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ON SUMS OF DEPENDENT UNIFORMLY DISTRIBUTED

*
RANDOM VARIABLES( )

by

C. Alsina and E. Bonet

ABSTRACT

We study and solve several functional equations which
yvield necessary and sufficient conditions for the sum of two
uniformly distributed random variables to be uniformly dis-

tributed.

1. Introduction.

In this paper we solve several functional equations,
involving the so-called sigma operations, on the space of
uniform probability distribution functions. Similar func-
tional equations for other families of operations were stu-

died in a previous paper [1].

ThHe aim of the present work (motivated by some questions
in interval analysis) was to prove that if X and Y are two
random variables which are uniformly distributed on the inter
vals [a,b] and [c,d], respectively, then X + Y is uniformly

distributed on [ a+c,b+d] (resp.,[Min(a+d,b+c), Max(a+d,b+c)]),

(*) AMS Subject Classification: 39A30, 60EO5.
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if and only if ¥Y=2AX for some A>0 (resp., A<0), i.e., if and
only if X and Y ‘are linearly dependeht. We establish this
fact and then consider several other questions in order to
determine the dependénce relationship of two random varia-
bles with uniform distributions when the distribution of

their sum is assumed to be uniform.

2. Preliminaries.

Let A be the set of one-dimensional probability distri-
bution functions, i.e., non-decreasing functions F from
[-w,+] into [0,1], left-continuous on (-®,+%) and such that
F(-®)=0, F(+®)=1. If X is a random variable (r.v.) defined
on a probabiiity space (f,a,P), then its distribution func-
tion Fx(tj=P({weQ| X(w)<t}) is in A.

Definition 2.1. A (two-dimensional) copula is a two-pla

ce function C from [0,1]1x[0,1] into [O,H] satisfying the con

ditions,

(a) C(a,0)=C(0,a)=0, C(a,1)=C(1,a)=a,

(p). Cc(a,c)-C(a,d)-C(b,c)+C(b,d) >0 for a<b, c<d.

It is easy to show-that the functioﬁgfﬁin(a,b), Pro§(§,5)=a.b
and Tm(a,b)=Max(a+b—1,0f are cdpulagé'that a copula is'non-dg
creasing in each place; that Tm<C<M>in, pointwise, for any
copula C; and that for any (a,b), (c,d). in [0,1] x [0,1] and

any copula C,
[c(a,b)~C(c,d) | <|a-c| + |b-d],

whence C satisfies the Lipéchitz condition, and thus is conti

nuous.
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Definition 2.2. If C is a copula then. the sigmaFoperation

OC is the binary operation on A defined by the two-dimensional

Lebesgue-Stieltjes integral via,

o (F.6)(x) = [f ac (F(u),G(v)). (2:1)
c —o<y+v<x

For any copula C,0_ is order-preserving on A and admits

C
as unit element the step function Eo given by,

o , if x<o,
€ (x) = (2.2)
1, if x»o0.

The operation Iprod is convolution. The sigma-operations .arise
naturally in.the study of triangle inequalities for probapilig
tic metric spaces and in the probabilistic extension of the ge
neralized theory of information [8]. The problem of finding
those copulas C for which oc is a semigroup operation has been
completely solved in [3]. Relations between the sigma-opergtiorns
and other binary operations on A have recently been studied in

[ 6] . Furthermore, copulas and sigma operations are closely rela
ted to the study of joint distribution functions and the addi-
tion of dependent random variables [ 9] . Regarding these matters,

we shall need the following results [ o]:

Theorem 2.1. If X,Y are r.v. with distribution functions

FX and FY' respectively, and joint distribution function HXY

then there exists a copula CXY (called a connecting copula of

’

X and Y) such that, for all u,v,

Hyy (u,v) = Cyy (Fx(u);FY(V)). (2.3)

If F_ and i i i ; i .
£ - n FY are continuous then CXY is unique; otherwise LX

is uniquely determined on (Ran FX) x (Ran FY)' In the other

Y
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direction, if FX' FY are in A and C is copula, then the func-

tion H defined by (2.3) is a two-dimensional distribution
function whose margins are Fx and FY'

Corollary 2.1. If X,Y are r.v. as above, then the distri

bution function of X+Y is given by FX+Y=GCXY(FX'FY)'

Theorem 2.2. Each of the r.v. X.¥Y is an increasing func
tions of the other if and only if thei> connecting copula is
Min. If FX,FY are continuous, then X=Y a.e., if and only if
FX=FY and the connecting copula is Min. Moreover if X, Y are
both strictly increasing (or strictly decreasing) functions
on [0,1] (endowed with Lebesgue measure) then their unique

connecting copula is Min.

Theorem 2.3. Let X,Y be r.v. with continuous distribu-
tions Fx’Fy' respectively. Then one of X,Y is a decreasing func
tion of the other a.e., if and only if their connecting copu
la is Tm. Thus X=Y¥=c (a.e., c¢ constant), if and only if
Fx(t)+Fy(c—t)=1 for all t in R and their connecting copula
is Tm. If X is strictly increasing and Y strictly decreasing
on [0,1] (endowed with Lebesgue measure) then their unique

connecting copula is Tm'
3. Sigma operations and uniform distributions.
In the following we will denote the uniform distribu-

tion function on the intervail [x,¥y] by U (or U ), so
Xy XY )

that, for x«y,

0 , if t<x,
t-x .
ny(t) = =x if xg€t<y,
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€
X

We set U
XX

Note that

u
xy

Lemma 3.1.

, where €_(t)
x

(t)

If C is a copula

UO1

€ - €
O(t x), and 0

then,

is given by
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(2.2).

i o € ,€E )= € i :
(i) c ( a’ b) a+b’ for any a,b in R

i i g € = i ith <o
(ii) c ( a,ch) Ua+b,a+c’ for any a,b,c in R with b<c;
(iii) If oc(Uab' Ucd) Uef for some e <f where

then a+c ge £ b+d.

a<b and c<d,

In order to study the behavior of sigma-operations on

uniform distribution functions we begin with the following

basic result.

Theorem 3.1.

u_.) U

ab’ “cd ef’

(i) e+f=a+b+c+d;
(ii) atc<e< Min

(iii)

(b-a)u+(d-c)ve-a~-c oxr

Proof. Suppose O

random variables defined on a common probability space,

uniform distribution functions Ua

Let a<b,

for some e< f,

C (Uab'

c<d and let C be a c¢opula.

then,

(a+d,b+c) < Max.(a+d,b+c) < £ <b+4d;

C(u,v)=Tm(u,v) for any (u,v) such that either

(b-a)u+(d-c)v=f-a-c.

8]

with e<€£.
ef

Ucd)

b Ucd’ respectively.

If

Let X,Y be-

with

By hy-

pothesis, the distribution function of the sum X+Y is the uni

form distribution function Ue

the expectation yields,

e+f
2

E (X+Y)

E (X)

£

a+b

. c+d
3 +

+ E(Y) CE

Consequently the linearly of
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This proves (i). Next, using Theorem 3 of [6] we have

U = o, (U

>
ef c ab’ Ucd)/T (v Ued

T ab’ “cd
m

and TT (Uab'
m

x>Min (a+d,b+c). Therefore, Uef(e)=o implies e Min(a+d,b+c)

Ucd)(x) = Sup ... y Tm(Uab(u), Ucd(v))>0 when

whence, using (i) and Lemma 3.1, (ii) follows.
Next, using (3.1), for any x we have
u_ 0 =S/ acw w, v = ff ac (uv),
u+v < x (b-a)u+ (d-c)v x-a-c

from this and Uef(e)=0 it follows that C(u,v)=O=Tm(u,v) when-
ever (b-a)u+(d-c)v <e-a-c; and Uef(f)=1 implies that the C-mea
sure of the region A={(u,v)6[0,1]21(b-a)u+(d-c)v2>f-a~c; is

zero, so that for any (u,v)€A, the C-measure of the rectangle

with vertices (u,v),(1,v),(u,1),(1,1) must be zero, whence

c(u,v)-c(1,v) - C(u,1) + cCc(1,1) = o,

C(u,v) = u + v - 1 = Tm (u,v).
This proves (iii).

Corollary 3.1. Let ab and c<d. Then OC(U

ab’ “cd
for some k, if and only if k=a+d=b+c and C=Tm.

Theorem 3.1 §Suggests the study of the functional equa-

tions:

(1) 0C (Uab' cd’ Ua+c, b+d,

(1) © (U
a

C cd = UMin(a+d,b+c), Max (a+d, b+c) .

where a,b,c,d are given and C is to be found. The next two
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lemmas show that Min and Tm’ respectively, are solutions;

and Theorem 3.2 shows that they are the only ones.

Lemma 3.2. If a<b and c<d, then GMin(U U _)=U0

ab’ “cd a+c,b+d"

Proof. It is well known [4]-that g admits the repre-

Min

sentation ¢ n(F,G) = (F*+ G™)"™, where, for any H in A, H®

Mi
is the quasi-inverse of H given by H”(t)=sup {le(x)<t}. In

varticular U;b(x)=(b—a)x+a for xe (0,1], from which the result

is immediate.

u ) =

Lemma 3.3. If a<b and c<d, then GT ‘Uab' ca
m

UMin(a+d,b+c),Max(a+d,b+c)'

Proof. Let X and Y be the r.v. on [0,1] (endowed with
Lebesgue measure) defined by X(t) = (b-a)t+a and Y(t)= - (d-c)t+d.

Their distribution functions are Ua U respectively, and by

b’ “edf
Theorem 2.3 their unigue connecting copula is Tm. Thus, by Co-
rollary 2.1, the distribution function of X+Y is OT (Ua 'Ucd)'
’ m

But (X+Y) (t)=(b+c-a-d)t+(a+d), whence the distribution function

b

of X+Y is UMin(a+d,b+c),Max(a+d,b+c)'

Remark. It follows at once from Lemma 3.3 that the opera-

tion On is not continuous, with respect to weak convergence,
m
on A. The sequence {U n n} converges weakly to g , where
-n, o

€ = £ 11 x<» t =
o (X)=0 for a x<®©, bu OTm(U—n,n 'U-n,n) €, fo?: eyery_ n, whereas
o] (¢ ,€ )=€ . The situation is analogous to that for o
T [} o) o
m

and OMin' Continuity or discontinuity of the sigma-operations

+
on the subspace A ={F€A| F(0)=0} is an open gquestion.

Proa

Theorem 3.2. Let a<b, c<d and let C be a copula. Then
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(1) oC(Uab' Ucd)=

p’ Yed)™

ifc=1"T_.
m

Ua+c,b+d if and only if C=Min;

{i1) cC(Ua UMin(a+d,b+c),Max(a+d,b+c) if and only

Proof. Sufficiency follows from Lemmas 3.2 and 3.3. To
prove necessity, let X,Y be r.v., defined on a common proba
bility space, with respective uniform distribution function

FX= Uab' FY= Ucd and unique connecting copula C. If

Uu ) =0U

Fy+y™ 9cWapr Yeq

a+c.b+d’ then we have the variance re

lation

(b+d—a—c)2=

(b-a)2+(d—CP

o2 (X+Y) = o2 (x)+ o2(y)+20(x,y) +20(x,y)

12 12 12

whence, the covariance 0(X,¥) eguals (b-a) (d-c)/12, so that
the correlation coefficient P(X,¥Y)= +1. Thus X=A.Y with A>0
and, by Theorem 2.2, C=Min, i.e., (i) holds. In the case

=0 =
X+Y c(Uab’ Ucd)

O(X,Y)=(b-a) (c-d)/12 and 0(X,¥)= -1, whence X=B.Y with B<0

F we obtain

UMin (a+d,b+c) ,Max (a+d,b+c)
and Theorem 2.3 yields C=Tm'

Corollary 3.2. If X,Y are two r.v. defined on a common

probability space and with respective uniform distribution

functions on [a,b] and [c,d], then X+Y is uniformly distri-
buted on [a+c,b+d] (resp.,[Min(a+d,b+c) ,Max(a+d,b+c)]) if and
only if X=A.Y with A>0 (resp., X=B.Y with B<0), i.e., if and

only if X and Y are linearly dependent.

In the field of interval analysis [2,5,7], instead of
the classical real line, one considers the set of closed
intervals I(R)={[a,b]; a<b in K}. Addition in I(R) is de-

fined by the Minkowski sum,

(*) [a,b] ©® [c,d] = [a+c, b+d].
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Since the interval [a,b] is often viewed as an uncertain num-
ber, it seems reasonable -and has been suggested in the lite-
rature- to consider a probabilistic model in which each inter
val [a,ble1(R) is reélaced by a uniform probability distribu-
tion UabEA, or, equivalently, by a random variable Xab which

is uniformly distributed on [a,b]. The preceding results show

that the mapping @:I(R)+A defined by g([a,bl)=U is a morphism

ab
between the groupoids (I(R),®) and (A,OC) if and only if C=Min.

Thus the sum Xa }Xc of the uniformly distributed "error" ran-

b
dom variables Xa

d

and Xc is uniformly distributed on the in--

b d

terval sum [a+c,b+d] if and only if Xa and XC are (positive-

b d

ly) linearly dependent. It follows that the assumptions: (1)
the errors are uniformly distributed, (2) the errors associa-
ted with distinct intervals are independent, and (3) errors

add in accordance with (*), are inconsistent.

Theorem 3.3. Let a<b and c<d. Let C be a copula and let

O be associative. Then OC(Ua

- for some e< £, if and

o p'Yca *Ves
only if e=a+c, f=b+d and C=Min.

Proof. A remarkable result due to Frank [ 3] states that
Oc is associative if and only if C=Min, C=Prod or C is an or-
dinal sum of copulas, each of which is either Min or Prod.

On the other hand if we assume that OC(Ua for some

b'Yca’ Vet
e <f then by (iii) of Theorem 3.1, we have C(u,v)=Tm(u,v)

whenever (u,v)€B, where
B = {(u,v)e[0,1]?] (b-g)u+t(d-c)v< e-a-c or (b-a)u+(d-c)v>f-a-c}

Combine these two statements yields that B={(0,0),(1,1)1},

whence e=a+c and f=b+d. And Theorem 3.2 yields C=Min.

The above theorems are uniqueness theorems. Ip general,
i.e., when a+c<e<Min (a+d, b+c) < Max(a+d,b+c)<f<b+ 4, the

functional equation OC(Ua ) = U will have several, non

b’ Yca -
related, solutions. This is shown by the following example.
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Example 3.1. Let C1 and C2 be the copulas defined by

C, (x,y) max{T (x,y), Min(x,y,Max(x,y)~-1/2)},

and

C2(x,y)‘ = A({te[0:1]|t<X, £(t) <v}).

where ) denotes the Lebesgue measure on [ 0,1] and £:[ 0,1]~>[ 0,1]

is given by

t+3/4, if 0<x <1/8,

t+1/2, if 1/8<x <1/4 or 3/8<x<1/2,
£ (t) =1t . if 1/4 <3/8,

t-1/2, if 1/2 <5/8,

t-1/4, if 5/8<€x<7/8,

lt—3/4, if 7/8< x< 1.

/

NN NN
X X

C1 is a commutative copula which is not associative (1/8 =
c,(11/16, c, (5/8, 3/8)) # C (C (11/16, 5/8), 3/8)=0) and
C2 is a non-commutative (and therefore non-associative) co-

pula and a straightforward computation shows that

0c1 (Ogqr Ugy) = gcz Woyv Yoq) = Uy, 3/2°
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