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ITERATIVE SQUARE ROOTS OF CEBYSEV POLYNOMIALS
by

R. E. Rice

1. Introductiqn.

The sequence of Eeby;ev polynomials, {Tn}’ defined on the

interval [ -1,1], satisfies the well known identity

Tno '1‘m = Tnm for all n,m>=0. (1.1)

Taking n equal to m in (1.1) we see that T , Possesses an ite-
: n ‘

rative square root. In general, a function mapping a set S in-

to itself is said to have an iterative square root (root of or-

der 2) if it can be expressed in the form h o h, where h, too,
is a function from S into itself. Our principal result is the

following

‘Main Theorem. For '1‘n to possess an iterative square root

it is both necessary and sufficient that . n = 0 or 1 (mod 4).

Any function conjugate to a function which has an iterati
ve square root also has one [5]. Thus, 'in the Main Theorenm,
"Tn" could be replaced by "a fsnctéon conjugate to Tn". Further
results on iterative roots of Cebysev polynomials may be found
in [4], [8], and [9]. A general discussion of the Eebygev poly-

nomials may be found in [6].

The proof of the main theorem makes use of methods develo-
ped by R. Isaacs [2] and requires knowledge of the orbit struc-

ture of the function Tn' This is discussed in the next section.
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The third section is devoted to a classification of the orbi.,
of Tn' and the fourth to the proof of the Main Theorem. In the
fifth section we mention extensions of the Main Theorem to fur

ther classes of functions.

2. Basic Definitions and Isaacs' Results.

For any function g we define g0 to be the identity func-
tion with domain Dom gURan g. For n> 1,vgn is defined recur-
- n

sive}y by gn = g o gn 1. It is possible that, for some n, g

will be the empty function.

The function g can be represented graphically as shown
in Figure 1. Here the nodes represent the elements of
Dom g U Ran g, and the arrows link x € Dom g to g(x). The set
of nodes in a connected component of this graph is called a

g-orbit.
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Figure 1

Moving clockwise from the upper left orbit in Figure 1

we have a terminating, a cyclic and an acyclic orbit. A ter-

minating orbit is characterized by the existence of an element
X in Ran g which is not in Dom g. A cyclic orbit has an ele-
ment x such that for some n=>1, gn(x) = x., Here, if n is mini-

mal, the orbit is n-cyclic (cyclic of order n) with cycle

-1
{x,g(x),...,gn (x)}. Clearly a cyclic orbit has exactly one
cycle, the one illustrated having a 3-cycle. All other orbits

are acyclic.
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Let x,y be in Dom go. Then x is an ancestor of y if for
some n>=1, gn(x) =y, and x is a preimage if g(x)=y. If an
element z in the cycle of a cyclic orbit has a preimage w which
is not in the cycle, then w is called a leader (*); and w, to-

gether with all of its ancestors determines a branch from z.

-Any union of brances from z is called a branch cluster from z.

Two g-orbits H and L are said to be mateable if the res-
triction of g to HUL has a root of order 2 for which HUL is an

orbit. L is said to be self-mateable if the restriction of g

to L has a root of order 2. Theorems 1, 2 and 3 are due to R.

Isaacs.

Theorem 1. Let h be a function such that Ran hC Dom h.
"Then h has a root of order 2 if and only if the set cf h-or-

bits tcan be'partitioned into disjoint sets A, B, C, such that:

(i) There is a 1-1 correspondence between the elements
of A and the elements of B.

(ii) If L €A corresponds to H € B then L and H are matea
ble. '

(iii) Each L € C is self-mateable.

A contraction equivalence (on g) is an equivalence rela-

tion, ~ , defined on Dom go such that for all a,b in Dom go,
if a~b, then either i) a and b both belong to Ran g - Dom g,
or ii) a and b belong to Dom g with g(a) = g(b). The function
; defined by

g = {(al_ ,[g(a)] )| aepom g} (2.1)
is called a contraction of g. g is defined on the set of equi-
valence classes of ~. A curtailment of g is the restriction of

g to a set A€ Dom g such that if xe Dom g - A then x ¢ Ran g.

(*) The terms leader, branch, branch-cluster, mateable, and self-

mateable appear in Isaacs [ 2] .
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The functions f and g are isomorphic (or conjugate), an

. . . . 0
we write f& g, if there is a bijection,w, from Dom f onto

Dom go such that for all x €Dom fo
(i) x €Dom f if ‘and only if @ (x) €Dom g, (2.2)
and

(ii) if x €Dom f then w(f(x)) = g(w(x)).

Note that since g-orbits, branches, and branch clusters
of g-orbits may be identified with the restrictions of g to
these sets, we may speak of contractions curtailments and is

morphisms of these objects.

Theorem 2. Two distinct orbits H and L are mateable if
only if a contraction of .one is isomorphic to a curtailment

the other.

Note .that two distinct isomorphic orbits can always be
ted. A necessary condition for two orbits to be mateable is

‘they either both be acyclic or both be cyclic with équal ord

Theorem 3. A necessary and sufficient condition for an

bit, L, to be self mateable is that:

(i) L is m-cyclic with m odd, say m = 2k + 1.

(ii) The elements of INLS are disjointedly the union of two
llections of sets {Ba}' {Ea} indexed by some set A such
that, for each aeA,‘Ba is a branch, and either B is a
branch cluster or Ea = @g. A curtailmen; of Ba is isomor
to a contraction of Ba' If Ba is from z then, if Ba# [}

is from hk(z).
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3. Classification of the Orbits of éebyéev Polynomials.

The sequence of CebySev polynomials, {Tn}, defined on

[-1,1] are the functions defined recursively via

To(x) =1, ) (3.1)
T1 (x) = x,
= - el - .
Tn+1(x) 2xT (x) Tn_1(x) for all xe€[-1,1]
We have the well known identity:
Tn(x) = cos (n arccos (x)).

For n=> 0, Tn is a polynomial of degree n..When n>v2, Tn attains
all n - 1 possible local maxima and minima within the interval
(—1,1), All local minimum values are -1, and all local maximum

values are 1.

We next list some well known, and some easily verified
properties of the set of Eebygev polynomials [ 6] . For any set

A, #A denotes the numbetr of elements in A.

"Lemma 1. Let m,n= 17 Then:

(a) Tmo Tn = Tmn'

(b). Tn maps [-T,Qraonto itself,

> N
(c) If x €(-1,1) then #T;1({x}) = n,

- . e
(4) Tn(1) = 1. .

If in addition, n2 2 then:

(e) Tn has exactly n fixed points in the interval [ -1,1].

If furthermore n is even, then:
(£) Tn(-1) =1,

-1
(@) #7 " ({1} =n/2 + 1,

~(h) T;1({—1}) = n/2.
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If on the other hand n is odd, then:

(1) T (=1) = -1,
(3) #T;1({1}) = (n+1)/2,

(k) #T;1({-1}) =(n+1)/2.

Lemma 1 provides the necessary information to determine
. the orbit structure of Tn for all n>2. These orbits fall in-
to two major classes which we label with the Roman numerals I
and II.‘Within these classes we use "even" and "odd" as supers
cripts to distinguish between orbits associated with polynomials

of even and odd degree respectively.

Any point x€(-1,1) which is not in a cycle of some Tn—orbit
-has exactly n preimages, each of which is in (-1)1) and clearly
not in a cycle of Tn. Each of these n preimages, in turh, has »

exactly n preimages, each of which ...., etc.

Accordingly, we let the symbol ¥%#— represent the recursi-

ve orbit structure illustrated in Figure 2.

Figure,z

. Orbits of type I are those containing 1 and -1. By appea-
ling to (d), (f), (g), and (h) of Lemma 1 it is readily seen
that these have the structure Ieven, illustrated in Figure 3

when n is even, and by appealing to (d), (i), (j) and (k), the
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structure IOdd illustrated in Figure 4 when n is odd.
n
/ 2 1
i —

X | R

[N}
.
|
-

Orbits. of Type even

Figure 3

Orbits of Type IOdd

Figure 4

Orbits not containing 1 or -1 are of type II. All such
acyclic orbits have the orbit structure illustrated in Figure
5 and are labeled IIO. All such k-cyclic orbits have
the orbit structure illustrated in Figure 6 and are labe-

led IIk'
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Structure about each point x

in an orbit of Type II

0
Figure 5
X. n-1
X
. k~cycle

n-1 :
X

Orbit of Type II k=1

kl

Figure 6

Having determined the structural types of the orbits, for -

‘a given n=2 2, we now determine the number of distinct orbits
of each type. Clearly there is ‘only one orbit of fype 1evVen égd
there are exactly two orbits of type IOdd. Next, Tn has n fixéd
points, all in [—1,1f, whence there are n 1-cyclic Tn-orbits.n

Thus there are n - 1 orbits of type 11°V°™ and n - 2 of type

1
II?dd. Similarly, for any fixed k >1, Tn has a finite number of

k-cyc¢lic orbits. Now, each Tn-orbit is a countable set. Conse-
quently, the. union of all cyclic Tn—orbits is also countable.
Its complement in the interval [ -1,1], is the union of orbits

of type II Since this complement is uncountable, the number

0°
of type IIO orbits is infinite.
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To compute the number of orbits of type IIk for k>1 we
need several results (Lemmas 2 and 5 and Theorem 5) due to A.

Sklar.
Lemma 2. Let h be any function and k> 1.. Then

/d), (3.2)

s u(d)Z1(hk
alx

Zk(h) =

x|

where Zk(h) is the number of k-cyclic orbits of h, and pu is

the Mobius function.

Proof: We set Rm(h) equal to the set of all elements in
Dom h left fixed by hm, and we set Cd(h) equal to the union
of all d-cycles of h. Now, for any m=21, x is a fixed point
of h™ if and only if it is a fixed point of hd where d divides

m. It follows that

R (h) = U Cd(h), (3.3)
dlm

where, since the sets Cd(h) in (3.3) are disjoirt,

#Rm(h) = Z #cd(h). (3.4)
dlm
Now, #R_(h) = Z1(hm) and #Cg(h) = dz,(h), whence
m
Z1(h y = 2 dzd(h). (3.5)
d|m

Applying the Mobius transformation to (3.5) yields 3.2.

Lemma 3. If n>2 and k> 1, then

1 k/d
z2 (T ) =2 p@n’", (3.6)
d|k
Proof: If n=22 and k> 1, then by Lemma 1, (i), (vi),
k. k
Z1(Tn) = Z1(T k) = n . Thus (3.6) follows from Lemma 2.

n
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We summarize the results obtained above in Table 1, where

¢ denotes the cardinal number of the continuum.

ORBIT TYPE ' NUMBER OF ORBITS
Ieven 1
Iodd 2
IIO o]
greven n - 1

1
II?dd n - 2
k
1 d
I1, . k> 1 )?2 n
d| k
Table 1

4. Proof of the Main Theorem.

Nccassity. If n* 2 or 3 (mod 4) then Tn has no iterative

root of order 2.

Proof: By Lemma 3,

feo

2,07 ) = 32 w@n® = 2m? - ).

alz
" However, it follows from Theorems 1 and 3 that if Tn has a
root of order 2 then ZZ(Tn) is divisible by 2, i.e.
(n® - n)/2 = 0 (mod 2). This is equivalent to n° = n (mod 4)
which, in turn, is equivalent to n =0 or 1 (mod 4).

Positive integer m. Then

2
27,2 m222(k+L)+ m2k+L+1

i
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Lemma 4. If n,k=22 and n = 0 or 1 (mod 4) then,

Zk(Tn) = 0 (mod 2).

Proof: We split cases.

Case 1: k = 1 (mod 2): If n is even thén, by (3.6),

k
kZ (T ) = £ u(@)n% = 0 (mod 2).
k n
alx
If n is odd, then
k
kg, (T ) = 2 p(@nd = Zu(d) (moa 2).
n al x al x
But, since k =2, dfk;ﬂd) = 0 (see e.qg. [1; pp. 234-237]).

Thus, for all n=2, kzk(Tn) = 0 (mod 2) whence, since
k =1 (mod 2), Z_ (T )= O {(mod 2).
k' n

Case 2: k = 0 (mod 2): Let k = 2a8 where a1 and B is

odd. Then,

k B8
. a 2% 3
Kz, (T ) = dip(d)n = ATBu(d) (n” )" - (4.1)
B
a-1 =
\: 2 d
-~ d) (n .
d]BU( ) ( )
, . ' 2071 a+1 .
Now, if n = 0 (mod 4), then n = 0 (mod 2 ), whence it
follows from (4.1) that
- o+1
kzk(Tn) = 0 (mod 2 ) . (4.2)
On the other hand, if n = 1 {mod 4) an easy induction shows
that n20"" = 1 (mod 2a+1) whence, by (4.1),
- <« _ s A+ 1 L
kzk(Tn) T drB“(d) d‘Bu(d)) (mod 2 ). (4.3)

Therefore, (4.2) holds for all n>= 2. It follows that

BZk(Tn) = 0 (mod 2) whence, since R = 1 (mod 2),

2 (T ) = 0 (mod 2).
n



R.E. Rice : 12

Sufficiency. If n = 0 or 1 (mod 4) then, Tn has an itera-

tive root of order 2.

Proof: By Theorem 1, it suffices to show that the set of
orbits of Tn may be partitioned into a set of mateable pairs
of orbits and a set of self-mateable orbits. Since the cases

n=0 and n=1 are trivial, we shall assume that nZ= 4.

From Table 1 and Lemma 4 it follows that the number of

orbits of type II k # 1, is either even or infinite. We may

kl
thus decompose each of these sets into a disjoint collection
of pairs. The orbits in any such pair are isomorphic, whence,
by Theorem 2, they may be mated. This leaves only the 1-cyclic

orbits to be either mated or self-mated.

Case 1: n = 0 (mod 4): If n = 0 (mod 4) then, by Table 1,

even

there is one orbit of type I and there are n - 1 isomorphic

orbits of type II Since n - 1 is odd we may mate all but one

7"

orbit of type II,. This remaining orbit, say H, can be mated

1
with the one orbit of type IOdd, say L, as follows. Let ~ be
the contraction equivalence defined on L which identifies -1 and

1. It is clear from Figure 7 that L/~ is isomorphic to H.

L L/~ H

Figure 7

But H is trivially a curtailment of itself whence, .by Theorem 2,

L and H are mateable.
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Case 2: n = 1 (mod 4): If n = 1 (mod 4) then by Table 1
odd
there are two isomorphic orbits of type I . These are ma-
teable. The remaining orbits are all of type II1. If L is one

of these then L has n-1 = 2m branches.

Figure 8

We now verify that L is self-mateable, i.e., satisfies
conditions (i) and (ii) of Theorem 3. Since L is 1-cyclic it
satisfies (i) with k = 0. Next, partition the branches of L
into two disjoint sets, {Ba}:=1 and {Ea}2=1, each containing
m branches (see Figure 8). For each o= 1,...,m, Ba is a branch;
and since a branch is clearly a branch cluster, Ba is a branch
cluster. Since all the branches of L are isomorphic, Baw Ba'
whence, trivially, a curtailment of Ba is isomorphic to a con-
traction of Ea' Ba is from Z, and §a is from z = go(z) = gk(z).
Thus (ii) of Theorem 3 is satisfied, and the sufficiency part

of the Main Theorem is proved.

5. Epilogue.

In the introduction it was stated that the Main Theorem
applied to any sequence of functions which are conjugate to
the éebyéev polynomials defined on [-1,1]. Among these sequen
ces are the hat functions [6] and the Eebyéev polynomials de-

fined on the complex plane by (3.1).



R.E. Rice 14

- Extending the domain of a Cebysev polynomial T+ n=1,
from [-1,1] to the real line via (3.1) simply introduces an
infinité_number of pair wise isomorphic acyclic orbits. It
.foliows:that the Main Theorem applies to the Eebyéev polyno-
mials defined on the real line [4] though these function are

not<cohjugate~to the éebyéev polynomials defined on the in-

terval [-1,1].
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