ON SOME FUNCTIONAL EQUATIONS FROM ADDITIVE AND NONADDITIVE MEASURES - III

P1. Kannappan*

In this series, this paper is devoted to the study of two related functional equations primarily connected with weighted entropy and weighted entropy of degree β (which are weighted additive and weighted β additive respectively) which include as special cases Shannon's entropy, inaccuracy (additive measures) and the entropy of degree β (nonadditive) respectively. These functional equations which arise mainly from the representation and these 'additive' properties are solved for fixed m and n (positive integers) by simple and direct methods.

Introduction

Let (Ω, A, P) be a probability space. Consider an experiment E, that is, a finite measurable partition (of events) $\{E_1, \ldots, E_n\}$ (n>1) of Ω with the objective probabilities of these events $g\underline{i}$ ven by $P(E_i) = p_i \ge 0$ for every E_i such that $P = (p_i) \in \Delta_n$ where $\Delta_n = \{P = (p_i, \ldots, p_n) : p_i \ge 0, \sum\limits_{i=1}^{n} p_i = 1\}$. The different events E_i depend upon the experimenter's goal or upon some qualitative characteristic of the physical system taken into consideration;

^{*} Work partially supported by a NSERC of Canada grant.

that is, they have different weights (or utilities). In order to distinguish the events E_1, \ldots, E_n with respect to a given qualitative characteristic of the physical system taken into account, ascribe to each event E_i a non-negative number $W(E_i) = W_i$ (≥ 0) directly proportional to its importance and call W_i the weight (utility) of the event E_i .

Then the weighted entropy of the experiment E is defined as [3]:

(1)
$$H_n(P;W) = H_n(P_1,...,P_n;W_1,...,W_n) = -\sum_{i=1}^n w_i P_i \log P_i$$

and the weighted entropy of degree β (\neq 1) is defined as [2]:

(2)
$$H_{n}(P;W) = (2^{1-\beta}-1)^{-1} \sum_{i=1}^{n} w_{i}(p_{i}^{\beta}-p_{i})$$

where $P \in \Delta_n$, $W = (w_1, \dots, w_n)$ with $w_i \ge 0$.

It is easy to see that i) $H_n^{\beta} \to H_n$ as $\beta \to 1$; ii) If $w_i = w$ for all i, then (1) gives the Shannon entropy $H_n(P) = c\Sigma p_i \log p_i$ and (2) gives the entropy of degree β [4], $H_n^{\beta}(P) = c(\Sigma p_i^{\beta} - 1)$;

iii) If $w_i = \frac{q_i}{p_i}$ (under suitable conditions) with $\Sigma q_i = 1$, (1) becomes the inaccuracy [9], $I_n(P\|Q) = -\Sigma p_i \log q_i$.

There are so many algebraic properties which are satisfied by them [1,2,3,4,9]. In particular, the weighted entropies can be represented in the form of sums as

$$H_n(P;W) = \sum_i f(p_i,w_i),$$

and

$$H_n^{\beta}(P;W) = \sum_{i} g(p_i, w_i)$$

and possess the following properties:

weighted additivity

$$H_{mn}(P*Q;W*V) = \sum_{j=1}^{m} q_{j}v_{j} \cdot H_{n}(P;W) + \sum_{i=1}^{n} p_{i}w_{i} \cdot H_{m}(Q;V)$$

weighted β -additivity

$$H_{mn}^{\beta}(P*Q;W*V) = \sum_{i} q_{i}v_{j} \cdot H_{n}^{\beta}(P;W) + \sum_{i} p_{i}^{\beta}w_{i} \cdot H_{m}^{\beta}(Q;V)$$

respectively, where $Q \in \Delta_m$, $P*Q = (p_i q_j)$, $V = (v_1, \dots, v_m)$, $W*V = (w_i v_i)$, $\beta (\neq 1)$ is real.

The above two properties lead to the study of the functional equations

(3)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(p_{i}q_{j}, w_{i}v_{j}) = \sum_{j} q_{j}v_{j} \cdot \sum_{i} f(p_{i}, w_{i}) + \sum_{i} p_{i}w_{i} \cdot \sum_{j} f(q_{j}, w_{j})$$

and

(4)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} g(p_{i}q_{j}, w_{i}v_{j}) = \sum q_{j}v_{j} \cdot \sum_{i} g(p_{i}, w_{i}) + \sum_{i} p_{i}^{\beta}w_{i} \cdot \sum_{j} g(q_{j}, w_{j}),$$

 $\beta \neq$ 1. So, a characterization of (1) or (2) can be obtained, by determining all the solutions of (3) or (4). In the next section, we solve the functional equation.

(5)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} h(p_{i}q_{j}, u_{i}v_{j}) = \sum_{j} q_{j}v_{j} \cdot \sum_{i} h(p_{i}, u_{i}) + \sum_{i} p_{i}^{\alpha}u_{i} \cdot \sum_{j} h(q_{j}, v_{j}),$$

for all $\alpha \in \mathbb{R}$ (reals), which obviously includes both (3) and (4), where $P = (p_i) \in \Delta_n$, $Q = (q_j) \in \Delta_m$, $U = (u_1, \ldots, u_n)$, $V = (v_1, \ldots, v_m)$ with $u_i, v_j \ge 0$. As a matter of fact, we determine all the solutions of the functional equation (5) holding for some (arbitrary but) fixed pair (m,n) when the function h is Lebesque measurable using simple methods adopted in [6,7].

Weighted Entropies: Solutions of the equation (5)

Let I = [0,1], I₁ = [0,1], R, reals, R⁺, non-negative reals. We follow the convention 0 log 0 = 0, 0^{α} = 0, 1^{α} = 1. In order to solve (5), we make use of the following result in [8]:

Result 1. Let G_{ij} : I × I \rightarrow R (i = 1,2,...,n; j = 1,2,...,m) be measurable in each variable and satisfy the equation

(6)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} G_{ij}(p_{i}, q_{j}) = 0$$

 $(P = (p_i) \in \Delta_n, Q = (q_j) \in \Delta_m)$ holding for some fixed pair m,n (\geq 3). Then G_{ij} are given by

(7)
$$G_{ij}(p,q) = G_{ij}(p,0) - \sum_{k=1}^{m} G_{ik}(p,0) q + G_{ij}(0,q) - \sum_{k=1}^{n} G_{kj}(0,q) p$$

+ $\sum_{k=1}^{n} G_{kj}(0,0) p + \sum_{k=1}^{m} G_{ik}(0,0) q - \sum_{k=1}^{n} G_{kk}(0,0) pq - G_{ij}(0,0)$.

Let h: I \times R $^+$ \to R be measurable in each variable and satisfy the functional equation (5), for a fixed pair m,n (\geqslant 3).

For arbitrary, but fixed $U = (u_i)$, $V = (v_j)$, by defining

(8)
$$G_{ij}(p,q) = h(pq,u_iv_j) - v_jqh(p,u_i) - p^{\alpha}u_ih(q,v_j)$$

for p,q ϵ I, (i = 1,2,...,n; j = 1,2,...,m), (5) can be reduced to (6) with G_{ij} measurable in each variable, so that Result 1, applies and (7) holds.

With $p_1 = 1 = q_1$, $p_i = 0 = q_j$ (i,j ≥ 2), u_i, v_j arbitrary (5) becomes

(9)
$$h(1,u_1v_1) + \sum_{k=2}^{m} h(0,u,v_k) + \sum_{k=2}^{n} \sum_{j=1}^{m} h(0,u_kv_j)$$

= $v_1[h(1,u_1) + \sum_{j=1}^{n} h(0,u_k)] + u_1[h(1,v_1) + \sum_{j=2}^{m} h(0,v_k)]$.

By letting $u_1 = 1 = v_1$ in (9), we get,

$$\sum_{k=2}^{n} \sum_{\ell=2}^{m} h(0,u_{k}v_{\ell}) = h(1,1).$$

Since u_k, v_ℓ are arbitrary, it follows that

$$(10) \qquad (m-1)(n-1)h(0,u) = h(1,1) = c \quad (say)$$

for all $u \in R^+$.

Setting $u_1 = 1$ in (9) and using (9) and (10), we obtain

$$c(1-v_1) = 0$$
, that is, $c = 0$

since \mathbf{v}_1 is an arbitrary non-negative real number. Thus

(11)
$$h(0,u) = 0, \quad \text{for all} \quad u \in R^+.$$

Now, from (8) and (11), we have

$$G_{ij}(p,0) = 0 = G_{ij}(0,q), \text{ for } p,q \in I,$$

that is, from (7), it follows that $G_{ij}(p,q)=0$ for all $p,q\in I$. Thus, from (7) and (8) results,

(12)
$$h(pq,uv) = vqh(p,u) + p^{\alpha}uh(q,v),$$

for all p,q ϵ I, u,v ϵ R⁺.

By interchanging p and q and u and v respectively in (12), we get

(13)
$$h(p,u)(q^{\alpha}-q)v = h(q,v)(p^{\alpha}-p)u.$$

Thus, when $\alpha \neq 1$, from (13) results

(14)
$$h(p,u) = cu(p^{\alpha}-p), u \in R^+, p \in I,$$

where c is an arbitrary constant.

Now, let us consider the case $\alpha =$ 1. With u = 1 = u, (12) becomes

$$h(pq,1) = qh(p,1)+ph(q,1),$$

that is, by the measurability of h and by (11), we have

(15)
$$h(p,1) = ap log p, for p \in I$$
,

where a is an arbitrary constant.

From (15) and (12) with v = 1, we obtain

$$h(pq,u) = qh(p,u)+apqu log q$$

$$also = ph(q,u)+apqu log p,$$

that is,

$$\frac{h(p,u)-apu \log p}{p} = \frac{h(q,u)-aqu \log q}{q}$$

independent of p and q and
depends only on u
= g(u) (say), for p,q & I,,

and u & R . Hence,

(16)
$$h(p,u) = apu log p + pg(u), p,q \in I_1, u \in R^+,$$

where g is measurable.

Use (12) and (16) to get

(17)
$$g(uv) = ug(v) + vg(u), u, v \ge 0.$$

Since g is measurable, from (17) results

(18)
$$g(u) = bu \log u, \quad u > 0,$$

where b is an arbitrary constant.

Setting $u_i = 0 = v_i$ in (5), we have

$$\sum_{i=1}^{n} \sum_{j=1}^{m} h(p_{i}q_{j},0) = 0,$$

that is, by [5],

(19)
$$h(p,q) = a_1 p + a_2, \quad \text{for } p \in I$$

with $a_1 + mna_2 = 0$.

Since h(0,0) = 0 by (1), we see that $a_2 = 0 = a_1$, so that (18) holds for u = 0 also. Hence, from (16) and (19), we have

(20)
$$h(p,u) = apu log p + bpu log u$$
, for $p \in I$, $u \in R^+$,

where a and b are arbitrary constants.

Thus, we have proved the following theorem:

Theorem. Let h: I \times R $^+$ \rightarrow R be measurable in each variable and satisfy the functional equation (5) for some fixed pair m,n \geqslant 3. Then h is given either by (14) when $\alpha \neq$ 1 or by (20) when $\alpha = 1$.

Remark. Unfortunately, because of the occurrence of the weights in the right side of the equation (5), the solutions are not dependent on m and n.

Further, for u = 1 or constant, (14) reduces to a result proved in [5], connected with the entropy of degree β .

References

- [1] N.L. AGGARWAL and C.F. PICARD, "Functional equations and information measures with preference", Kybernetika, 14, 1978, 174-181.
- [2] H. EMPTOZ, "Information de type β intégrant un concept d'utilité", C.R. Acad. Sci. Paris 282 A, 1976, 911-914.
- [3] S. GIASU, "Weighted entropy", Reports on Mathematical Physics 2, 1971, 165-179.
- [4] J. HAVRDA and F. CHARVAT, "Quantification method of classification processes", Kybernetika 3, 1967, 30-35.
- [5] PL. KANNAPPAN, "On a generalization of sum from functional equation I" (to appear).
- [6] PL. KANNAPPAN, "On some functional equations from additive and nonadditive measures I" (to appear).
- [7] PL. KANNAPPAN, "On some functional equations from additive and nonadditive measures II" (to appear).
- [8] PL. KANNAPPAN, "On a generalization of sum from functional equation III (submitted).
- [9] D.F. KERRIDGE, "Inaccuracy and inference", J. Roy. Statist. Soc. Ser. B 23, 1961, 184-194.

Department of Pure Mathematics University of Waterloo Waterloo, Ontario Canada, N2L 3G1.