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THE REDFIELD TOPOLOGY ON SOME
GROUPS OF CONTINUOUS FUNCTIONS.
by

N. Batle and J. Grané

ABSTRACT

The Redfield topology on the space of real-valued con-
tinuous functions on a topological space is studied. (We call
it R-topology for short). The R-neighbourhoods are described
relating them to the connectedness for the carriers. The main
results are:

If the space is totally disconnected without isolated
points the R-topology is indiscrete. Under suitable conditions
on the space R-convergence implies pointwise or uniform con-
vergence. Under some restrictions R-convergence for a net im-
plies that the net be eventually pointwise constant. For bet-
ter behaved spaces we show that the only R-convergent sequen-
ces are the almost constant ones. In spite of corollary 5.2
of [ 11 we give a direct proof for the Redfield topology to
be not discrete. We finally remark that for some spaces the

R-topology is not first countable.

1. INTRODUCTION

We use notation and terminology of [ 1] , where the Red-
field topology for a lattice-ordered group is studied. For

the sake of completeness we recall the basic definitions.
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+
Let G be a lattice-ordered group, G the set of its
. + . P
non-negative elements and Go the set of its positive ele-

ments.
+
Let g€ Go and define

?

I(g) = {hEG+ ] h' such that h v h' =g, hA n' =0}

Call g indiscomposable if I(g) = {0,g} .The set of non
decomposable elements different from zero is denoted by &
A sequence (gn) is called a contraction sequence for
ge if 1) gne ' 2) g1=g, 3) 941 +gn+1§_gn and

4) InE 941 (or equivalently 4 )gn =g ).

Let D ={ge& I there exists a contraction seq. for g}

and let
D = {ne G| [0,hl=f0,n}}
Define for geG:
N(0,g9) =[-g,q9] + g

{N(0,9) | geD;}

[}

Ni (olg)

M (0,9) = {g |geD,}

N3 (Olg) Nl (Olg)L)N2 (Org) .
If D, UD #b put
n
N (0) ={ A Hil Hie N3 (0,9); i=1,...,n}
If BV b, = put

N(0) =G.
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N(0) is then a filter base and there is a unique group-
topology ¥ such that the filter generated by N(0) is the set
of JCneighbourhoods of zero. We call that topology the Red-
field topology on G.

2.- THE REDFIELD NEIGHBOURHOODS IN SPACES OF CONTINOUS FUNC-
TIONS. .

We first establish some elementary facts about ortho-
gonals and non-decomposable elements in the 1-group C(E) of
all real valued continous functions on a topological spéce
E.

From now on we denote by E a fixed topological space. If
g €C(E), Z(g) is the zero-set of g, that is Z(qg) =gm1 (0) and

C(g) is the carrier of g, i.e., C(g) ={xe E| g(x) # 0} . We
have E = C(g)Y Z(g), C(g) is open, Z(g) is closed and the u-
nion is disjoint.
PROPOSITION 2.1.-

Let ge C(E), g positive. Then g is non decomposable if C(g)
is a connected set.

Proof:

If g is decomposable there exists two positive functions

g1, 92€C(E) such that g1 g2 =g, g1 gz2=0. Therefore
C(g)=C(g1)Y C(g2) with C(gi) #0 ; and open.

Suppose now that C(g) is not connected. Being open one



can find two disjoint non void open sets E;{Ez such that C(g)=

= E1Y E2. Define 9;= 9. 1 . The functions 9; are continous

E,
i

and satisfy g1 92 =9, g1 g2=0.
PROPOSITION 2.2

]
Let geC(E), g nonnegative. If g # {0} then Z(g) # ¢.
Proof: Take feg , f#0. There exists xoe E such that
X €C(f) and for some neighbourhood V of X we have VvC C(f).

From proposition 2.2 we deduce inmediately
COROLLARY 2.3

o
Let E be completely regular. If Z(g) #¢ and g is non-
negative, then g # {0}.

COROLLARY 2.4

Let E be completely regular. The two following conditions

are equivalent
o

Nz #9¢ 2) g #{ o}

The complete regularity is not essential for the former
equivalence to hold. The space constructed by E. Hewitt in [5]
is completely regular but the equivalence 2.4. holds.

From the later propositions and the fact that C(E) is

divisible we obtain

P

D2 ¢

{g eC(E) | g is positiv and C(g) connected }

A
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PROPOSITION 2.5
Let g€D;. Then feEN(O,g) if f]f(x)| < g(x) for every xeC(qg).
Proof:
If feN(0,g) we have f = f,+f,, fie[l-g,g], f269 , so we
obtain £ = f; on C(g) and —g(x)j_f(x)f_g(x). Conversely, let
f be such that |f(x)| fg(x) for x€ C(g). On the boundary
dC(g) is g=0 and by continuity one obtains If(x)li_g(x) on
9C(g) and we can define £f; =f on C(g)U 3C(g), £1= 0 on Z(;).

f, is continous and f-f;eqg .

COROLLARY 2.6
If C(g) is dense and connected in E, then

N(0,g9) = "grg] -

3.- THE REDFIELD TOPOLOGY ON SOME SAPCES OF CONTINUOUS FUNC-
TIONS.

PROPOSITION 3.1

Let E be a totally disconnected space with no isolated
points. The Redfield topology on C(E) is indiscrete.

Proof:

If geD it must have a connected carrier, hence C(g) ={x}.
But x is adeherent to E-C(g)=Z(g) because x is not isolated.Hen-
ce g(x)=0 and D; = ¢.

For example C(Q) has indiscrete Redfield topology as well
as C(K), where K is the Cantor set in [0,1] .

We remark that the condition on E of having no isolated

points is essential, for if E has discrete topology C(E) is RE
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and corollary 4.4 of [1] applies. Then the Redfield topology
on C(E) is the product topology.

LEMA 3.2

If E is such that its components Ej are open then gi-

ven Ei and €> 0 there exists giE C(E) such that g. Ei =
4
and Z(gi) = E_Ei'
Proof: Obvious.
POROPOSITION 3.3

Let E be a topological space whose components are open.
If a net fa converges to zero (Redfield) fa R 0, then fa+ 0
pointwise.

Proof:

Given x €E and €>0 we have x eEi for some i and by 3.2

we can get gis C(E) verifying 9, Ei =€ Z(gi) = E—Ei. But

gie D; and so N(O,gi) is a neighbourhood of zero for the Red-
field topology. There exists ao such that qzqo implies

fa € N(O,gi) and using 2.5 we conclude lf (x)|§§ for azgo
PROPOSITION 3.4

Let E have a finite number of connected components, each
of which is open. Then fa R o implies fa - o uniformly, for
every net (fa)'

Proof:

Write E=E; U E, U,....U En where the Ei are the connec-

ted components. Given €>0 find 9 such that 95 Ei=€ ’



Z(gi) = E—Ei and form the zero neighbourhood
n
= N
Now there exists ao such that ngoimplies faeV, hence
fa € N(O,gi) i=1,..,n. But if xe E the x¢ Ei for some i,

therefore |fa (x)|§_€ for all xe E and azqo .

Obviously the hypothesis of 3.4 are verified when E is
connécted or when E is locally connected and compact.

We remark that the hypotesis of 3.3 cannot be weakened,
as the following example shows:

Let E be the subspace of real numbers defined by

E= {xe R| x=0 or x= 1/n, neN}

The only connected sets are the singletons and any con-

tinous function which is zero on {1/n| neN} must be zero on

all E. Hence in this case

+
D; = {f eC(E) there exist neN and reR_~ such that

f= r.1S where s ={ 1/n}}.

It is then obvious that fa R+ 0 iff fa(x) -+ 0 for every
x#0.

PROPOSITION 3.5

Let E be such that its connected components are open,
then the Redfield topology on C(E) is Hausdorff.

Proof:

We apply proposition 5.6 of [1] . Let fe C(E), £>0. Ta-
ke xeE such that f(x)=2e> 0 . If K is the connected component
where x lies we can get a function g such that g| K =€ and

Z(g)=E-K. It is then obvious that fg N(O,q).

29



PROPOSITION 3.6

Let E satisfy
1) The points are zero-sets.
2) If x is not isolated, then there exist two sets E; and Ejp,
with E; open, connected and not empty and E; open such that
E- {x} =E,UE; and x¢ E .

Then if fa R 0 and x is not isolated, fa (x) is eventua-
1ly null.

Proof:

Let x_ be not isolated and put E-{xo} = E,UE,, where E;
and E2 satisfy the conditions 2). There exists a non-negative

g €C(E) such that Z(g) = {xo} . Define g;=g 1E1' One can ease-

ly verify that g; is continuous and C(g;) = E;, so that g;ED;
and therefore N(0,g;) is a Redfield neigbourhood of zero. The-

re exists uosuch that for qiqowe have fae N(0,g;), that is

foc el-g1, g1 + g1 if o >

= * - *
Hence fa ga +fa ’ ga€ [ 91191] ,fa€ g1

Now f& vanishes on Ejand X being adherent to E; we must ha-

ve fa (xo) = 0. Hence
fa(xo) = ga(xo) + f& (xo) =0
Naturally 3.6 applies when E=Rn.
The following result can be proved using proposition
2.35 of Redfield”s Doctoral dissertation and applying 5.6 of

[1] to show that R is Hausdorff. Nevertheless we give a di-

rect proof as a corollary of 3.6.

30
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COROLLARY 3.7

Suppose that E satisfies the requierements of 3.6. Then
the Redfield neigbourhoods of N(0) as defined in the intro-
duction are closed.

Proof:
It will suffice to show that each N(0,g) is closed.
Let fu R £, fae N(0,g). One must show f& N(O,g). But

fa -f R 0. Take xeC(g). Now fa(x)—f(x) shall be eventually

null, so for qzqo , fa(x)=f(x), that is,
lfa(x) < g(x), so |f(x) f_g(x) and the Proposition follows.
LEMA3.8

Let E be a perfectly normal space, F closed in E and

f: F > R continous, fip. There exists f*eC(E) such that
1) f£* |F =f 2) z(f*) = z(f)

Proof:

E is normal, and using Tietze”s theorem one can get
g €C(E) such that g|F= f and g is also nonnegative. Being
E perfectly normal F is a zero-set and there exists a function
h eC(E) with Z(h)=F (we can take h nonnegative) .Define f* =g+h

and one easily sees that f* meets the requirements.

PROPOSITION 3.9
Let E be
1) connected
2) perfectly normal

3) first countable
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4) such that if x€E, x can be written as a finite disjoint
union of 6pen connected sets.

5) countable compact.

Then if the sequence fn R, 0, fn is eventually null.

Proof:

We can take fn nonnegative. Switching down to a sub-
sequence we can suppose “fn“°° < M, for E cannot have iso-
lated points (otherwise it would not be connected) and we
can apply 3.4. Suppose that (fn) is not eventually null. We
can find points (xn) such that fn(xn)= €n # 0. Now (xn) can-
not have an almost constant subsequence because conditions
1) and 2) of 3.6 are verified and the existence of such a
subsequence would contradict 3.6., hence changing to a sub-
sequence we can suppose all (xn) different. Again, as (En)
is bounded, and considering another subsequence we may suppo-
se that (Sn) is convergent. Finally, using sequential compact-
ness, we can select a convergent subsequence (yn) of (xn).
After all choices we get subsequence (gn) of (fn), (yn) of (xn),

(r ) of ( € ) , such that
n n
. N . L. N . - . i
i) Y, Py, ii) r r, iii) All y are different
iv) gn(yn)=rn
There are two possible cases

1) ro# 0. We then consider the closed set F= {yn ,yo} (E is
first countable) and the function f:F > R defined by

-1 -
f(yn)=2 rn , f(yo)=2 1ro , £ is well defined because of iii).

It is also continuous an F, and by Lemma 3.8 there exists a



function f* such that f* F=f and Z(f) = Z(f)=p .The carrier
of f* is all E and being connected, f*t€ Di. The functions 9,
do not belong to the neighbourhood N(0,f), for gn(yn)=rn and
sog ¢ [-£,f] (we are using 2.5).

2) r_=0. Then E~ {yo} = gV EVY ..U E , every E, open and
connected. We again consider the closed set F= {yn,yo} and
ﬁhe functiop f(yn) = 2_1rn ’ f(yo)=0 continuous and well de-

fined on F. We again use Lemma 3.8 and find a continuous ex-

tension f* to all E, verifying Z(f*)={yo} i.e.
*) = -
C(f*)= E {yo}

The functions fi= f 1E can be shown to be continuous by an
argument similar to thét of 2.1, hence C(fi)=Ei and fie Dy, so

that the set
n
V= Q N(0,f;)
is a Redfield neighbourhood of zero in C(E). Now no 9, belongs
to V, for given n €N, we have yns Ei for some i. If gne N(O,fi),

1

th < 27 tradiction.
en gn(yn)__ rn, a contradictio

Proposition 3.9 can be applied, obviously, when E is a
compact non void interval in R". Nevertheless the countable
compactness (equivalent to sequential compactness in presen-
ce of first countability) can be avoided. When E is all R it
can be shown, using local compactness, that the result still
holds. In general when E verifies conditions 1) and 2) of 3.9
and is also metrizable, locally and O-compact one can show
that the only Redfield-convergent sequences are the almost

constant ones.
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We see, in view of 3.9 that if E verifies the requeri-
ments thereof, then the Redfield topology in C(E) is not first
countable because corollary 5.2. of [1] assures that the Red-
field topology in C(E) is not discrete, and having no conver-
gent sequences other than the almost constant it cannot be
first countable.

For the sake of completeness we give an additional proof

for the non-discreteness of the Redfield topology on C(E).
PROPOSITION 3.10

Let E be a perfectly normal and locally compact space.
Then the Redfield topology on C(E) is not discrete.
Proof:

Let V be a Redfield neighbourhood of zero. Then
n
= N
V=0 N(o,gi)
Put Ii = C(gi_! i=1,..,ni Reordering Ii if necessary we can

find k <n such that A= Q Ii #¢ , and AN Ij =¢p if j=k+1,..,n.

Now A is open and there exists a compact neigbouhood K
such that xe K CA, for some x E. Let mi=minK gi and m=minimi#0.
Let U be an open set containing x and contained in K; E-U is

closed and therefore is a zero-set. Take f vanishing exactly

on E-U and nonnegative; f is then bounded on K and hence an all
E. Multiplying if necessary by a constant we may suppose f<m ,
that is f<g,, i=1,..,k. But C(f) is disjoint from PR
and obviously feN(O,gi), i=k+1,..,n and also fe N(O,gi)

i= 1,..,k.
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