A NOTE ON THE p-DISTRIBUTIVITY IN NON-ARCHIMEDEAN f-RINGS

Joan Trias Pairó

ABSTRACT

Non-archimedean f-rings need not be p-distributive. Moreover, if $\{d_i \mid i\}$ is a subset of a non-archimedean fring and $a \geqslant 0$, the elements a $\bigvee_i d_i$ and \bigvee_i adi need not be equal. We prove, however, that the difference is an infinitely small element when the ring has a strong unity.

Recall first from [5] that a lattice-ordered ring A is left p-distributive (respectively right p-distributive) if whenever V d exists (with $\{d_i|i\}\subset A\}$ and $a\geqslant 0$, then V ad (resp. V d a) also exists and a V d = V ad (resp. (V d a)) a = V(d a)). A is p-distributive if it is left and right p-distributive

Archimedean f-rings are p-distributive [3]. With independence of the hypothesis of archimedeanity it is possible, however, to find p-distributive f-rings: a) Commutative f-rings with unity, in which every non-unit is a zero-divisor, are p-distributive [5]. b) Bounded inversion f-rings are also p-distributive, as is shown immediately from propositions 1 and 2 and lemma 1

of [5]. We recall that an f-ring is of bounded inversion if every $x \ge 1$ is a unit.

It may be asked whether there exist non p-distributive non-archimedean f-rings or not. Some examples related with the question follow:

Example 1. Let X be a non-pseudocompact topological space and let C(X) be the f-ring of real continuous functions defined on X, under pointwise ordering and operations. Let M be a hyper-real maximal ideal [2] and A=C(X)/M the canonically ordered quotient ring. Then A is a totally ordered non-archimedean field. Since every x>0 is a unit, A is p-distributive [5].

Example 2. Let R[x] be the ring of polinomials in an indeterminate x with real coefficients, endowed with the usual operations and the total ordering defined as follows: if $P(x)=a_nx^n+\ldots+a_o$ $(a_n\ne 0)$, then P>0 if and only if $a_n>0$. We thus obtain a non-archimedean f-ring that is not p-distributive, since for example $x(\Lambda n^{-1})=0$ and the infimum of $\{xn^{-1}\mid n\in \mathbb{N}\}$ does not exist.

In the non p-distributive case, a natural question arises: which is the relation, if there is any, between a \bigvee_i and \bigvee_i and \bigvee_i if we suppose that both suprema exist?.

Before giving an answer to this question, recall that an element $x \in A$ is infinitely small with respect to $y \in A$ whenever $n|x| \le |y|$ holds for every $n \in N$ [4] (x<<y, for short). If $I_0(y) = \{x \in A \mid x << y\}$, we write $I_0(A) = \bigcup_{y \in A} I_0(y)$. Also, an element is said to be a strong unity if it is contained in no proper solid subgroup [1].

<u>Definition</u> The elements x,y of a lattice-ordered ring A are called <u>infinitely close</u> if $x-y \in I_0(A)$.

We now state the main result of this note:

- a) $I_0(A)$ is a closed solid ideal.
- b) If A is besides an f-ring, $a \ge 0$, and $\{d_i \mid i\}$ is a subset of A such that $\bigvee_i d_i$, $\bigvee_i ad_i$ (respectively $\bigvee_i d_i a$) exist, then $a \bigvee_i d_i$ and $\bigvee_i ad_i$ are infinitely close (respectively, so are $(\bigvee_i d_i)a$ and $\bigvee_i (d_i a)$).
- <u>Proof.</u> Note first that $I_0(A) \subset I_0(u)$. Indeed, if z<<g for some $g\geqslant 0$, there exists $n_1 \in \mathbb{N}$ such that $n_1 n |z| \leqslant n_1 |u|$ holds for every $n \in \mathbb{N}$. So $n |z| \leqslant |u|$ for every $n \in \mathbb{N}$. Now,
- a) It is clear that $I_0(A)$ is a solid ideal (in the ring-theoretic sense); let now $\{x_j|j\}$ be a subset of $I_0(A)$ such that $x=\bigvee_j x_j$ exists in A. We must prove that $x\in I_0(A)$. By the preceding remark, we have $nx_j^+\leqslant |u|$ and $nx_j^-\leqslant |u|$, $\forall n\in \mathbb{N}$, $\forall j$. Hence, using $x^+=\bigvee_j x_j^+$ and $x^-=\bigwedge_j x_j^-$, we obtain $x\in I_0(A)$.
- b) Since $I_0(A)$ is closed (a)), the canonical mapping of A onto $A/I_0(A)$ preserves the suprema of subsets of A [4]. By the remark above, $I_0(A/I_0(A))=0$, and so $A/I_0(A)$ is an archimedean f-ring. Hence it is p-distributive, and this completes the proof.

· References

- [1] BIGARD, A., KEIMEL, K., WOLFENSTEIN, S.: "Groupes et anneaux réticulés. Lect. Notes in Math. 608. Berlin-Heidelberg- N.Y., 1977.
- [2] GILLMAN, L., JERISON, M.: "Rings of Continuous Functions". Berlin-Heildelberg N.Y., 1976.
- [3] JOHNSON, D. G.: "The Completion of an Archimedean f-Ring". J. London Math. Soc. 40 (493-496), 1965.
- [4] LUXEMBURG, W. A. J., ZAANEN, A. C.: "Riesz Spaces I". Amsterdam, 1971.

[5] TRIAS, J.: "Sobre la p-distributividad en los f-anillos". Contrib. en Prob. y Est. Mat. Ens. de la Mat. y Análisis. (61-66), Universidad de Granada, 1979.

Dept. de Matemàtiques i Estadística E.T.S. d'Arquitectura Diagonal, 649, Barcelona-28, Spain.