STOCHASTICA, Vol.III nº 1 (1979)

ON SOME TOPOLOGIES ON A GENERALIZED METRIC SPACE

bу

Montserrat Pons

Introduction.

If (Ω, \mathcal{S}, m) is a generalized metric space (g.m.s.), we define, for a certain class of subsets S of \mathcal{S} , the $T_m(S)$ topology on Ω and study its properties. We point out that, for a product of g.m.s. $(\Omega_i, \mathcal{S}_i, m_i)_{i \in I}$, a $T_m(S)$ topology on $\prod_{i \in I} \Omega_i$ is obtained from $T_{m_i}(S_i)$ topologies on each factor.

 $\mathbf{T}_{m}(S)$ topologies on an abelian 1-group G are considered. We show that the open-interval topologies arising from compatible tight Riesz orders on G are of this type.

1. The $T_m(S)$ topology.

Let (Ω, φ, m) be a generalized metric space [5], such that $\varphi = \langle \!\!\!\! \Psi, +, \!\!\! \rangle$ is an abelian partially ordered semigroup where the zero element is the minimum. We shall deal with non empty subsets S of φ not containing the zero element.

A subset $A \subset \Omega$ is said to be $T_m(S)$ -open if, for every as A, there exists $r \in S$ such that $B_a(r) \subset A$. The $T_m(S)$ -open sets form a collection, containing \emptyset and Ω , closed by arbitrary joins. In general, it is not closed by finite meets. A sufficient condition for the $T_m(S)$ -open sets to be a topology on Ω is that S be directed downwards; nevertheless, this condition does not ensures that the balls with radius in S be a local base of neighbourhoods at each point. This will be the case when S also satisfies the following pseudo-divisibility condition: for every

 $r \in S$, there exists $s \in S$ such that s+s < r (referred as pseudo-radicals condition in [1]). All this can be stated in:

1.1. <u>Proposition:</u> Let S be directed downwards and pseudo-divisible. Then, the collection of $T_m(S)$ -open sets is a topology. Moreover, the balls with radius in S and centered at $a \in \Omega$ form a local base at a. This topology $T_m(S)$ is uniformizable and, if m is separating and inf S=0, it is Hausdorff.

Proof: It is obvious that $a \in B_a(r) \ \forall a \in \Omega$, $\forall r \in S$, and that $t \leqslant s, r$ implies $B_a(r) \cap B_a(s) \supset B_a(t)$. Given $B_a(r)$, with $r \in S$, we can find $s \in S$ such that s+s < r, and, if $y \in B_a(S)$, then $B_y(s) \subset B_a(r)$. Thus, the r-balls $(r \in S)$ form a local base for a topology which is the $T_m(S)$ topology.

Furthermore, the collection of sets $\{D_r\}_{r\in S}$, where $D_r = \{(a,b)\in\Omega x\Omega\,\big|\,m(a,b)< r\}$, is a base for an uniformity D on Ω whose generated topology is $T_m(S)$.

If m is separating and inf S=0, then $\bigcap_{r\in S}$ D $_r$ = Δ . Hence D is separating and T $_m$ (S) is Hausdorff.

1.2. Corollary: Let S be directed downwards, pseudo-divisible and containing a countable dense subset M (in the sense that each element in S exceeds someone in M). Then, the $T_{\rm m}(S)$ topology is pseudo-metrizable and, if m is separating and inf S=0, it is metrizable.

Proof: $T_m(S)$ is uniformizable, by 1.1, and the collection of sets $\{D_r\}_{r\in M}$ forms a countable base for D, so $T_m(S)$ is pseudometrizable. By adding the other conditions $T_m(S)$ is Hausdorff and hence metrizable.

2. $\boldsymbol{T}_{m}\left(\boldsymbol{S}\right)$ topologies on the product of generalized metric spaces.

Let (Ω, φ, m) be the product of a collection $(\Omega_{\tt i}, \varphi_{\tt i}, m_{\tt i})_{\tt i \in I}$ of generalized metric spaces [5].

2.1. <u>Proposition:</u> If $S_i \subset \varphi_i$ is directed downwards and pseudodivisible for each i.e.I, then $S = \prod_{i \in I} S_i \subset \varphi$ also satisfies these properties, and the $T_m(S)$ topology on Ω is the box topology obtained from the $T_m(S_i)$ topologies on each factor.

Proof: It is straighforward to prove S to be directed downwards and pseudo-divisible.

Let T be the box topology on Ω obtained from the $T_{m_i}(S_i)$ topologies on each factor. If $AC\Omega$ is a $T_m(S)$ -open and $a=(a_i)_{i\in I}\epsilon A$, there exists $s=(s_i)_{i\in I}\epsilon S$ such that $B_a(s)CA$. For each $i\epsilon I$, $B_{a_i}(s_i)$ is a $T_{m_i}(S_i)$ -nhood of a_i , and, hence, there exists a $T_{m_i}(S_i)$ -open G_i such that $a_i\epsilon G_i^{CB}a_i(s_i)$. Thus, $a\epsilon_i^{T}G_i^{CA}$ and $a_i^{T}G_i^{CA}$ is a T-open.

Conversely, let A_i be a $T_{m_i}(S_i)$ -open for each $i \in I$, and consider $A = \prod_{i \in I} A_i$. If $a = (a_i)_{i \in I} \in A$, there are some elements $s_i \in S_i$ $\forall i \in I$, such that $B_{a_i}(s_i) \subset A_i$. For each s_i we can find $r_i < s_i$ $(r_i \in S_i)$, by the pseudodivisibility, and, if $r = (r_i)_{i \in I}$, then $B_a(r) \subset A$ and $r \in S$. Therefore, $T_m(S) = T$.

3. $T_{m}^{\cdot}(S)$ topologies on abelian 1-groups.

Let $(G,+,\leqslant)$ be an abelian 1-group and (G,G^+,m) its associated generalized metric space.

3.1. Proposition: If S is directed downwards and pseudo-divisible, then G is a topological 1-group under the $T_m(S)$ topology which is not discrete. It is Hausdorff if and only if inf S=0.

Proof: Since $|\mathbf{x}| = |-\mathbf{x}| \quad \forall \mathbf{x} \in G$, the neighbourhoods at zero are symmetric. The pseudo-divisibility ensures that, for each $\mathbf{s} \in S$, there exists $\mathbf{r} \in S$ such that $\mathbf{r} < \mathbf{r} + \mathbf{r} < \mathbf{s}$, hence $\mathbf{B}_{0}(\mathbf{r}) + \mathbf{B}_{0}(\mathbf{r}) \subset \mathbf{B}_{0}(\mathbf{s})$, and, since $\mathbf{a} + \mathbf{B}_{0}(\mathbf{r}) = \mathbf{B}_{a}(\mathbf{r})$, \mathbf{G} is a topological group. Furthermore, $\mathbf{B}_{\mathbf{x}}(\mathbf{r}) \lor \mathbf{B}_{\mathbf{y}}(\mathbf{r}) \subset \mathbf{B}_{\mathbf{x} \lor \mathbf{y}}(\mathbf{s})$ and, consequently, the map $(\mathbf{a}, \mathbf{b}) \to \mathbf{a} \lor \mathbf{b}$ is continuous. Therefore, \mathbf{G} being a topological group, \mathbf{G} is also a topological lattice under the

 $\mathbf{T}_{\mathbf{m}}(\mathbf{S})$ topology, which is not discrete due to pseudo-divisibility.

Finally, (prop. 1.1) inf S=0 implies $T_m(S)$ is Hausdorff. Conversely, if r is an element such that 0 < r < s $\forall s \in S$, we have $r \in B_0(s)$ $\forall s \in S$ and, then, the $T_m(S)$ topology is not Hausdorff.

These topologies are deeply related to the open-interval topologies on an 1-group obtained from the compatible tight Riesz orders we can define on it. Let us recall the following definitions and basic properties [2][6]:

A partially ordered group (G, \leq) is said to be a tight Riesz group (TRG) when it is directed and has the tight Riesz property: for every four elements $a_1a_2b_1b_2$ in G, such that $a_i< b_j$ for i,j=1,2, there exists c&G such that $a_i< c< b_j$ for i,j=1,2.

A tight Riesz group is a topological group under its open-interval topology U_{\leqslant} which is not discrete. If the closure of its positive cone is the positive cone of an ordering \leqslant we say \leqslant is the associated order.

Let (G, \ll) be an 1-group. A compatible tight Riesz order (CTRO) on (G, \ll) is a partial ordering \ll making (G, \ll) a tight Riesz group and having \ll as its associated order.

3.2. <u>Proposition:</u> Let (G) be an abelian 1-group and $SCG^+|\{0\}$ be: i) directed, ii) pseudo-divisible and such that iii) inf S=0. Then, the $T_m(S)$ topology is the open-interval topology associated with some CTRO on (G). Conversely, given a CTRO on (G), there exists S with the above properties such that $T_m(S)$ is its associated open-interval topology.

Proof: If S satisfies the former conditions, then

 $S^* = \{x \in G \mid \exists s \in S \text{ such that } \not \gg s\}$ is the strictly positive cone of a CTRO \leqslant on $(G \not \leqslant)$, since we can easily verify that the "Wirth's conditions" [6] hold.

Now, if a ϵ S*, there exists s ϵ S such that a \geqslant s, and B $_{o}$ (s) $\subset \{x \epsilon G \mid -a < x < a\}$. Besides, if s ϵ S, then s ϵ S* and $\{x \epsilon G \mid -s < x < s\} \subset B_{o}$ (s). Therefore, $T_{m}(S) = U_{\leqslant}$.

Conversely, if P is the strictly positive cone for a CTRO \leq on (G, \leq) , then P obviously satisfies the i) ii) and iii) conditions. Consequently, $T_m(P) = U_{\leq}$ as P coincides with P*.

REFERENCES

- [1] BATLE, N., "Contribución a un estudio básico de los espacios métricos probabilísticos". Tesis doctoral. Barcelona, 1973.
- [2] LOY, R. J., MILLER, J. B., "Tight Riesz groups". J. Australian Math. Soc. 13 (1972), 224-240.
- [3] PONS, M., "Un estudi sobre topologies en espais metrics de Riesz". Tesina. Barcelona, 1976.
- [4] SMARDA, B., "Topologies in 1-groups". Arch. Math. (Brno) 3 (1967), 69-81.
- [5] TRILLAS, E., ALSINA, C., "Introducción a los espacios métricos generalizados". Publ. Funf. Juan March, Serie universitaria 49 (1978).
- [6] WIRTH, A., "Compatible tight Riesz orders". J. Australian Math. Soc., 15 (1973), 105-111.

Departament de Matemàtiques i Estadística
E.T.S. d'Arquitectura
Universitat Politècnica de Barcelona