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ON THE CENTRAL LIMIT THEOREM IN HILBERT SPACE(*)

ALY (2)

Evarist Gin and José R. Ledn

1. Introduction

The object of this paper is to prove a central limit theorem
in (separable) Hilbert space using a method based on the so called
"découpage de Lévy", the Lindeberg proof for the Gaussian case and
an elementary proof of Poisson convergence for the direct part,
and on elementary probabilistic inequalities for the cdnverse. In
particular, characteristic functions are only used in unicity
questions. Several results of Varadhan (1962) can be obtained
either directly as corollaries of the main theorem or with the

same methods.

This is essentially an expository article: méhy of the re-
sults in it are formally new but perfectly predictable given the
previous work of Varadhan (1962) and Le Cam (1970). We hope the
reader will find this approach to the central limit theorem both
more clarifying and less computationally involved than the usual

ones.

The direct part of the centr&l limit theorem is proved as
follows. By means of a randomization -the d&coupage de Lévy- the
general central limit theorem is reduced to the cases of normal
convergence and Poisson convergence: in fact, the laws of usually
small variablés -variables in an infinitesimal array- are approxi-
mately decomposed into convolutions of laws of small variables and

laws of variables usually zero. Then, sums of small variables are approximated

(*) This author's research has been supported by a scholarship
from the Fundacidn Gran Mariscal de Ayacucho.
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by Gaussian laws (this is done using a generalization of the Linde-
berg method in Hilbert space) and sums of variables usually zero
vaxeiapproximated by generalized Poisson probabilities (and this
can be achieved by means pf an elementary argument on approxima-
tion of exponentials). As a result, one obtains that sums of
usually small variables are well approximated by convolutions of

Gaussian and generalized Poisson laws.

The converse central limit theorem consists essentially in
showing that if{L(Snﬂ is tight, where Sn is the n-th row sum in

an infinitesimal array, then the measures

2
z, - . . .
J[X{qu< 1}(x)llx f”x"< 1XdL(XnJ)(x)H dL(XnJ)(x)+X{"x">]fx)dLu%u)(x)]

are also tight. Again by the découpe de Lévy the proof of this
fact can be easily achieved by means of the classical Lévy and
converse Kolmogorov's inequalities. For generalizations to cer-
tain Banach spaces we refer to de Acosta, Araujo and Giné (to
appear), and for another ébproach to the subject, to the already

cited paper of Varadhan (1962) (or Parthasarthy (1967)).

We are grateful to Professor L. LeCam from whom we learned
this approach to the central limit theorem. We are also indebted

to A. de Acosta and D. Freedman for several useful conversations.

In what follows H is always a separable Hilbert space.

2. Differentiable functions and weak convergences

n+wunf“ means

that ffdun+ffdu for evéry bounded continuous function f:H~+> R.

We recall that if un,uep(H), un+wu or w-1lim

We prove here that in order to check weak convergence of‘{un& to
pu it is enough to show that ffdpn+ffdp for every f:H+*R conti-
nuous, bounded and with bounded derivatives of all orders, just

as in the real line case.
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Let ¢E:R»R be defined as

2, -1
1[ f;-(t—n (2e+e”)

0 (V=X (L, 1] (t)+c” exp{-sf‘ (5-1)'1}ds]x{1’(1+€)2](t)

where c=.%exp{-s-1(§-1)-1}ds.'Define now
v = ¢_Clxt?).
€ €
Then, since the derivatives of HxH2 are
2 L]
(I=l“)"(h) = 2<x,h>

(Mxl2) " (h k) = 2<h,k>

(quz)(r)(h1,...,hr)5 0 for r>2,

it is a matter of simple routine computation to show that for eve-
ry r, we(r)(x)(h1,...,hr) is a linear combination of numbers of
the form

., (h)
v¢€

2
(Hx“ ?<x'hr(1)>"'<x'h1(k)><hr(k+1)’hr(k+2)>"'q‘ﬂr-n‘ht(rf“

(For definition and properties of differentiable functions in in-

finite dimensional spaces, see e.g. Lang (1962)).

(k)

As a consequence, since suptER[q)e (t)|<m, and ¢€(k) has a

compact support for k#0, there exists Ck;30 such that for every
xeH and (h,,...,h )eH",

(k) '
v " o) (hyyeee b)) |<Cplinlle iyl

(k)“

o

The infimum of the numbers Ck will be denoted by "we

So:
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2.1. Lemma. For every ¢>0 and k=0,1,..., the function we
s k . .
satisfies Hwe( )Hw<w, i.e. ¢, is bounded and has bounded de-

rivatives of all orders.

Denote by CE(H) the class of bounded functions with bounded

derivatives.

.2.2. Theorem. Let un,ueP(H). Then if ffdun+ffdu for every

(o]
. > .
function fecb(H), un wu

Proof. It is enough to see that if ffdun*ffdu for every
fecg(ﬂ), then un(F)+u(F) for every finite intersection of balls
F of u-continuity (see e.g. Billingsley (1968) page 14). Let

r
= = H -x.I<r.,}. .
then F=N, 1B(x.,r.), where B(x,,r.) {x | x-x " r } For 0O<eg<r,,

define
E_ADN -nn _ € =D -1 =1
Fr=n g gBlxgeri*e), F =0, Blxg,ri=e), v (X)=I;_qbo 1 (7 (%))

1

-1 . € _ @
—1((ri-€) (x-xi)). Then, Ter T €c and

and Ts(x) =1I b

n
i=1¢e(ri-e)

XF < T€< XF< T-E< XFS (where for every set A,XA is the indicator

€

function of A). So, if 'F is a continuity set for yu,

. < . . € =14 € . =
lim supn‘_)mun(}?)\llme lim ST dp 11m€+QfT du=u (F)

»Q
= : = . : > 3 ' . .
11m€+ofredu 11m€+011mn+mfredun/-11m 1nfn+9pn(F).

Hence, limn+wun(F)=u(F).

2.3. Definition. For every positive integer k, d _ is the dis

k

tance on P(H) given by
k k (r)
dy (wyv) =sup{|/Ea(y-v) |:feC (H) 2 _ I f h, <1},

where CE(H) denotes the set of bounded functions with k bounded
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continuous derivatives.

Certainly, if dk(un,u)+0 then un+wu by the last theorem.

The converse is also true:

2.4. Theorem. For every k>0, the distance dk metrizes the

weak topology of P(H).

Proof. In the first place (P(H), weak topology) is metriza-
ble (see e.g. Dudley (1966)). If U 7 then dk(un,u)+0 by a re--
sult of Ranga Rao (1962). Conversely if dk(un,p)+0, then UM
by Theorem 1.2.

Remark. Theorem 2.4 is not needed in what follows.

3. The main lemmas.

‘In this section, among other needed facts we prove simple
Gaussian and Poisson approximation results which will give the
direct central limit theorem and a necessary condition for
tightness of sums (the analogue of the two-series critérion of
P. Lévy for triangular arrays) which is essentially the converse

central limit theorem.
3.1. Lemma. For every k and {Ui,Vi}2=1eP(H),
n
* * * *
dk(u1 S AL PR vn) < Zi=1dk(ui’vi)'

Proof. It follows trivially, by use of Fubini's theorem, from
(i)

the invariance of the set {f:H-R, feCE(H), Z§=0Hf Hw} under

transformations of the form f(.)->f(x+.), xeH.

n
3.2. Theorem. Let {Xi}i= be independent centered H-valued

1
rv's such that HXi(w)H <cC for all we , i=1,...,n and some C>0.

n
Let S=I1 X.,A, the covariance operator of X, and A=Z? A, that
i=11i i i i=1"1

1
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of S. Then, if N(0,A) is the centered Gaussian p.m. with cova-

riance A,

d,(L(s), N(0,a)) < KCtra,

where K may be taken to be K=6_1(1+33/4).

Proof. Let Yi be independent N(O,Ai) rv's (they exist as the

Ai are trace class -see Lemma 3.5). Then, L(Z?

l=1Yi) = N(0,A) and

by the previous lemma,

n

12193 (LX) LY ).

. n
<

(3.1) d3(L(S), L(Zi=1Yi)) < I

If fEC:(H). by Taylor's theorem (see e.g. Lang (1962)),

= ' _1_ " -1
f(Xi)—f(0)+f (O)(Xi)+ 3 £ (0)(Xi,Xi)+ 6

£1700) (X X5 0%),
and likewise for f(Yi). So,

1 " —-_F"
(3.2) IE(f(Xi)-f(Yi))] <5|E{f (0) (X, ,X,)-f (0)(yi,yi)}|

+ 67 el _Edx 174y 1%

Next we estimate the right hand side of this inequality.

Note that
" < " 2 - Ww 2 '
E[£7(0) (X, x ) [< ENE" (0 I, 17 = I £ (O)NENX, Il “<oo,

i.e. f"(O)(Xi,Xi)eL1(Q). For ease of notation let us suppress the
subindex of X in what follows. Let now {ei} be a cons for H and

let £,=<X,e,> and xn=z'i‘=1giei.

Then |£"(0) (x™,x™ |< I £" (o)l x™ 2 < " (o) x> i.e. the random

variables ]f"(O)(xn,Xn)| are dominated by an integrable function.

On the other hand,



On the central limit theorem in Hilbert Space 49

M l=le" (o) (x,x-x") -£" (0) (x"-x,x™) |

|£" (0) (x,x)-£" (0) (x",x
< Hf"(o)HHx;an[HxH+Han]+0,
and therefore, by the Lebesgue dominated convergence theorem
E£" (0) (X", Xx")>E£" (0) (X,X) .

n

But " n 11=
u Ef" (0) (X ,x) Zi,j=1

f“(O)(ei,ej)E<X,ei><X,ej>. Hence

Ef"(0) (X,X) depends only on f and the covariance of X. Therefore,

since Xi and Yi have the same covariance,
" = "
Ef (O)(Xi’xi) Ef (0)(Yi’Yi)’
and the estimate (3.2) becomes
[ECe(x,) - £, |< 67 em 1 s x5
i - i «© i i

To estimate this last quantity, let us note that if Y is Gaussian,

Y=1, e., EN.=0 and En>=0>, then "En-=30° and
Tri=1Mi8yr BN ny=0yr then BN =304
3 w 2 3/2 2.2.3/4
Ell vl E(Z;_qn;) < [E(Zn) 7]
=[x, .0?0? + 32.0% - Z,o?o? 3/4
1, 1] i i iii

_ 2.2 43/4 3/4 2.3/2
-[(Zioi) + 2Zioif <3’ (Z;07) .

3/4

So, in our case we get EIIYiII3 < 3 CtrAj. As for Xi we have

EHxiH3 < CE”Xi”2 = CtrAi and therefore

3/

-1 4
]E(f(xi)) - f(Yi))| <6 (1+3°77%) ctra,.

Now the theorem follows from (3.1).
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The last theorem makes precise the statement that "laws of
sums of small variables are well approximated by Gaussian laws”.

A similar approach is used in the work of Kuelbs and Kurtz (1974).

Given a finite positive measure y on H, define
Poisy = e-lul Z:=Oun/n! = eU'IU‘éo
where |u|=u(H). Define also
cPoisy = (Poisu)*éu

where u =-fmin(1,"xu)nx"-1xdu(x). (Pois is for Poisson and cPois

for centered Poisson).

3.3. Lemma. (i) Pois(u1+...+un)=(Poisu1)*...*(Poispn),

(ii) if p(H) = v(H), d1(Poisu, PoisV) <d1(u,\))

v (-elVI-lHly,

(iii) if peP(H), supA€B|u(A)-Poisu(A)|<e2hﬂwd0})]2.

Proof. (i) It is enough to prove it for y and vy.

Poispy*Poisy = e—|“|—|v|2un/n! * 3v"/n!

_ = uv|
= e Zn

n m
* 'm !
'mu Vv /n. .

wlge s W™ /nl m !

-]
e r=0"n+m=r

]

[}

e_IU+V|22=O(U+v)r/r !'= Pois(u+v).

(ii) If y and v do not have the same mass then it is

easy to see that, similarly to Lemma 2.1,



On the central limit theorem in Hilbert Space 51

dk(un,;n) < max(lul,lv[)n-1ndk(u,v).
Then, if £¥_ ey < 1,
|/ £d(Poisy-Poisv)| = |e'|“|szdu“/n! - e'lvlszdv“/nﬂ
<e IMlyzreacu®vmynt) |(e‘lul-ef!vl)szd\,“/ngj
<e-lu|emax<luiliv!)dk(u,\,) s [1-e V= Tuly,

(iii) Let Jl.|l be the total variation norm; by its well

known properties, we have

more

(see

. 1 . 1 -
supAeBl (u-Poisu) () |= 5 llu-Poisull= 3 flu-e¥ 60||

1, <@ n . 2_®
SN o =80 /nliI< 4 u-8,) 7z

n -1 2 2
222 /(n-2)1=4 "e tu=8oll

eJum\ioh 2. O

Remark. e2 is not the best constant in (iii). With a slightly
conplicated proof one can obtain supAEB|U(A)-Poisu ) < [l.l(H\{O})]2
e.g. Freedman (1974)),

It is easy to see that as in Lemma 3.1,
* * - * *
supAeBIu1 ceetu (B oKL vn(A)|
<3? -
L _1SuPeplu, (A)-v (A)].

So, the last lemma shows that

3.4. Theorem. If {ui}z € P(H), then

=1

n

. n 2
sumeI (U1*- ..*un—Poz.sZi:]ui) 3)|<e Zi=1

[ui(H\{O})]z.

The last theorem shows that the laws of sums of "variables
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usually zero are well approximated by Poisson p.m.'s".

Next we give some facts on Gaussian and Poisson laws. The
next well known lemma has been implicitely used in Theorem 3.2.
We give here a simple proof which does not use characteristic

functions.

3.5. Lemma. A positive definite bilinear form ¢ on H is
the covariance of a Gaussian p.m. on H if and only if there
exists a positive Hermitian trace class (nuclear) operator A

such that &(x,x)=<Ax,x> for every x€H.

Proof. Let A be trace class positive Hermitian, {ei} a cons
of eigenvectors of A, {Ai} the corresponding eigenvalues,
Ai>0, Zki<w, {ni} a sequence of N(0,1) independent real rv's and

2
Anel

. . . . . . (o]
X= ZAiniei. This series is Cauchy in probability as E”Zi=N inie;

o
=Zi_NXi*O and X is well defined. Clearly X is Gaussian and

E<X,y>2 = <Ay,y>.

Conversely, if X is Gaussian, ® its covariance and <Ax,x>=
. 2 . .
=0 (x,x) then, since E|X|| <o by Fernique's theorem (Fernique {(1970)),

2 . 2
A is trace class:Z<Aei,ei>=ZE<X,ei> = E|| X|| “<ow.

3.6. Lemma. If p is a positive measure on H such that

fmin(1,HxH2)du(x)<m, then, lim cPois (u] lx||>8) exists. Converse-

§+vo
2
ly, if this limit exists then S/min (1, x|l 7)du (x)<w.

For fhe proof see Araujo and Giné (to appear) or Parthasara-

thy (1967). We only use the direct part in what follows.

3.7. Definition. A positive measure y on H is a L&vy measure

if fmin(1,HxH2)du(x)<w. In this case, lim cPois (u|ll xll>8) is ca-

§¥o
lled the centered Poisson p.m. with L&vy measure u, cPoisp for

short.
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3.8. Definition. A family {an:j=1,...,kn,n=1,...} of ran-

dom variables is an infinitesimal system if for each n,Xm,...,Xnk

. L n
> =0.
are independent, and for each ¢<O, llmn+msuij{”an“ £}=0

Next we will give a necessary condition for tightness of par
tial sums of an infinitesimal system which essentially contains

the converse central limit theorem.

We recall that the P. Lévy and converse Kolmogorov inequali-
ties are true in Hilbert space, and in general, in any separable
Banach space (Parthasarathy (1967), Kahane (1968), de Acosta and
Samur (to appear)). These inequalities combined give the following
result. For the first part of the proof we follow de Acosta and

Samur (to appear), Theorem 2.3.

3.9. Theorem. Let {Xnk}, be an infinitesimal system such

that {L(Sn)}:=1 is relatively shift compact. Then, the family of

finite measures

] kn 2
\a PN E Xyl < §¥n3 3Pl 7L (X ) (x)
5 j for |Ix| <S¢,
d\)n(m) =<‘
1ok
,Zj=1dL(an)(x) | for | x| >§
\

is relatively compact for every §6>0.

Proof. We need only prove the theorem for some §>0. Let inj
kn ~

X L.
j=1"nj
Then one of Lévy's inequalities (de Acosta and Samur (to appear))

denote independent symmetrizations of the an'and §n=2
states that for K compact convex and symmetric,
(3.3) P{xnjexc for some j} < 2P{sneKc}.

Then,
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k k

> (o}
~ c n ~ n -P{X .€K }
- € EX I :
1 2P{sn K™} Hj=1P{an KI< Hj=1e nj

or

k ~
(3.4) . p{xnjexc} < -log(1-2P{Sn€Kc}).

j=1
Now, given g>0 there exists D€ compact convex and symmetric

such that
P{E ed )< l[1—exp(-e/2)].
n € 2

Since {L(xnj):j=1,...,kn, n=1,...} is relatively compact by infi-
nitesimality, by Prokhorov's theorem there exists C compact con-
vex symmetric suth that P{anecc} <% for all n,j. If K€=D8+C and
‘x;i is independent of xnj and has the same law, we obtain

c

c ~
. €K < P{X__.€D .
. } { nj€P¢ }

1 c
— < v
2P{an€Ke} \.P{xnjec, xn]

Therefore, this inequality together with (3.4) gives:

k k

X n € c < n [}
j=1p{xnj Kk} < 2 5 P{X, jeD 7}

<-2[ log(1-(1-exp-g/2))]=¢.

k .
: n c
<
In particular, Zj=1P{an€K1 } <o and
kn c c - kn *©
¢ . . .
Zj=1P{an K, ﬁKE }<e, i.e. {Zj=1L(an)|"x“>6}n=1 is relatively

compact for every 6>sup{"x":x€K1}.

Next we treat the origin. Define

T X, ,
nj () if "xnj <
and(w) = )

{ 0 otherwise,
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and let xnjé be independent symmetrizations of the Xn Then,

js’
by the Lé&vy and converse Kolmogorov .inequalities

2 Elx  omx 22275 P % 2
j=1 njé njés j=1 njé
2 2 kn >
< - .
[(t+8) T+t /21/[1 4P{uzj=1xnj5ﬂ>t}]

So, by the first part of the proof, the theorem will be pro-
ved if there exists t>0 and 6>sup{"xﬂ:xeK1} such that

k

n o~
(3.5) PUL T 4%y el >tde1/a

for every n.

A way of proving (3.5) is to use a result on tightness of
convolution factors (Parthasarathy (1967) III.2.2) and the dé-

coupage de Lévy (Le Cam (1970)), which we describe immediately.

- . . )= “on i d -
Let Uan,anS,Enjé and nnJG' i=1, 'kn' be independent ran

dom variables with laws
= <
LU, 54) L(anlﬂxﬂ < §)
LV 58 = L(anlﬂx" > 8)

L(&

an) = L(nan) = Bernoulli with expectation

pllix, 4l >6}

where for every Borel set A,L(xnj |IIXII < 9) (A)=.P[ Aﬂ{llxn:il <81} /P{Hxnj||<6}
i < < = i ’ i -
if P{Hxnjﬂ §}#0 and L(anﬂlx" §) (n) 50(A) otherwise, and like

wise for L(an]HxH>6). Then it is clear that

L(X .6)=L(n

n3 ). L(Xn.

57X p5e) TLCA=E SV S

n36%n3s n3s

and
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3. L= . . - . . -
(3.6) L(an) L[nnJGUn36+(1 Enjd)vn36+(£nj6 nnjd)unjdl'

This is the découpage de L&vy of the law of an. Note that the

first two summands at the right hand side are independent. Next

we prove that the third is negligible. We have

k k

n 2__'n _ 2 2
(3.7) E”Zj=1(gnj6 MnisUnys! =I5B (8455 Mnys) ElU,
kn 2 | 2 kn
= 2%, _.P . : < . L TEL P . .
Ly PUIX SI>83ENX L max EIX o N2, PLIX S1>6)

Since fore<§, by infinitesimality,

. < v _
lim supn+wmaij”an6"\ lim supn_m)maxjE"xnj(S ang+Euxnj£)

11mn+w6maij{HanH>g}+s=g,
we have that for every §>0

(3.8) lim max . Ell x
n-+o J nj

n 2
Therefore, E"Zj=1(€nj6—nnj5)unj5" 0

and in particular, by (3.6) the sequences

k

k
n n
{L(s )} anda {L(Zj=1xnj6)*L(Zj=1(an-anG))}

are weak-convergence equivalent. Thus, since {L(Sn)} is relati-

vely shift compact, the same is true for {L(Zj:1xnj6)} for eve
ko~
ry 6>0 (Parthasarathy (1967), III.2.2) i. e. {L(Zj:1xnj6) is

tight. From this (3.5) follows at once.

The next is a unicity lemma for the L&vy-Khinchin represen-
tation in Hilbert space (it is true with much more generality).
A nice proof of this result can be found in Parthasarathy (1967)

pages 110-111.
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3.10. Lemma. If

* . * i = * * :
6a1 N(0,A ) *cPoisy, 6a2 N(0,A,)*cPoisy,,

then a,=a,, A =A, and H=H, (provided u1{0}=u2{0}).
We end up this section with a lemma on tightness of sums of
truncated variables. The result is stated for H-valued rv's but

is true in more generality.

3.11. Lemma. Let {Xj}?=1 be symmetric H-valued random varia-

bles and S=Z?=1Xj. Let XjG be the variables truncated at the le-

vel 8§>0 and 86=Z?=1Xj6' Then for every compact convex symmetric
set K and 6>0,

p{ SSGKC }< 2p{sek®}.

Proof. Let Uja’vja and gjé be a set of independent random

variables with laws:

L(U. = L(X. <

( 36) ( JIHX" 8)

L(Vye) = L(lellx I >8)

L(Ejé) = Bernoulli with expectation P{iju< §} .

For simplicity, set
U= (g s s Ug) s VoV 0o e Vo) s E=(E puee b )

and denote by . the usual inner product, e.g.,g.U=Z?=1gj60j6.
Then, L(xj )=L(£.U) and

» L(X.)= .U 1- . yL(S
) ( J) L(Ejﬁ jg( g )VJG) (

5783555 3 5
L(S)=L({.U+(I-£)V), where I=(1,...,1). So, if T={0,1}n, we have
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p{sex®}=P{E.u+(1-&).vek®}
=Z’IETP{€.U+(I-E).VEKc|g=T}P{g=T}
=L pPlT.U+(I-T) vek®}p{g=1}

1y p{r.vexC}r{g=1}

> —
Z 2%teT

1 c,_1 c
= Ep{g.uex }'ZP{S§€K }

where the last inequality is consequence of the following:
. c . c
if T.UEK , either T.U+(I-T).VEK or

T.U-(I-T).VGKc (otherwise 27 .U€E2K) and both events have the same

probability by symmetry.

k. The limit theorems

4.1. Theorem. Let {Xj}? be independent H-valued rv's;

=1
U.=L(X.), S=2" . X.,u=L(S), X..=X a.=I? EX
3T TR y=a s ©T5s TR <8yt F6TV3=17T567

and A the covariance operator of Z?_ X Then

$ 17538 °

. n ‘
d3[u,N(a ,AG)*POlS(Zj=1ujIHx”>6)]

S

1+1/3 2

<2 lEX,

[max1<j<n "

3 plixgi>ey1 13

-1 3/4 2 n
+ 3 (143 )Strgfzemax1<j=<nP{uxju>5}zj=1P{iju>5}.

Proof. Let U,

Jd,vjé,gjd and an be independent random varia-

bles with laws:
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L(U. = L(X.
(U ) x|l <)
L(V., = L(X. >
(V5o xg [xll >8)
L(Ejé) = L(njé) = Bernoulli with expectation

P{lllel <8},

as usual. Then

B L(X.,)= . . =& . . P I . .
(4.1) ( J) L(n36U36+(1 E](S)V](S+(EJ(S n)d)UJG)

The equations (3.7) together with a simple computation give.

4.2 a,[L(x), L n LML UL ) .
( ) S [L(X) (X+ZJ=1(535 nm)ujs)]

1+1/3 2.n 1/3
< 2 . . ._.P{IX, i
[maij"XJGH_ZJ=1 {l J||>6}]

also

; n
(4.3) d3(L(Zj s

—155Y055) 0 N(ags Ag))

_ n
= 43 (LE_ X 5) . Nlag,Bg))

n
= d,(L . A ' v
S (L@, Xy -a, 4 N(0,A)

< 371 (1433 %5 trag

by Theorem 3.2; and

n . n
(4.4) d3(L(Zj= (1-gj6)vj6), P01s(2j=1uj|[|xl|>(§))

1

n
= A L2y (Xy-Xg

. n .
36))' P01s(2j=1(uj]{"X”>6})+P{HXjH < §}ég))

2

2 n
S26T._ P {|lXj||>6}<2e?tnaij{|lXj”>6}zj___1P{||Xj||>§}

n
j=
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by Theorem 3.4 (it is easy to see that if u and V are p.m.'s then,
if F is the set of bounded measurable functions, supfeFIffd(u-V)l
< 25upAeB!u(A)—V(A)l). Now the theorem follows from (4.1)-(4.4)

using Lemma 3.1.

- 4.2. Theorem.»Let {an} be an infini;esima} system. In order
that {L(Sn—xn)} converge weakly for some segquence {xn}CH it is
necessary and sufficient that the following conditions be satis-
fied:

lim sup
540 Z.E1E€X . .-EX | ,y>2=<Ay,y>
lim inf = njé nJé

n->co

(i) 1lim
for some nuclear positive Hermitian operator A,

z X -EX >2=0

[e 0]
‘s . : . <
(ii) lim 1lim sup6+ollm sup X k=N+1E njd'ek

n
N >0”j=1 njd

for some (all) cons {ek}.

(iii) there exists a positive measure pu on H such that

[min(1,”x”2)du(x)<w and

k
w-lim_ T P L(xnj)I{HXH>6}=uI{HXH >8}

for every 6>0 such that p{llxll=§}= 0.

(iv) if a(x)=min(1,HxH)HxH_1x, there exists a€H such that
k

lim 2.0

oo j=1Ea(Xn.) - X _=a.

3 n
Then the limit of {L(Sn—xn)} is N(a,A)*cPoisy.
Proof. Assume (i)-(iv) are satisfied. Using a simple modifi-

cation of the argument in the proof of Lemma 7.2.1 of Chung

(1974) it is easy to show that if a§m>=0 are such that

. . r .
lim lim sup a_ =0, r=1,...,h, then there exists a subsequen
m—>o n->oc nm —
. r .
ce m_ such that lim a =0 for every r=1,...,h. Hence, if A
n n-o nmn ng
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is the nuclear operator associated to the covariance of

k
n

Zy=1 %0367 036

ce 8§ ¥0,8 < 1, such that
n n

), the hypotheses imply the existence of a sequen-

(a) limn_moén trAn(3 =0,

n
kn
(b)  lim___d (I =1unj|{uxu>an},u|{uxn>5n})=0,

n—+o 1 3

k
. n -—
(c) llmn—>°°f|[x||>-6n a(x)d(2j=1unj-u) (x)=0,
(where U .=L(X .) as usual),
nj nj
k

n
2RI 5l>8 3= 0y

. . 2
(a) llmn+m'max1<j<k“ Exnj(‘in” Zj

(e) lJ.mn_m)vmaxr<j<k P{ IIan||>6n}Zj

n =
i _ R Sl>s b= 0,

(£) llmmmmax1<j<knp{ ||an||>5n}é 0.

(for (d), recall (3.8)).

k k

Then, if a_=r " Ea(X .) and a_ . =2.0
n “§=1 nj né “j=

1E0L(an (S) v

d3[ L(Sn-an) , N(O,A)*cPoisy]

. ) k
H n
< a,[L(s_-a ), N(o,An5n>*cPols<Zj=1unjInxn>6n)1

Hnj | ||x||>6n) , N(0,A)*cPoisy].

+ 'd3[‘N(0’An6n)*CP°iS(Zj=1

The first summand at the right hand side tends to zero by

Theorem 4.1 and the properties of {c‘ir}. For the second, we have

: k
* i n % :
d3[N(O'An5h) cPois (I, _qu, 4| lIxl>6 ), N(0,2)*cPoisy]
' K

. n
< d3[N(O'An5n) ,N(0,Rn) |+ d3[cP01s (Zj

—1¥n3 | ||x||>5n) ,cPoisy |
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by a previous lemma. The second term at the right hand side tends
to zero by Lemma 3.3, Lemma 3.6 and the properties of{qlL so, we

need only prove that d3(N(O’An6 ), N(O,RA))=>0.

n

Define AN as AN(x)=Z?_ <x,ei>ﬂ A(ei) where m_ is the orthogonal

1 N N
projection onto the subspace generated by SRR ERRRL e and like-
wise for Aﬁg. If L(Z)=N(0,A) and ZN=Z§=1<Z,ei>ei, then

L(zY)=N(0,aN). Let now ll£'ll < 1; then

gy

lE(£(z)-£(zY)) | < Ellz-2Y1 < (&llz-2¥12)2
h < >2 % b < > %
= U RN ERBeey 7 )2 = (B gy fRey Reyiey?) 2.

Therefore,

N < (z7 3
d1 (N(OIA ), N(OIA)) S | i=N+1<Aei;ei>) '

and analogously,

1
o —
1=N+1 e.,ei>)2.

N <
d1(N(O'An6)' N(OIAnG)) S (2 51

<A
n
Hence, by the nuclearity of A and conditions (i) and (ii),
lim(S

+0lim supn+md1(N(O,Ans),N(O,A))

N

s . . N
lim sup lim sup6¢011m supn_m’d1(N(0,AnG )'N(O'Anﬁ))

s . : N N
+ lim supN*wllm sup6¢011m suPn+md1(N(0'An5 ) ,N(O,A7))

o N ~
+ lim supN»md1(N(O,A ), N(O,A))=0.
For the second limit, note that hypothesis (i) implies that
. . N N,
11m6¢011m supn_mollAna -A |[|=0 for each N, and thergfore

. : N N, _
11m5¢011m supn+md1(N(O,An6 ) ,N(O,A))=0 as these are Gaussian
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measures in dimension N.

So, there exists 6n+0 which in addition to conditions (a)-(f)

satisfies also

lim (N(O,B () ,N(0,A))=0.

n

n+wd1

This proves the direct part of the theorem.,
£ .
We now proceed to the proof of the converse. By Theorem 3.9

the set of finite measures

k
n 2 .
- <
Zj=1llx Exnj1” dL(xnj) (x) if x| <1

dvn(X)

P

1]
e e e PN

n .
Zj=1 dL(an)(x) if Ixll >1

is relatively compact. Let {vn,} be a convergent subsequence and

p its limit. Define y as
-2
du(x)=max(||x| ~,1)dplx).
Then
. 2
Smin (1, xll7) du (x) <o,

i.e. y is a Lévy measure.

The convergence of{%“} to p easily implies that for every

§>0 such that u{||x|l=6}=0,

k
nl
(4.5) Zioq LX) x> 8wl ixl >8] .
lim sup K
. ; n 2_
(4.6) lim_, o { Ej=1EHXn,j€-EXn.jl" =p{0}<w>,
Clim inf

n' >o
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and from (4.6), using infinitesimality, one obtains that

"1im suﬁ} k
. i n 2
(4.6)" 11m€¢o ! } Zj=1E"xn'jg—Exn'je" =D{0}<Wo
\lim infj ,
n'-»>o

(For the proof of (4.6)' use (3.8)).

Note that (4.5) proves

(iii) along a subsequence
n' such that {vn;}

(any subsequence
converges) .

A simple computation shows that

. ; n'
< -
11m€+ollm supn,»w|2j=1[E xn'je Exn'je

2
X dL(Xn,j)(x),y> dL(Xn,j)(x)

2

k 1
< 14 . n
< 11m€+011m sup_, 3¢ Zj=1P{HXn,

jII > el=0

(to obtain the last limit just note that by (4.5),

k
2 . n' 2 P
€ lim supn,#m2j=1P{Hxn,jH>e}< e“u{llx|l= e} and that since

2 2 2
i © </
Smin (1, 1zl %) dp (x) <w, e“u{lixll=e} f€<IIXIH§€; I x|l “du(x)

2 2
+ef€%<”x"<1llxu du(x) + e“pill x|l >1}+0 as e+40).

Therefore (4.6)' can be applied in one dimension to obtain that

for each y€H there exists a subsequence {n"}C {n'} such that

2 -1
{ j=1E<Xnuj€_Exnuj€ly> =poy

{0}<w .

. >2- <x-
IJIY 2 f|<x,y> < ¢ X f|<x'y>
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Since H is separable, by a diagonal argument we can obtain a sub-
sequence {n"} C{n'} such that the last limit holds simultaneous-
ly for a countable densé set {yi}CH. Then an approximation argu--
ment shows that this holds for every yeH (note that (4.6)' implies
that the bilinear forms

EX yY><X z> are uniformly bounded).

< - -
j=1 n"je n"je n"je n"je'
So, (i) is proved along a subsequence {n"} {n'}. Note that by

EX

(4.6)' the operator A defined as <Ay,y>=poy-1 {0} is nuclear.

Next we prove (ii) along a subsequence. For each natural N

define the pseudonorm'rg(x)=2: <x,ei>2. We note first that

=N+1
. . 2
(4.7) limg  lim supn'»wzjIE[rN(Xn'j_xln'j)5
! -r2(X -x! )li=o0
v Fnrgs27 % nryes2) 1=

where L(x'nj)=L(an) and the X'nj are independent and independent

of the X ,. In fact,
. nj

|E[r§(xnjlx' ) -rl(x X

03’ "IN Xnys/27% nyss2) !

< -X" -X
Blry oy =% ny) 6% n Fngs /27 nyg/2) |

x|r (X _.=-x' _.).-r_(

N ¥ny X w30 s T Knjs 27X njs 2’ |

< ZGEIN[(an—X' )

- ' < 2
nj's xnj6/2+x nj6/2] 88 P{Hxnju>6/2},

But, as shown before in this same proof,

. : 2 -
11m6+011m sup $ P{Hxn,jn>5}—0

'+coz 3

and (4.7) is proved.

Hence, in order to prove (ii) along the subsequence {n'},

2 2
b 4.7 £ o= = - i
y ( ) and the fact that 2ErN(anG Exnja) ErN(xnjé X'nja)' it
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is enough to show that

k 2~
lim sup .M Ers(X

' §=1 N n'j6)=0

(4.8) 11mN wllm sup

>

8§40

where an6 is a symmetrization of ané' But the Lévy and converse

Kolmogorov inequalities give that for every T1>0,

k
n 2,7 2. 2 ~
. < -
(4.9) Ticitn py) S L+ Hr7/21/00 ap{ry (s , >t} ]
where Sn,S =Zj=1xnj6' Since {L(Sn)} is relatively compact Lémma

3.11 implies that the family of p.m.'s {L(En ): n=1,...;6>0} is

' $
tight, hence that

~

llmN+wsuPn,6P{rN(Sn,5)>T}= 0

i

for every1>0. So, taking limits in (4.9) we obtain (4.8), i.e.

condition (ii) for the subsequence {n'}.

So, (i)-(iii) hold alohg {n" } and this means that if y is as

-1
defined and <Ay,y>=poy {0}, then,

k
. n .
w"llmn“»wL(Sn"_zj=1Ea(xn"j))=N(0’A)*CP°lS“’ and that moreover,
- 2.% Ea )= - * isu.
X » j=1E (Xn"j) a and L(Sn“ xn")+wN(a,A) cPoisyu

Now, by the unicity Lemma 3.10, if for any other subsequen-
ce {m'} the sequence {vm,} converges, then the limit is also p,
which means that {vn}' is convergent and that the conditions

(i)=-(iv) hold by the previous arguments.

Next we will give a corollary on Gaussian convergence (and
leave it for the interested reader to obtain results on Poisson
convergence). Although a direct proof of the following'result ba-
sed on the lemmas in section 3 and using truncation is also possi

ble, we prefer to rely on the previous theorem.
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4.3. Corollary. Let {an} be an infinitesimal array of H—va—

k
lued rv's and §_=I.".X .. Then there exists {x_}CH such that
n j=1"nj n

{L(Sn-xn)} converges weakly to a Gaussian p.m. if and only if:

(i) for some (every) 6>0 and every y€H
kn . 9
i - = >
llmn+mzj=1E<xnj§ Exnjsry> <Ay.,y

where A is a nuclear positive Hermitian operator,

(ii) for every €>0, limn+w

k
.2 p{llx .l>el=o0
j=1 nj

(iii) for some (every) &>0 and some (every) cons {ei}

kn il 2
lim lim sup z ) E<X -EX .. e,>
o n njd, i

N~ o 3=1"k=N+1""%njs 0-

In this case, there exists a€H such that

k
lim 2. EX . -x_=a and
ns>ew-j=1 nj n

w-llmn+¥L(sn—xn)=N(a,A).

Proof. Assume the first three conditions hold. Note that con

k
dition (ii) will allow for the centering Zj21Ean instead of
k
ij1Ea(an1). So, by Theorem 4.2, it will be enough to show that

condition (ii) in 4.2 holds. Let us let ~ denote symmetrization
as before, and 'y be as in the previous proof. In view of condi-

tion (ii), 4.3, the proof of (4.7) shows that

) 2~ 2,
(4.10) lim supn*ij|E[rN((an)6) 25 (X ss/n Exnja/z)]\ .0
for every 6>0. So we have that
1i lim su I.Er2((X_.) 0 = 0
1mN_)m s Pn_)w j N nj’ & -
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and since r2((¥X .
N n

3)6) decreases as 640,

llmN*wllm sup(Ho lim supn+w

2~
Z.ErN((an)G) =0
Now another application of (4.10) gives condition (ii) in (4.2).

The direct part is proved.

Conversely, if {L(Sn—xn)} converges to a Gaussian p.m. Theo-

rem 4.2 already implies condition (ii). By condition (ii), 4.3,
lim sup |z " o(E<x -EX y>2-E<X -EX y>2) |=0
nso ! j=1 njé njé’ njé"’ njié'’

as a simple computation shows. Therefore, condition (i) 4.2 is
equivalent to (i) 4.3 in this case. So we need only prove condi-

tion (iii), 4.3.

By Theorem 4.2,

k
. ) . n _ 2 _
11mN+m11m sup§¢011m supn+mzj=1ErN(and-Exnj6)— 0,
and by (4.10),
kn 2,7
llmN*mllm Sups. o lim suPn»ij=1ErN((xnj)5)= 0.
Now, if § '<§,
kn 2, .~ kn 2,7 kn 2,7
< ~
Zj=1ErN((an)5)\ Zj=1ErN((xnj)6')+zj=1f6'< "xnj" <6rN((an))dP'

but the second sum at the right hand side is bounded above by
k
2_.'n g
§ Zj=1P{Han|

Gaussian p.m.). Therefore

|>8§'}> 0 as n+»x(note that L(Snj) converges also to a

kn 2,3 kn 2
lim suPn+ij= ErN((an)6)< lim supn*mz

((X_.) ..,

5=15n {¥py) 50

)

. 2, < 2, ~
and since rN((an)6)> rN((Xnj 6')' we conclude that
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k

lim lim sup .”
-00

2 ~ .
v = -
N j=1ErN(("nj)5) 0 for every §>0. So, condi

tion (iii), 4.3 follows from (4.10).

The last result is essentially due to Varadhan (1962)
(Parthasarathy (1967) Theorem VI.6.3). The only difference is
that one of his conditions (condition (4) in Parthasarathy VI.

6.3) does not appear in our version.

Among other consequences to Theorem 4.2 that can be easily
derived we have the Lévy-Khinchin representation of infinitely
divisible laws in Hilbert space and results on convergence of in
finitely divisible laws (Varadhan (1962)). We will not pﬁrsue

this subject.

Finally we just indicate briefly how to prove a result on

approximation of L(Sn) by cPois(ZjL(an)) (up to centerings).

The same Lindeberg type pfoof of Theorem 3.2 yields:

4.5. Theorem. Let {Xi}z-1 be as in Theorem 3.2. Then

N n
a;[L(s),Pois(Z;_,L(X ))]<KC tra

for some universal constant K>0.

This theorem together with Theorem 3.4 leads to an estimate
of the type of Theorem 4.1 for d3[L(S—a6), Pois ZjL(xj'aja)] where
a.=r.a, and a. . =EX... Then, the type of arguments already expo-

§ 3738 3§ 736 ! yp g y exp
sed in this paper give the following theorem, whichis one of the

main results in Varadhan (1962) (or Parthasarathy (1967), chap-

ter VI).
kn
4.5. Theorem. Let {X .} be an infinitesimal array, S_=I. .X
nj k n j=1"nj
n .
> = = . -
and for &6>0, anjé Exnjd and as Ej=1Exnj6 Then {L(Sn)} is rela

tively shift compact if an only if
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k )
) n _ . . . .
{(P01st=1L(an aan)) 6a } is, and in this case
nd :

k

), 1>c>is,zj‘_1 L(X .-

lim d3[L(Sn-a 1 nj anjé)]= 0.

n-o

né
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