STOCHASTICA, Vol. III n2 2 (1979)

GEOMETRODYNAMICS OF SOME NON-RELATIVISTIC
INCOMPRESSIBLE FLUIDS -

by

Agostino Prastaro

1. Introduction.

. In some previous papers [1,2] we proposed a geometric
fp:mulationxbf'chtinuumvmechanics, where a continuous body
is seen as a suitable differentiable fiber bundle C on the
Galilean space-time M, beside a differential equation ofvoi
der k, Ek(C), on € and the assignement of a fiame ¥ on M.
This approach allowed us to treat continuum mechanics as' an
unitary field theory and to consider cohstitutivé and dyna-
mical propertiesvin a more natural way. Further, the particu
1ar.intrinsic geometrical framework allowed to utilize di-
rectly the formal theory of differential equations in order

to obtain criteria of existence of solutions.

In the preéent paper we apply this general theory to
some ihcompressible fluids. Ihg scope is to demonstrate that
also for these more simple materials 6ur theory is a suita-
ble téql-in order to understand better the fundamental prin

ciples of continuum mechanics.

Space-time is the first iﬁportantlgeometrical object

té study. In classicai méchanics space-time (Galilean space- :

time) is individued by a couple (Frg), where:

15
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1) F is the fiber bundle structure between affine spaces
F = {t:M > T}

with: (a) M=4-dimensional affine space (space-time), (the
corresponding affine structure is (M,M,0); (b) T=1-dimen-
sional affine space (time-space), (the corresponding affine
structure is (T,E,B)); T is supposed oriented; (c) T= an
affine surjective map, of constant rank=1, which associates
to each event p€M its time T (p)€ET. We write

s=ker (D )
=ker(DT)C M .

2) g is a field of geometric objects (see ref. [3]) of the
+ * %
SM=Mxs’ Os ,M,X;vsg)( ) qi-

ven by g(p)=(p,§), where a is an Euclidean structure on S;

bundle of geometric objects (vS

g is called metric field.

If an Euclidean structure is taken (i.e. a unit measure
for time is chosen) on T, then T is identifiable with R, and

we recognize a canonical 1-form 0=4T on space-time.

Moreover, on M we recognize a very important category

of coordinate systems, the so-called adapted coordinate sys-

tems, i.e. diffeomorphisms x:M - R4 such that the following

diagram is commutative:

(*) DT means the Frechet derivation of T. (see ref. [1,1]1).

+
(**) S means the vector space dual of S.© is the symbol of
. o
symmetric tensor product. vS2 means the relative covariant
functor which characterizes the fiber bundle X:VSZM + M as

a bundle of geometric objects.
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where ) is a coordinate on T. In such cases we get dx°=o and
9x, (p)e vIM=MxS. In other words the coordinate lines x '
k k,p (*)

passing for peM, have values into M only, for k=1,2,3.

T(p)
With respect to the canonical connection on TM, we have yg =
Vg=0 and for the connection symbols GZY we get in adapted

coordinates:

(a) Gii =[ki,s]gSJ with

[ki,s] = 3 [ (x, .9, )+ (dx,.9_,0-(x .9, )]

= Christoffel symbols;

(o] _ o] _
(b) GBOl = GaB = 0,

In order to refer absolute concept to observers, we must

introduce a frame, i.e. a map ¥Y:TxM -+ M such that:

(i) Wt:M > Mt= 1-1(t) is a retracting map; (**)

(ii) For each t,t'eT, Yt,(Wt(p)) = Wt‘(p).

With respect to a frame we recognize some important adap
ted coordinates such that 3x°= ¥= the velocity of the frame.

o= gr = o.
oj jo

In a frame coordinate system we get G
We assume that any physical entity be represented by a
field of geometric objects. This assumption is justified sin-
ce such structures satisfy the general requirement of "cova-
riance". On the other hand in classical mechanics tensor fields
are not sufficient to describe all physical entities (for exam-
ple the metric field is not a tensor field on M). Then we can

enunciate the following important

(*) Latin indices run from 1 to 3. Greek indices run from O
to 3.

(**) For the definition of a retracting map see ref. [ 4].
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)

*
Theorem 1.1. (REF)‘ A frame induces a canonical pro-

jection of any bundle of geometric objects (W=B(M),M,Xw; B)
o ~
onto two subbundles of W, W, and W, called time and space-

b4 b4
bundle respectively, associated to W by means of V.

This theorem allows us to give a precise meaning to the

concept of observed physical entity. In fact, let SYEM/~ be

the observed space by means of the frame ¥, i.e. the space

of equivalence classes individuated by the equivalence rela-

tion: p~p' edt'eT, p'=Wt,(p). We call observed bundle corres
ponding to W the bundle WW=B(S?). We recognize a canaonical pro
and, if £ is a field of geometric objects

jection, XW:W - WW

of xw, then the map

o -1
fy =XW° f o Iy 'TXSW > Ww

represents the field of geometric objects corresponding to £,

(jW:M -+ TxS is the bijective map induced by ¥). This analy-

Yy
sis applies in particular to tensor fields on M. Thus we get

that

11 1

s“,=[(-1)r § ... ¢ T g% 0

. . r-1 ,i . i i,o...o
31...]s+(-1) V 2.0y rs,1 ) 4
Iqe-dg

i i i ...i,o o
r-k k+1 r 1 k
ol (- v
(A1) ¥ v s Jpeeedghen ot

N ;
+s . . -1
Jyeredglo 3y (8%, ) 8...8 (dx %)

1y b4

is the observed tensor field, in adapted coordinates, correspon-

ding to

(*) In this paper we use some propositions that we have proved
in ref. [2]. We write "REF" after the numbers of these pro

positions.
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s

Opeee0 B
8xa18...@dx .

1
...B

s = s
B1 s

The Galilean group G is the group of transformations of

M which preserve the Galilean space-time structure. Therefore
a Galilean transformation is an affine bundle transformation
of F, (f,fT), such that for the corresponding linear maps £
and fT we have: (a) fl Se0(S); (b) fT=ldg'

The set of linear maps such as f forms a group: the li-

near Galilean group GL. G can be seen as a pseudogroup on M

also, i.e., the set of solutions of Galilean differential

equation, G(M), which in adapted coordinates is given by

3 m _
(axi.f )(axs'f )gjmof =9,
G (M) (axo.f°) =1,
(3xk.f°) = 0.

G(M) admits a related pseudogroup of Lie: the linearized Ga-

lilean equation

j 3 m =
(axj.gis)x +(axi.x )gjs+(axs.x )gmi =0
° -
(axa.x ) =0

whose solutions are infinitesimal Galilean transformations,

i.e. Killing vector fields X on M with respect to G. (*)

(*) For more details on the Galilean space-time structure
see [ 2].
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2. Geometric structure of perfect incompressible fluids.

A perfect fluid can be considered as a geometric structu-
re on the Galilean space-time. More precisely we give the fo-

llowing *

Definition 2.1. A perfect incompressible fluid is a tri-

plet PIF = (¢;E2(¢),W), where:

1) ¥ is a frame on M;

2) ¢=(C,M,X¢;c) is a bundle of geometric objects on the Gali-

lean space-time, called configuration bundle, such that

C =THM®[® B8 = MxM ® R ® R;

TM=MxM is the space of velocity, II=Mx R is the space of pres-

sure, and ®=Mx R is the space of temperature. The covariant

functor C is directly ‘individuated be means of the tangent
functor T. More precisely, if v is the category of differen-
tiable manifolds with diffeomorphisms as morphisms, C is the
functor C:v* VvV such that for any differentiable manifold V

c(v) =1 e M & TM

o ¢}

and for any diffeomorphism f£:V =+ V'

C(f) = T(£) ® T () o TO(f),

i.e. C(£f) (p,u,A,u) = (£(p),DE(p) (W), A,u)-

Any section of Xc is called a configuration of PIF. Thus a

configuration is a triplet c=(v,p,0) where v is tha velocity

field, p is the pressure field and § is the temperature field.
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3) EZ(C) is a second-order differential equation on the con-

figuration bundle, (dynamical egquation) given by

e,0) = f@nE@n wcso®@,

where: (a) E(C) is the continuity equation given as the ker-

nel of the differential operator (constitutive map of conti-

nuitx)
z.:¢7(€) » c“(TgM)
z.c = div(pv),

where p is a constant numerical function on M called mass

density.

(b) E(C) is the motion equation given as the kernel of the

differential operator (constitutive map of motion)

D.:c”(e) - c¥(vTM)
D.c = div(p v 8 v + p g) - pB,
where B is the body force field. (c) ﬁ(c) is the energy

equation given as the kernel of the differential operator

(constitutive map of energy)

z.:c”(c) - cm(TEM)
=.c = div{vp[e+%g(vaw,vaw)] -A gradwe +

-p ' g(vﬁ\y)_Jg} - pg(BIVA\y)I

2 . . . .
(*) JD (€) is the jet-derivative space of second order on C,

(see ref. [1.11]).
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e .s the interior energy (corresponding to the configuration c),

A is the thermal conductivity (corresponding to c) and v“? is

the space-component of v obtained by means of ¥ . 'g denotes

. . . +
the metric isomorphism vTM=vT M.

A dynamical configuration c¢ is a configuration such that

it is a solution of the dynamical equation Ez(c), i.e. for any

p€M there exists a neighborhood U such that
pc:u + E,(€) CJ p%(o).
The state bundle is the differentiable fiber bundle

)'(2 : 3 D%(c) » M.

A dynamical state is a section s of 22 which takes values just

into EZ(C). The configuration permitted from the state s is the

unique configuration c¢ such that ch = s.

In this framework any constitutive map for a perfect incom
pressible fluid can be seen as a differential operator of second
order on the configuration bundle. Thus, for any configuration

c, a constitutive map K can be factorized as
K.c = K o D2c,
where K is a fiber bundle morphism over M, K:J Dz(c) -+ K, being

(K,M,XK;K) a bundle of geometric objects over M, thus the follo-

wing diagram is commutative:
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We say that a constitutive map of PIF is reducible to one of
order O0<k'< 2 if there exists a differential operator of or

der k', K', such that the following diagram is commutative:

a0’ (¢) — 5K
K

X2,k' Kl

3% (o)

here is the canonical projection. In these cases we

X2,k'
simply say that the constitutive map K is of order k'.

If {xa} is an adapted coordinate system on M we get

that a constitutive map is expressible as
(k.o) P (p) = £ (xP(p),c™(p), (3x .c™) (p)),

being KK.c)JEyJo(K.c), where {yJ} is a coordinate system on

K. In tab. I we list some important constitutive maps.

An internal constraint is a sub-bundle over M, C', of C.

For a PIF there is a canonical internal constraint: the velo-

city constraint cV=v &I+ 8CC, where V=MxI, being

I = {veM| < T,v> = 1},

1 is the linear map associated to T.

By exploiting the velocity constraint, we have for Ez(c)

the following expression in adapted coordinates:

1) continuity equation : ¢ + gl

J. i
jo jkV + (Bxi.v )y =0

2) motion equation:



p[G?
[ee)

3) energy equation:
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J ok ed ik, g 3 i , Iy rowel K3
+2Gokv +G VTV +( X .V )+v (axi.v Y1-1 PG . g "+
—:pGj gki+(3x .(Pgij))] -ij =0
ki i

k v j i i el k_ .k
p[(axo.e)+v (axk.e)] + [Gjiq + (3xi.q )] [Gji(v ¥ )gks

k Lk
+(ax . (v - ¥ ”ng

S1=0.

A more semplificate expression is obtained by taking a frame-

coordinate system. In fact, .n these cases G;.=G% =0 = §,

. . i
Furthermore, for inertial frames Goo

k
J Jo

=0 and we recover the

usual expression for _he differential equations governing a

perfect incompressible fluid.

Tab.I - Some important reducible constitutive maps for PIF
order name K K.-symbol K.c-symbol
0 rheological vS§M=MxS@S ® P= -pg
0 body force vTM=MxS & B
0 power force TZM W. w=p g(B.vaW)
0 thermal o ’
conductivity T M A. A
1 heat flux vTM Q. g= - gradwe
0 momentum ‘wl
£lux SOM‘MXEGE T.c=p vO®v - P
0 interiorx o
energy TOM E. e
1 energy flux TM=MxM 8. e=vp[e+%g(vawlvaw)]+
+q-'g(vay,) ) P
0 mass flux T™ M. UH.c= pv
Remark. For the intrinsic expression of gradwe see ref.
[2,1I] . In adapted coordinates q is given by

q = - A(axi.e)gij ij.
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3. symmetry properties for perfect incompressible fluids.

Definition 3.1. A symmetry of PIF is a vector fiber bundle

2
isomorphism f=(f_,f,):¢ » ¥ such that: (a) £.€G; (b) ID (ﬂR|E2W)

is a fiber bundle transformation of Ez(w).

The set of symmetries of PIF is a group G(PIF}CHomMC,&ﬁ:

the symmetry group of PIF. The c-isotropy group, GC(PIF), is
the subgroup of G(PIF) such that the configuration c¢ is f-symme-

tric.

Then we have the following

Proposition 3.1. (REF) Let a configuration c¢ be given. Any

configuration c¢' f-related to c, with f€G(PIF), 1is a dynamical
configuration if and only if ¢ is a dynamical configuration al-

SO.

Let us now consider the relation between G(PIF) and the

constitutive maps of PIF.

Definition 3.2. Let K =(K,M iK) be a vector bundle of

IX[K
geometric objects on M.

1. A physical isomorphism of K is a vector fiber bundle isomor-

phism (Q,fM) of Xk with fMeg. The set of physical isomorphism

of Kk is denoted by FlK and called the physical group of K.

2. A K-symmetry for a constitutive map K.:Cw(c) - Cm(m) of PIF
is an element of feG(PIF) such that there exists a vector bundle

isomorphism of m,‘over fM' such that

Yo K = K o J Dz(fc).

K(PIF) is the set of K-symmetries (K-group of PIF;.
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A Galilean physical structure is a couple (M,k), where:

M is the space—time; (b) k is a field of geometric ob-
ts of K. The set of all (lll,fM)eFlK such that k is related
itself is called the general k-isotropy group on M: O

k*
Two important examples of 0k are:
0 =G x 0(S) and
g =

) On.= SGxS0(S), where N is the volume form on M, i.e. a

: + = .
tion n:M > vA?M = Mxs'as'as® such that n(p)=(p,Nn), with
olume form on S. SG is the special Galilean group (see
“l2,Ih.

Theorem 3.1. (REF) If k' and k are two fields of geome-
ic objects of the vector bundle k, then the following condi

ons are equivalent:

) k'=h.k with h:M =+ R a numerical function invariant for

€0, and fMeg

X (gk is the canonical image of O

k' ” into G);

We now make some further important definitions.

Definition 3.3. The general k-isotropy group on M with

.ght a belonging to a sub-group A of R is
_ -1
Opi = LW £ ) eF, | ak=¥ okof ', aeal.
important example is when k=N and AE{-1,+1}. We get

O{_1,+1 }nzg X Unim(S).

ourse OT]C OgCO{_“_“1 e

Definition 3.4. 1. A dynamical configuration c¢ is isot

(PIF) = 0 .
b c
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2. Let us put k°(pIF)= {(fc,fM;¥)€K(PIF)1K.c=¥oK.c o f;h.

Let GKS(PIF) and Hom\

c
M (X(K' XIK) (PIF) be the canonical images

of Kc(PIF) into G and HomM(XK'Xm)' respectively. Let us put
c

Fx°(p1F) = Gr®(PIF) x Homﬁ (X rXge) (PIF) .

Then the dynamical configuration c is (k,K)-isotropic if

c -
Fx“(p1F) = O,.

Thus we have the following

Proposition 3.2. (REF) If ¢ is (k,K)~-isotropic dynamical

configuration, then K.c=h.k, with h:M * R a 0 -invariant nume

k
rical function.

Of particular importance is the physical group of the

stress space P EvSiM, Fé. We recall (see ref. [2,II]) that
F'P.= G x GL(S).

Moreover, FRC(PIF) coincides with the general g-isotropy group
on M: 0g =6 x 0(S) = FRC(PIF). Namely, any dynamical configu—

ration for a perfect incompressible fluid is (g,R)-isotropic.

We now prove that a perfect incompressible fluid is a

“fluid material" in the sense defined in ref. [2.11I].

Proposition 3.3. For a perfect incompressible fluid

F&(p1r) 200 4 w1tn”

Proof. In fact, we have seen that

FR(pir) D FR°(P1F) = 6 x 0(S). (1)
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Oon the other hand we know (see ref. [2,II]) that

G x GL(S)C F&(pIF). (2)
Further, Unim(S) is the smallest sub-group of GL(S) which con-
tains 0(S). Therefore, from (1) and (2) we conclude that nece-
ssarily

) i =3 .

FR(PIF)D ¢ x Unim(s) Of 1 41)n

4. Some considerations on the geometric structure of Newtonian

inéompressible fluids.

For Newtonian incompressible fluids the situation is a

little more complicated than for perfect incompressible fluids.

Definition 4.1. A Newtonian incompressible fluid is a tri-

plet’NIF=(¢,E2(C)}W),‘where:

1. ¥ and ¢ are as in Definition 2.1.

2. E2(C) is a second order partial differential equation on ¢
given by EZ(C) = ﬁ(c)ﬂﬁ(c)nﬁ(c), where: (i) ﬁ(c) is as in De-
finition 2.1, (ii) E(C) = ker (D ), being p a constitutive

map given by

D.c = divlp v®v +pg -2(Z.c) fg.v] - pB, (*)
where Z. is a constitutive map of order zero called Newtonian
viscosity, (iii) ﬁ(c)=ker,(5), with =. 'a constitutive map gi

ven by

=.e=div{ vp [e+%g(v5w,vAw)] + g -’g(vAWIJ[-pg+2(E.c)£g.V]}

T PIB,VL) .

(*) Here ,fg. denotes the Lie differential individuated by the
metric field g; (see ref. [1,11]).
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> rheological map is given by a constitutive map reducible

R.c = -pg + 2(Z.c) f.g.v. (3)

Further, we note that a Newtcnian incompressible fluid is al-
so a "fluid material”. In fact it has the (g,R)-isotropic dy-
namical configuration c, corresponding to rigid motion (v=0).

In such case, we get

], = - .
o P9

Thus, for a Newtonian incompressible fluid we have that
c
F® °(n1F) = ¢ x 0(s)C FR(NIF)C G x GL(S),
and, as in Proposition 3.3., we get

FR(n1F)D 0{‘1'*‘1}71
To any (dynamicél) configuration c=(v,p,p) we can asso-

ciate a local flow @ on M such that 3@=v. consequently, to

any configuration c we can associate one and only one defor-

mation gradient F=D2¢, (where D is the symbol of space deri-

vative (see ref. [2,I])) or strain U, (such that UA= ﬂ;g,vkez).

Then a Newtonian incompressible fluid can be seen as a simple

material. In fact, the constitutive configuration which repre-

sents a Newtonian incompressible fluid in the consitutive con-

figuration space (these notations are presented carefully in

ref. [ 2,11]), is individuated by constitutive maps K. which

can be factorized as
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c(e) - - -y € (K)
N p
‘~.' ,';: 5.'
N /
0 (M) xC (TxM,U) xC (o @) - (*)
Equivalently
K.(v,p,0) = _K_- (g,u,p,0). (4)

In fact, in the 6-plet (&.,%.,e.,A.,R.,E.) (**) giving the
constitutive configuration of a Newtonian incompressible
fluid, the rheological map is the only non-trivial constitu
tive map, (i.e., the only map chich is not reducible to one
of order zéro, constant on the sub-bundle TM of €). But for

this map we can just find a map
R.:0(M) xC (TxM,U)xC (112@) - C “(P)
which satisfies equation (4). More precisely, we have

®(p,U,p,0) = -pg + 2X {lim A"y,
A0 A

where X is the value of the Newtonian viscosity, correspon-

ding to (p,08). (***),

+, .+ ;
(*) U =vS§M=MxS 6Ss is the strain space, 0 (M) is the space of
(local) flows on M and gw(gxm,g) is the space of Cm—maps TxM U

which can be defined also on sub-spaces JxU of TxM only.

A
(**) R. and 8. are the mass density and temporature constitutive

maps respectively.

(***) A perfect incompressible fluid is a simple material. In
fact, in the 6-plet which gives the relative constitutive con-
figuration there are constitutive maps of order zero, constant

on the subbundle TM of C.
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