ON THE SURJECTIVITY OF THE RIBENBOIM REPRESENTATION OF A LATTICE ORDERED GROUP

J. Grané

Let G be a lattice group, and $G \longrightarrow \Pi$ G_X a separated and $X \in X$ completely regular representation [1]. It is obvious that if $G = G_1 \times \ldots \times G_n$, G is its own representation, which is also surjective. Furthermore the converse property also holds. To see this, we define a topology in X by considering the set CCX closed either if it is X or it can be expressed as $C = \bigcap_{i \in I} \sup_{i \in I} (In \text{ considering sup}(f), \text{ it can always be assumed } f \geqslant 0$, simply by using |f| instead of f when necessary).

The separation property of the representation shows that the topology is T_1 since when $y\neq x$ they will exist some $g\in G$ such that $y\not\in \sup(g)$, $x\in \sup(g)$. Thus $\{x\}=\bigcap\sup(f_i)$ with $x\in \sup(f)$ and $\{x\}$ is closed.

In general the above mentioned topology is not T_2 as can be seen taking as group G the collection of real functions on R with bounded support. The inclusion $G \subseteq R^R$ affords a completely regular and separating representation. The closed sets in R are, in this case, the whole of R and the intersection of bounded subsets of R, which are also bounded sets of R. Obviously, a singleton is closed, but two open sets will have a non void intersection being, as they are, complements of bounded sets.

the topology defined above is quasi-compact.

Proof: Let C_i , $i \in I$, an arbitrary family of closed sets with the finite intersection property, each C_i is of the form $\bigcap_j \sup(f_{ij})$, and then it will suffice to prove the result for basic closed sets given by $C_i = \sup(f_i)$, $i \in I$. Let F be the filter of carriers [2] generated by the elements f_i . If F is the totality of all the carriers we would have $\hat{O} = \hat{f}_i \wedge \ldots \wedge \hat{f}_i$ or

$$0 = f_{i_1} \wedge \dots \wedge f_{i_s}$$
 together with
$$\sup (f_{i_1} \wedge \dots \wedge f_{i_s}) = \sup (f_{i_1}) \wedge \dots \wedge \sup (f_{i_s}) = \phi,$$

which is absurd. Consequently, F is contained in some ultrafilter \overline{F} and $\hat{f}_i \in \overline{F}$, for all $i \in I$. Therefore, for any $\widehat{X} \in \overline{F}$ we have $\widehat{f}_i \cdot \widehat{X} \neq \widehat{0}$; namely, $\overline{F} \in \sup(f_i)$ and $F \in \bigcap \sup(f_i)$. Hence, we get the following

<u>Proposition</u>. Let G be a lattice group for which the Ribenboim representation $G \longrightarrow \prod_{x \in X} G_x$ is surjective. Then X is finite.

The result is obvious since a surjective representation will imply a discrete topology on \mathbf{X} .

References

- [1] RIBENBOIM, P., "Théorie des groupes ordonnés", Univ. Nacional del Sur, Bahia Blanca, 1963.
- [2] JAFFARD, P., "Les systèmes d'ideaux", Dunod, 1960.

Departamento de Matemáticas y Estadística Escuela Técnica Superior de Arquitectura Universidad Politécnica de Barcelona