possible T-rules to D-rules, re-
nouncing to a standard deduction theorem in favour of a weak version of it.
This is supported by two arguments: the notion of free deduction is more ge-
neral and natural (in the sense of less ad hoc), and the notion of T-rule can
be objected both from a philosophical and a formal point of view (as Hacking

[13], for example, does).

Unfortunately, the above proposal can hardly be carried out - as argued

in [14] - for Lukasiewicz many-valued logical systems.
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