A CARACTERIZATION OF COMPLETE

ATOMIC BOOLEAN ALGEBRA

by

F. Esteva

In this note we give a caracterization of complete atomic boolean algebra by means of complete atomic lattice. We find that unicity of the representation of the maximum as union of atoms and Λ -infinite distributivity law are necesary and sufficient conditions for the lattice to be a complete atomic boolean algebra.

We denote by L the lattice (L, Λ ,V) with maximum u and minimum o. Let A be the atoms of L and, for every xEL, I_x the set I_x = {aEA / a<x}.

DEFINITION.- L is atomic if, for every xeL, x= $_{a \in I}^{V}_{x}$ a. PROPOSITION.- If L is atomic the two following conditions are equivalent:

- a) For every PCL such that $v_{x \in P} = v_{x \in P} = v$
- b) If $P\subseteq A$ and V a=u, then P=A. a $\in P$ Proof.-a) implies b) for if there exists $P\subseteq A$, $P\neq A$ such that

 $V_{x \in P}$ x=u, then $U_{a \in P}$ $U_{a} = P \neq A = I$ $U_{a \in P}$ $U_{a \in P}$ $U_{a \in P}$ $U_{a \in P}$

$$(\underset{a \in A-I}{\bullet}_{z} = (\underset{a \in H}{\bullet} = (\underset{a \in A-I}{\bullet}_{z} = \underset{a \in H}{\bullet}_{(A-I_{z})} = \underset{a, \text{ contradicting}}{\bullet}$$
b).

COROLARY.-If L is not distributive and it is atomic, then exist, at least, $x \in L$ and $H \nsubseteq I_x$ such that $x = \underset{x \in H}{\longrightarrow} a = \underset{x}{\longrightarrow} a$. Proof.-If for $x \in L$ and for $H \subset I_x$, $x = \underset{x \in H}{\longrightarrow} a$ implies $H = I_x$, by virtue of prop.1 and knowing $I_{\bigwedge x} = \bigcap I_x$ for every P such that $\underset{x \in P}{\bigwedge} x$ exists, we have that the mapping $f : L \xrightarrow{\longrightarrow} (P(A), \cap U)$, $f(x) = I_x$ is a morfism one to one; so that L can be identified with a sublattice of P(A), and therefore is distributive, a contradiction.

THEOREM. - Supose L is atomic and complete, the three following conditions are equivalent:

- a) L is ∧-infinite distributive.
- b) If $P \subset A$ and v = u, then P = A.
- c) L is a complete atomic boolean algebra.

Proof.- a) implies b) for if L is \wedge -infinite distributive and there exists PC A so that $\underset{a \in P}{\checkmark} a = u$, then exists b \in A-P satisfaying b=b \wedge ($\underset{a \in H}{\checkmark} u \overset{-}{I}_{x}$ a) = $\underset{a \in H}{\checkmark} u \overset{-}{I}_{x}$ (b \wedge a) = o , contradiction.

- b) implies c) for if b) is true, the mapping f, $f:L \longrightarrow (P(A), \cap, \cup), f(x) = I_x$ is a isomorfism onto, so that L is a complete atomic boolean algebra.
 - c) implies a). Obvious

It is interesting to remark that the condition a) is not equivalent to L is V -infinite distributive; as the following example shows:

Let L be the set of non negative integers having a

prime decomposition with exponents one, together with zero.L with the operation L.C.M.(V) and G.C.D.(Λ), is a complete atomic V-infinite distributive lattice, but it is not a complete boolean algebra, for if P is the set of primes in L,

$$\begin{pmatrix} v \\ a \in P - \{7\} \end{pmatrix} = 0 \wedge 7 \neq 1 = v \\ a \in P - \{7\} \end{pmatrix} (a \wedge 7),$$

so L is not Λ -infinite distributive.

BIBLIOGRAPHY

- [1].G.BIRKOFF. "Lattice theory". American Mathematical Society. Col. loquium Publication. Vol. XXV. New York, 1968.
- [2] .G.SASZ. "Théorie des treillis".Dunod.Paris ,1971.
- [3] .F.ESTEVA. "Negaciones en retículos completos". Stochastica nº1. Barcelona, 1976.