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RANDOM LINES AND TESSELLATIONS IN A PLANE

L. A. Santald

ABSTRACT

Our purpose is the study of the so called "mixed random
mosaics", formed by superposition of a given tessella-
tion, mot random, of congruent convex polygons and a ho-
mogeneous Poisson line process. We give the'mean area,
the mean perimeter and the mean number of sides of the
polygons into which such mosaics divide the plane.

1. Introduction

Lines in the euclidean plane E_ are parametrized by (p,0),

the polar coordinates of the foot oi the perpendicular from the
origin to the line. The density element for lines, invariant un-
der euclidean motions, is dpAdA. The measure of the set of lines
intersecting a convex set K is equal to the length L of the boun
dary 3K. For a line segment of length b this measure is equal to
2b, since the segment must be considered as a flattened convex

set.

The standard homogeneous Poisson line process of intensity )\
is that line process corresponding to a homogeneous Poisson point
process of constant intensity A in the strip {(p,§);0<p<w, o<oe<2t}k
The fundamental property of this line process is that the number
m of lines of the process hitting a convex set K has a Poisson dis

tribution of intensity AL. Moreover, each line of the plane inter-
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sects the lines of the process in a linear homogeneous point pro-
cess of Poisson of intensity 2 A. This property also holds for the
intersection of a line of the process with the other lines of the
process. For all these questions see, for instance Kendall-Moran

[9], solomon [18], or [17].

A Poisson system of random lines of intensity A partitiones
the plane into a random tessellation (or mosaic) of siﬁple con-
vex polygons with almost surely each vertex being a vertex of
four polygons of the tessellation. These random polygons were
first studied by Goudsmidt [6] who obtained the mean number of
sides, the mean perimeter, the mean area and the mean area squa-
red of the polygons. More general results were obtained later by
Miles [10], [12] and Richards [15]. Interesting and fundamental
questions referring to ergodicity and edge effects have been ca-
refully treated by Cowan [ 3], [ 4] and ambartzumian [ 1], [2] (see
also Miles [11], [13]).

Our purpose is the study of mixed random tesselations of the
plane, originated when a Poisson system of random lines is super-
posed on a preexistent tessellation, not random, formed by compact,
convex, congruent polygons which cover the whole plane without over
lapping. For instance, figs.1, 2 represent the case of tessellations

of congruent pentagons crossed by a random Poisson system of lines.
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We obtain the mean are (5.3), the mean number of sides (5.4)
and the mean perimeter (5.5) of the resulting polygons. It seems
to be an interesting open question to find the second order mo-

ments of these characteristics for that kind of mixed mosaics.

2. Tessellations of compact, congruent, convex polygons.

We use the term tessellation for any arrangement of bounded,
convex, congruent polygons (called the fundamental polygons or
cells of the tessellation) fitting together so as to cover the
whole plane without overlapping. Examples of tessellations and
their relations to group theory can be seen in the books of Coxe

ter [5], Guggenheimer [8] or in Griinbaum-Shephard [7].

Assume a given tessellation T whose fundamental polygons ha
ve area f, perimeter u and number of sides n (equal to the number
of vertices). It is known that the only possible values of n are
3,4,5,6. Consider a circle Q(R) of radius R (which we will assume

\sufficiently large) and let Vv(3Q) be the number of fundamental po-
lygons ‘which are intersected by the boundary 9Q and Vv (Q) the num-

ber of fundamental polygons within Q. Then we have

(2.1) 1im YO _
R v (Q)

For a proof, notice that if D denotes the diameter of a fun-

damental polygon, we have (for large R),

< n®+)? - m(r-0)? _ 4mRD
£ £

v(3Q) , V(@) f > 7(r-D)>

and (2.1) follows.

This relation (2.1) or the weaker one v(aQ)/nR2+ 0(as R~ ™)
makes possible to eliminate the "edge effects" in some passage to
the limit which we shall perform later. It is worthy to note that

in the hyperbolic plane these "edge effects" are not negligible,
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so that the passage from a finite region to the whole plane in

some tessellation problems, must be treated with care (see [16]).

Let now n, denote the number of vertices of each fundamental
polygon which are surrounded by k faces of the tessellation (k=3).
We shall need the following identities

(2.2) In_=n, Ing (-9 =1

where the sums are extended over all values of k. The first equa-
lity is nothing else than the definition of n, and the second is
an easy consequence of the Euler relation vertices-sides+faces=1,
applied to the bounded planar graph formed by the edges of the

tessellation within Q for R,

3. Some results of stochastic geometry

Consider a circle Q=Q(R) of radius R. The random variable
m=m(Q)= number of lines of a given homogeneous Poisson line pro-
cess of intensity A-hitting Q has a Poisson 27R)A~distribution
(see Miles [10] or santald [17]; notice that in [17] we use A/2

instead of the present )).

Therefore we have the following moments

E(m) = 27RA , E(m2) = 2mRA + (27R))>
(3.1) E(m3) = 2TMRA + 3(21rRA)2 + (2nRA)3
E(m®) = 2rrRA + 7(2mRM) 2 + 6(2rRM)? + (2mr0)?

Moreover, we know that for m random lines (in the sense of
geometrical probability) which meet a circle Q, the mean number
of intersection points n

b which are inside Q is [ 17, p, 53]

(3.2) E(n,|m) = m(m-1)/4
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and thus, applying (3.1)

(3.3) E(n,) = EE(n|m) = n?r%)\2.
We also know that [17, p. 54]
2 1 m 3 m 16 m
(3.4 Enplm =5 ) + 3 () + ;3
and thus
3
(3.5) E(ni) = 1222 4 nirh% 4 gf TROAS .

From (3.3) and (3.5) we have, as R %,

n n
" (3.6) lim E(——%) = m2 , 1im E(——%)2= n2?

TR TR

&
so that, for any realization of the process, we have, almost sure,

n
(3.7) lim —2 = mA2.

R+ TR
Where nP is the number of intersections of the lines of the

Poisson process within Q.

L. Tessellations and Random Lines.

Consider a fixed tessellation T with the characteristics
specified in n.2, and a Poisson line process P of intensity A
superposed to it. The tessellation T and the line process P de-
fine on the plane a mixed random mosaic M. Consider a circle
Q(R) of large radius R. Let n, denote the number of intersection
points of the lines of the process within Q, nn. the number of
vertices of the tessellation within Q and non the number of in-
tersections of lines of the process with sides of the tessella-
tion within Q. From a classical Crofton's formula of integral

geometry ([17], p. 31 ) we know that E(nPTlm) = mL/TR,where L
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is the total length of the sides of the tessellation within Q and
m denotes the number of lines of the process intersecting Q. Ne-
glecting edge effects, for R sufficiently large, we can take ﬂRz/f

as the number of fundamental polygons intersected by Q and thus

we have
2 n
_ UuRm _ MR ul PT, _ ul
(4.1) E(nPT|m) = S ' E(n,,) = —5 ’ E(;;E) =5 -

For nT and R large, with the notations of n ., 2, we have

“r o _ 1 ¥ %k 2
2 £ k
TR k

(4.2)

Thus, using (3.3), we have

n_n n
(4.3) v E(—55)=F 1 —k’i A2,
(mR™) k

The second moments involving n, and n other than E(ng),

PT'
are not easy to calculate exactly. However, we shall give some

ﬁpper bounds.

Noting that Nomo for each lide of the process P and large R
is less than the number of fundamental poligons within a rectan-
gle of sides 2R and 2D (where D means the diameter of the funda-

mental polygons), we have nPT<(4RD/f)m and thus, using (3.1)

Pop 2 32p2

2) < 2
TR TE

(4.4) E ( (% + 2m%)

n_/ mr%) %)<

On the other hand we have n, < m(m-1) /2 so that.E(nPT b

20m? (m-1) /T°R°f and using (3.1)

"pr’p , < 16D (Ai
(1rR2)2 £ R

(4.5) E ( + oy .

The total number of vertices v of the mixed random mosaic M
generated by the union of T andpwhich are inside ¢, isv =%; n_ +n_.

. PT T
Therefore, using (3.3), (3.5), (4.1), (4.2), (4.3), (4.4), and
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(4.5) we have

n
(4.6) E (~l2—) =n)\2+9—>‘—+% y X
TR H k k
.2 2 3 2
(4.7) E (—— <A s ﬂ2X4+ﬂL+32D2(2‘"+2n)\2)
(TR®) R 3R £
2
n 2
+ 13- X(—E) 320 A, ™)
£ . K £ R
2122 Dy o2u ny
p2m oy Tey 2wy Tk
£ Lk £ L x

and, as R>», we have

. ‘ 3 2mu, 3
lim var (v2/(nR2)2) < 2D “)A-H642 - —E)Az_
R->c0 £ £ £ £
5. Mean values of the area, perimeter and number of
sides of the cells of a mixed random mosaic.

Consider the mixed ‘random mosaic M of n.4. composed of the
tessellation T of congruent polygons and a homogeneous Poisson
line process P of intensity A. With the notations of the fore-
going paragraph we have that tha number of edges e of M within
the circle Q of radius R is

2
1 TR n
= + = —
(5.1) e 2nP + 2nPT 5 p
where n = an is the number of sides of the fundamental polygons

of the tessellation T. This equality disregards some "edge effects"
on the boundary of Q which may be neglected for R sufficiently lar

ge. Therefore, as R+», we have
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(5.2) lim E(e/TR%) = 2mA% + 2uN/f + n/2f.

R>

By Euler's relation, we have

2
n, + nPT + (MR/E) E (nk/k) - e + c¢c =1
where c denotes the number of cells of M within Q. Taking expec-

tation and using (2.2) we deduce

lim E(c/mR?) = 7A2 + (u/f)A + 1/f.
R0
Thus, as R+®, we have almost surely lim(ﬂRz/c) = (ﬁk2+uk/f
+ 1/f)_1 and the mean area of the cells of the mixed mosaic re-
sults

(5.3) E(A) = £ i

nfxz + ud + 1

For the mean number of sides of each region, we have

2
(5.4) E(N) = lim (2e/c) = ATEA” + dul + n

R>®© ﬂsz + ud o+ 1

Note that for n=4 (tessellation of gquadrilaterals) is E(N)=4,

independently of A.

In order to find the mean perimeter S we note that the total
length of all sides of T within Q is (ﬂRz/Zf)u and the mean value
of the total length of the chords that the lines of the process P
intercept in Q is HZRZA ([i7], p. 30 ). Therefore the mean value
of the total length of the sides of the mosaic within Q is
ﬂRz(u/2f+ﬂA) and the mean perimeter (as R*®) is given by

(5.5) E(s) = 2TEA +uw

nsz +ul 41

Note that for A=0 the mixed mosaic reduces to the tessellation
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T (not random) and for f-x it reduces to the well known random

division of the plane by a Poisson line process [10].

6. Example

Considere the tessellation of parallelograms of the fig.3.

We have

f = ab sino , u = 2(a+b), n=n4 = 4

and therefore

E(a) = ag sin o ‘, E(N) = 4
mab sin aA” + 2(a+b)X + 1
E(S) = 2mrab sing A+ 2(a+b) .

7ab sin uxz + 2(a+b)) + 1

If a»>o» we have the plane divided by parallel lines at dis-

tance A=b sin o. Thus, a homogeneous Poisson line process of in
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tensity )\ determines on the plane on which are ruled parallel 1i

nes at a distance A apart, a mixed random mosaic of characteris-

tics
E(R) = —2— , E()= 4 , E(5) = 2TAA* 2
TAA +2) TANS + 2)
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