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ON THE STABILITY OF MULTIPOLAR ELASTIC MATERIALS
by

N. S. Wilkes

1. Introduction.

In 1964, Green and Rivlin [ 1,2] proposed two non-standard
theories of continua. Both papers concerned non-simple material:
the first considered deformation gradients of higher order than
the first as dependent variables; and the second, which generals
sed the first, treated materials whose kinematic state was not
completely determined by the deformation function, but was also
dependent upon some multipolar deformation functions. In both

theories the existence of higher order stresses is fundamental.

In this paper, we present some prliminary results for sta-
bility and instability in these theories in the special but im-

portant case of elastic materials.

In section 2, we describe the two theories of Green and
Rivlin and we obtain in a form more suitable for our purpose the
equations of motions for the respective elastic mqterials. In
section 3, we consider boundary conditions for the material for

which there exists a conservation of energy.

In section 4 and 5, we discuss stability and instability
respectively, and show that conservation of energy is an impor-
tant factor. Thus by employing the energy as a Liapounov func-
tion, we obtain results concerning stability of the multipolar
continuum in a similar manner to classical non-polar elastici-

ty (c.f. Knops and wWilkes [5]). Instability is then investiga-
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tw by means of the concawity technique developed by Knops, Levi
ne and Payne [3], and applied by them to non-linear classical

elasticity.

2. Thermodynamics ana the eguations of motion.

We consider a body B whose particles X are identified with
their positions XA with respect to rectangular Cartesian co-or-
dinates in some reference configuration k. We suppose these par

ticles are deformed to positions xi at time t.

Following Green and Rivlin [2], we further suppose that
the kinematic state of the body is not fully determined by the
monopolar deformation but is also dependent upon multipolar de
formations X{Al.-.A (1< &< V) which are functions of material
position and time.

We also adopt the expression foxr the kinetic energy per

unit mass used by Green and Riwlin; thus

1 1YY
K(t) = - %x,x.+ — I L, Xk, Y bs (2.1)
2 i 2 a=1 =1 Aj;...A «ee :B1...B i .o
X o B 1A, al-\l A(! 1 B:LB], BB
wh Y i : . c s
where Ay...A :Bj...B is a tensor function of material position
a B
satisfying

Y =Y 12.2)
A...A :B;...B Bj...B,:A;...A
1 o 1 B 1 B 1 a
At this point we make no assumptions concerning the definiteness
of the kinetic energy but later in our discussion of stability we

shall assume it to be non-negative.

The two major postulates of Green and Rivlin's theory are
the balance of energy equation and the entropy production ine-
quality, the first and second laws of thermodynamics. In the abs-

cence of heat supply, body force and multipolar body forces, the
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laws can be expressed in the following forms,

\Y) Vv
a 1.1 . .
= - = Y . av
at {J{po‘” 2 Poi™iT 7 P T T Timi. i TAr A B BB )
Y
=f {p.kx, + I_p, %, - h} da (2.3)
5p i i =1 lAl"'Aa lAl"'Aa

and

a_ > _ h -

& [ esav=-f Zoaa, (2.4)

P 9P

where P is an arbitrary material volume of the body B in the re-

ference consiguration K and 9P is its boundary. In thése equations
po is the density of the reference configuration,FU is the inter-
nal energy,. Py is the monopolar stress vector per unit area of the

reference configuration, (1< a < y) are multipolar stress

Pia;...a
vectors per unit of the reference configuration, and h is the heat
flux-per unit area of the reference configuration, S is the speci-

fic entropy and T the absolute temperature.

In this paper we consider only multipolar continua which are
also elastic. We thus assume as our constitutive postulate that

the free energy [/ defined by
y = U - TS, (2.5)

the entropy, the heat flux, the monopolar stress and the multipo-
lar stresses are dependent upon the temperature T, the deformation

gradient x,

1A’ the multipolar deformations x and their
’

iB;j...B
! B

gradients x, for 1 <B< v. Additionally we assume that
lBI...BB,A

the heat flux can depend upon the temperature gradient T'A' and
&
that the stress vectors and the heat flux can depend upon the

unit outward normal NA to the surface 3P. Thus

v = W(xi,A’ xiBl...BB' xiBl...BB,A' ™) (2.6)

S = S(x ’ .
¢ *iB,...B_,a’ T (2.7)

B

. X,
i,A" 7iB,...B

B
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h = h(xi ITrTrA: NA) (2.8)

’

X X
A’ 7iB;...B iB;...B,,A
’ 1 B 1 B:

T, N_) (2.9)

= . X.
PL=Py (X; ar xlBl...BB, iBi...Bg A, A
r

(x /TN for 1 <a<v.@.10)

pkAl...Aa=pkA1...Aa i,A'xiBl...BB'xin..B,A

B

For thesé constitutive restrictions it can be shown in an
analogous way to Green and Rivlin [2] that there exist monopolar

vand m respectively,

and multipelar stress tensors, an BkC1~--CY

and a heat flux vector QB which satisfy

T = m_ . (x T), (2.11)

Bk Bk ‘*i,A’ *iB;...B xiBl...BB,A'

B'

= <<
TBKCy...C._ "BkCy...c ®i,a’®iB,...B,"%iB,...B,,a ) for 1YV, (2.12)
Y- Y B B
Qp =% (*; ar *ip, ...B * *iB,...B_,a’7'T'a (2.13)
B8 B
and that the following relations hold:
h = QANA' (2.14)
b= e N (2.15)
- <g< '
Pia,...a TBia,...a N for 1 Saswv (2.16)
a a
- -
S T (2.17)
9
To.o=p W (2.18)
A1l o sxi,A
m o oV < B
RiB1...Bg 7 o N for 1< BV (2.19)
iB;...B,,A
! B
i _ "
Ai,A Xy (2.20)
L) M -
™ =
, o + p LIy : X.
AiB;. ..BB,A o 9x o o =1 A""Aa'Bl"'BS iA;...A

for 1<B<v (2.21)
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and

QAT,A< u. (2.22)
In parallel with the general theory of multipolar elastic

continua outlined above, we shall also consider a higher order

gradient theory of elasticity in which the multipolar deforma-

tions are defined by

*iA,...a T *i,Aay...A for 1<a<v. (2.23)
o o

Our constitutive assumptions are now of the form
p = w(xi’A, xi'A1°'-Aa' T) etc., (2.24)

and for these materials we find, by working analogously to Green

and Rivlin [1], that in place of equations (2.18) - (2.21), we
have
8!! \) ..
+ = z
"ai” "Bia,B” fo ox * 0o g21 Ya:B,...B_ *i,B,...B (2.25)
i,a B 8
™ + = Y +
(AiB)...B,) TciaB;...B_,C Po,
v & 1,8B;...B,
+ Y
Ps Y§1 AB,...BB:C1...CY xi,cl...cY for 1<B<v - 2, (2.26)

aw \YJ v
TT(Ailal...BB)“’oax * Pyl Yap...B :c...c Fic,...C
1,88 ...Bg B Y Y

for g= v - 1, (2.27)

where q, . is the completely symmetric part of the stress
(aiB,...B )

tensor ﬂAiBl BB which by def inition is already symmetric with

respect to B;,...,B Otherwis~ the theory remains unchanged.

8
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3. Boundary conditions and conservation of energy.

For simplicity, from here on, we shall consider only iso-
thermal processes of the body, so that we shall be studying a

purely mechanical theory of multipolar elastic continua.

It follows from equations (2.18) - (2.21) that the time
derivative of the total mechanical energy E(t) of the motion,

defined by

B +plav

1 . . -
E(t) =f p [ x.%, + X, X,
««.A TiB;...
B o' 2 iA; o 1Bl 8

1 =1 “ea :B;...B
B= A, AsB 3

(3.1)
is given by

d s -

at B = { p;*;dn + ]3 g&1 Pip ...B *ip,...B, 3.2)
B B B B :

where the free energy and all the stress tensors are subject to

constitutive equations of the form

Vo= owxy xiBl.,..BB' xiBl...BB,A)" (3.3)

As the right hand side of (3.2) is comprised only of an integral
over the boundary of the body, by choosing appropriate boundary

conditions for the motion of the body we can make

e -
3T E(t) = o, (3.4)
so that the energy E(t) of the body is constant (=E(0)) for all
time.

The boundary conditions that give rise to a constant energy

include those of the form

X, = 0 on 9B, , p;, = 0 on 9B , (3.5)

0 ondB, @), p =0 on 38,9, 1<a<y, (3.6

X, =
iA;...A
o
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where 3B, and 3B, (G'), 1 <asv,

are of positive measure if non-
empty, and

8B1U 8B2=BBI BBIOBBZ=¢, (3.7)

B, @1 U s, @) a3 ,ee, @) N ) =g, 1<a< . (3.8)

Further, if 3B.,= ¢,

we shall exclude rigid body translations by
assuming

f (x, - X,)dv = 0.
1 1

(3.9)
B
For the higher order gradient theory of elasticity, it can
be shown in a similar manner to the above using (2.25) - (2.27)
that the total mechanical energy E(t), defined by
1 Yy
- LI .
E(t) }; ﬁb[2 X kg a£1 B§1 b4 b3

Ay...A :B1...Bg i,Al...Aaxi,&...B;w]d
= E(0) (3.10)

for boundary conditions of the form

X, = 0 on 3B1., p, = 0 on 3B,

= (a) _ (OI.) < <
xi,Al...A = 0 on 3B, ’ PiAl...A = 0 on 9B, ' ,1S0 X VvV, (3.12)
a o
(o) (a) . o
where 3B,, 3B,, 3B, , 08B, satisfy the same conditions as abo-
ve.

4. Stability.

In this section, we shall discuss the Liapounov stability of
the null solution with respect to the reference configuration for
the multipolar elastic continuum, the equations of motion for
which we have discussed in the two previous sections.
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~We shall denote monopolar and multipolar displacements by

ui and uiAl...A respectively, where
o
u, = x, - X, (4.1)
i i i
= - X. : 4.2
Yia ...a *ia,...a ” Fiag...a (4.2)
o (o]

i . . i rence confi-
and xiAI---Aa is the value of xlAl"'Aa in the referen
guration.

The energy functional can now be written as
) 1 1 v Y .
= —a.a.4+— I z a, a, +ylav
E(t) = {3°°[2“i“i 2 a=1 B=1 YAI...Aa:Bl...BB 1A1...Aa13h..BBw]

(4.3)

where the free energy y is determined by the constitutive equa-

tion

= L, . . 4.4
b= vuy ar Vip, .. .8 '“131...BB,A) (4.4)

B

We define stability of the null solution to equations
(2.18) - (2.21) in the normal way as follows: given e >0, there

exist positive definite measure po and p with

(o] o .
p =p (ui(O), ui(O). u,

1A1...Aa(°)'“iA (0)),(4.5)

...A
1 o

(t)’ﬁiA1...A (t)i.,(4.6)

p(t)=p(ui(t), &i(t), u . o

iA;...A
and scalar §>0 such that p°<6 implies p(t)<e for all t = 0.

We shall prove stability for certain measures p° and P by use
of the energy functional which, being non-increasing, acts as

a natural Liapounov function for the problem.

If we take as initial measure

0% = SUPla a4+

XEB 1 i o . : 2 (4.7)

u, u,
1 1A1...Aa 1A1...Aa

<
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or, more weakly,

v

o o .

= U 5 Z u, + dv 4.8

P [ e, Lag8; + Ly 90 ..a %4a,...a *IV, (4.8)
: o a

then provided'the inertia tensor is positive definite and sa-

tisfies a bound of the form

< 4.9
l?Al.,.A :B; ...B I M ( )
a
for all a,B such that 1 <a,B < Vv, and provided the free ener-
gy ¥ is positive definite, then p° is positive definite and

we have
E(t) = E(0) < A p° ~ (4.10)

for some positive constant A.

Let us next suppose there exist poéitive constants C oxr D
such that either of the following restrictions on the free ener-

gy Y is satisfied

\Y

é Po wdv;?C{é Lus 2 95,a% ok Yiar...a ¢ uiAl...Au,C] avl} (4.11)

v

z .
a%i,a% et uiAr...AduiAl.,_A] av} (4.12)

or f p vav=p{f [u,
B ° é * o

for all u, C. Both these inequalities ex-

i,a’” %ia ...a "Yia;...A f
o o .
press the positive definiteness of the free energy, and we note
that the first term on the right hand side of.each inequality is
the term normally used in classical monopolar elasticity. By
Poincaré&'s inequality, it is now easy to show that the positive

measure p(t) defined by

v .

p(t) = é [uu, + a£1 uiAI---Aa uiA1---A£ av (4.13)
satisfies

p(t) < B | Py ¥ AV < B E(t) (4.14)

B
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for some positive constant B.

It follows that if po is small, then pP(t) is small for all
positive time and we have stability with respect to the measures

p and po.

Further stability theorems can be proved with respect to
different choices of measures but inequalities of the type (4.11),
(4.12) will usually be needed. Stronger theorems can be proved in
the special case in which the multipolar displacements are gra-

dients of the monopolar displacement, i.e.

u, = u, . (4.15)
iA; ”'Aa 1,A1“.Aa

We illustrate this by considering a dipolar elastic solid, that
is one in which the free energy depends only upon the first and

second displacement gradients, thus

Y = lP(ui A’ 9y AB)' (4.16)

We investigate the stability of the null solution of the equations

(2.25) - (2.27) subject to the following boundary conditions
u,= 0 on 9B, , u; 5 = 0 on 03By, (4.17)
m = ] =
xiVk 0 on JB2, TeinNg 0 on 3B, (4.18)

where 3B; and 9Bsare of positive measure, if non~empty, and

9B Y 98B, 9B, 3ByuU 9B,= 3B, (4.19)

]

3By N 3B, =¢ , 3Byn 8B,=¢. (4.20)

Further, if 3B, = ¢, then to eliminate rigid body transla-

tions we take

it
(@)

J u. av (4.21)
B

1
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and if 9Bs=¢ , to eliminate rigid body rotations we take

f u, . av = o. (4.22)
B i,B

We have, from Sobolev's embedding theorem, that in ®RS3, w?2’?

is embedded in C° and thus we have an inequality of the form
sup < av + avi(a.
XeB{uiui} < Ai{fB u,u,av +fB Ui oa%,a v IB Ui aBY%i,aB v}(4.2

for some positive constant A;. We can alsc use Poincaré's inequa-
lity twice to show that there ‘exists positive constants A, and
As such that

fBuiui av<a, | av<a, J av. (4.24)

. u, u,
B ui,Au:L,A B i,AB i,AB
It follows that we have an inequality of the form

SUP{uiui} < Ay fBu_

u, dav (4.25)
i,AB i,AB
§€B

for some positive constant Ay.

Using inequality (4.10) and the conservation of energy it
follows that, provided that free energy satisfies an inequality

of the form

=
jB o, ¥ av > as ]B U oap%i,ap 9V (4.26)

for some positive constant A5, we have established stability with

respect to the uniform norms p and po defined by

_ sup Sup,. =
(t) XEB{uiui} + XEB{uiui} (4.27)

O _ sup,. . . . L. o
p = xaB{ui(O)ui(O) + 4y a(008; J(0) + “i,AB‘O)“i,AB(°’+‘“-(4-2

It should be remarked that we are still assuming that

YAl---Aq=B1---BB is positive definite and that it satisfies a

bdund of the form (4.9).
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A stability analysis based upon a uniform norm of the type
(4.27) fails in classical elasticity theory because of the so-
called 'focussing effect'. This effect is ruled out in the di-
polar solid because of the dependence of the free energy upon
the second displacement gradients. Koiter [ 6], in a discussion
of the energy criterion for stability of monopolar elastic bo-
dies, has previously considered the effect of introducing second
displacement gradients into the free energy functional, but he
studied only a special sub-case of the class of materiéls consi-

dered-heré.

5. Instability.

We now proceed to find conditions on the free energy y of a
multipolar elastic material for which the body is unstable. We
shall prove instability in the sense of Lagrange, by showing
that certain norms of(the displacements become formally unboun-
ded in finite time for certain prescribed initial displacements
and velocities. In order to do this we modify the concavity techni

que of Knops, Levine and Payne'[3].

We shall examine .the .instability of the null solution to

equations (2.18) - (2.21) subject to boundary conditions of the
form (3.5) - (3.9). Firstly, consider the measure F(t) defined
by A

v \Y]

2
] av+ B+t )

F(t)= [ p [u,u.+ Z I ¥ -
p o i1 a=1 B8=1 Al.nha.Bln.B 8

u, u,
lAl...Aa iBj...B

B
(5.1)

where we are assuming that Y is a positive defi-

A1...A :B,...B
nite form. We note that F(t) can be consideéred to be a modified

Ly-norm of the displacements.

We can compute the first and second time derivatives of F(t)

to obtain
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v v
= v I I v
B(r) =2 IB Pl Uit + a2 g2 YA1...Au:B1...BBuiAl...AauiBl...BB]dV+26(t+to)'

(5.2)

F(r) = 2139 [a;8;+ 2y g% Ya,...a :5,...8 %ia ... Yip .5 1%
a B a B

v
+2f pluu+ L I ¥ . u, u, lav+2g. (5.3)
p © 11 a=1 g=1 Al"'Ad'Bl"'BB lAl"'Ad 1B1...B8
V
Substituting in (5.3) for u and 6 1 YAl...Aq-Bl...Ba 1B1...BB from
the equations of motion (2.18) - (2.21), and using the conservation

of energy equation (3.10), we have

VooV
Flt) = 4(1“)f.po[“iui+uz=1 k1 YA ...A :B,...B "ia,...a YiB,...B lav
B a B ' o B

v
-4(14+20)E(0)+28+4 (1+20) { pY dv—zf el il + 3 —o
B

© Ju, A Yi,a g=1 auiBl...B

v 3

iB1.. .BB,A

uiB1...BB+ gZ1 7a " 1 av, (5.4)

for any positive scalar a.

It then follows, upon using Schwarz's inequality, that

F(E)F(t)- (1+a) F(£) 2> -2 (1420) [ 2E(0) +g] F(t)+4(1+20) [ o Y AV F(t)
B

V v
3 3
-2 p[—"’-lL : lav F(v)
[B o qu’A iat 3 =1 aule---BB 1Bl...B B§1 aulBl...BB A iBl---BB'A
(5.5)

Thus, if for some positive scalar o, the free energy y satisfies

an inequality of the form

2(142) fp Y av> pr;;lL-ul'A-f- 651 Y — Y ...B

B %A iB)...B, B

\)
Y
3—1 r_—- uiBll...B ,A]dv (5.6)
lB]o-o B B
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then

. 2
F(t)F(t) - (1+a)F(t) = -4(1+20)E(0)F (t) (5.7)

and we can use the results of Knops, Levine and Payne [3] to
show that F(t) becomes unbounded in finite time for initial

conditions which satisfy E(0)<O0.

We have thus obtained sufficient conditions for the null
solution to be unstable with respect to the measure F(t), but
we cannot deduce that the body is not stable with respect to

different measures, such as G(t) defined by

2

= y 5.8

G(t) fpo u u, av+ Ble+e ) ( )
B

or F(t) - G(t). In fact we can find restrictions on the free

energy Y, differe;t from (5.6), under which G(t) or
F(t)—G(t)+B(t+to) do become unbounded in finite time for ne-
gative initial energy E(0) by proceeding as follows: from abo
ve we can calculate the first and second derivatives of G(t) to

be

G(t) = 2 ijo u b, dv+2B(t+t ) (5.9)
G(t) = 2]Bpo a8 dv+2[B p, u; B, av+2p (5.10)

and then substituting from the equaticas of motion (2.718)-(2.21)

and the energy balance equation (3.10), we have

. - . . . - a
c(e) 4(”0‘)[3 pouiuidv+2(1+2a)ijoYA1...Aa:B1...BB “iny...n g uiBl...BBV

-4(1+2a)x~:(0)+2s+4(1+2a)fB o v av - 2fp_ ?:-W—— u, L Av. (5.11)

1,
i,A
Hence, it follows from the positive definiteness of Y : ’
A .. .Aa Bl---BB
that if the free energy is subject to the restriction



On the Stability of Multipolar Elastic Materials 93

L. u av (5.12)

i,A
ou, L

201+20) [ oy av  >[p_
B B i,a

for some positive scalar o, then
G(t)E(t)-(1+a)G(t) 2 =-2(1+2¢) 2E(0)+B] G (t) (5.13)

and again from Knops, Levine and Payne [3], it follows that, for
initial conditions for which the initial energy E(0) is negative,

G(t) becomes unbounded in finite time.

Similarly we can show that the null solution is unstable

with respect to the measure H(t) defined by

H(t)=F(t)-G(t)+B(t+t )2 =fp L. T ¥ u, u. av
(e} ‘g o =1 B=1 Al...Aa.Bl...BB 1A1"'Aa 1B1...BB
2
+ B(t+t°) (5.14)
if there exists a positive scalar a such that
f fool 2y 5t
2(1+20)) p_Yav = jp [ T u,
R © B o =1 3“131...3 lBl'..BB
B .
Y
oy
+ g u, ] av (5.15)
B=1 u1131...133,1; le"'BB'A
and provided E(0) can be chosen negative.
Further, in the special case in which
YAJ...A ‘B...B =1 if a=8 A1=B1,...,Aa=Ba, (5.16)
o B :
=0 otherwise,
so that
AV
] av, (5.17)

F(t)= u,+ .
(€) fpo[ul i az=:1 uJ.A1 ...A uiAl .-..A
R a a

it can be similariy shown that the body is unstable with respect

to the measure L(t) defined by
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av, B fixed, (5.18)
B

L(t)

= u u
épo iBl...B iB 1...B

B

provided there exists a positive scalar o such that

3
201420) [ ppav = [p[—H 4 P | E——
IB o fBo[auiB_ iy 1B, ...Bg auiBl"'BB'A 1B1...BB,A]dV
(5.19)

and provided E(0) can be chosen negative.

We note that in order to use the results of Knops, Levine
and Payne to establish unboundedness in finite time of the mea-
sures F(t), G(t), H(t) and L(t) it is not necessary, in fact, to
assume that the initial energy E(0) is negative, but that some
results can be obtained in the cases when E(0)=0 and E(0)>0. We
refer the reader to the paper [3] of Knops, Levine and Payne for

details.

We also note that our instability analysis relies heavily
on inequalities of the form (5.6), (5.12), (5.15) and (5.19).
An interpretation of inequalities of this type with reference
to the existence of potential wells for the free energy function
P is to be given in a forthcoming paper by Knops, Payne and Wil-
kes [4].
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