SOBRE EL RETICULO DE PROXIMIDADES DE LODATO

por

J. A. MARTÍN RIOJA

Dado un conjunto Ω , se llama proximidad sobre Ω a una relación, δ , definida en $\mathcal{P}(\Omega)$ que verifique:

$$(A2)$$
. $A \delta B \Rightarrow A \neq \phi \text{ y } B \neq \phi$

$$(A3)$$
. $A \cap B \neq \phi \Rightarrow A \delta B$

$$(A4)$$
. $(A \cup B) \delta C \iff A \delta C \circ B \delta C$

$$(A5)$$
. $A \delta B y b \delta C \forall b \in B \Rightarrow A \delta C$.

Se dice separadora si $a \delta b$ implica a = b. (A7)

El par (Ω, δ) recibe el nombre de espacio de proximidad ó espacio de Lodato. Sobre uno de estos espacios se define un espacio topológico (Ω, τ_{δ}) asociado a δ tomando por adherencia de un conjunto M a la familia de todos los puntos próximos a él, es decir

$$\overline{M} = \{x \in \Omega \mid x \ \delta M\} = M^{\delta}.$$

Tal espacio topológico verifica el axioma R_a , es decir

$$x \in \overline{y}$$
 implies $y \in \overline{x}$.

Recíprocamente, sobre todo espacio topológico (Ω, τ) en que se cumpla R_0 , la relación δ en $\mathcal{P}(\Omega)$ definida por «A δ B sí y sólo si \bar{A} \cap \bar{B} $\neq \phi$ » es una proximidad sobre Ω .

Designando por Δ la familia de todas las proximidades sobre Ω , nos proponemos probar que (Δ, כ) es un retículo completo. A tal fin consideramos las siguientes proposiciones:

Proposición 1. — Si Γ es una familia de topologías R_o sobre Ω , también $\overline{\bigcup}_{\tau_i \in \Gamma} \tau_i$ es una topología R_o sobre Ω .

Demostración. Una cierta base, \mathcal{B} , de abiertos en $\overline{\bigcup}_{\tau_i \in \Gamma} \tau_i$ es la familia formada por las intersecciones finitas de elementos de $\bigcup_{\tau_i \in \Gamma} \tau_i$, de forma que $\forall A \in \overline{\bigcup}_{\tau_i \in \Gamma} \tau_i$, con $A \neq \phi$, y $\forall x \in A$ resulta que $\exists B \in \mathcal{B}$ tal que $x \in B$ C A y B es de la forma $B = A_1$ \cap ... \cap A_n , con $A_j \in \bigcup_{\tau_i \in \Gamma} \tau_i$ j = 1 ,..., n.

Puesto que $\overline{\bigcup_{\tau_i \in \Gamma}} \tau_i$ es más fina que $\tau_i \ \forall \ \tau_i \in \Gamma$, si designamos por \overline{x} y \overline{x} las adherencias de x respectivamente en $(\Omega, \overline{\bigcup_{\tau_i \in \Gamma}} \tau_i)$ y (Ω, τ_i) tendremos

$$\overline{x} \subset \frac{i}{\overline{x}} \subset A_j \ j = 1, ..., n$$

ya que para cada $j \in \{1, ..., n\}$ existe algún i tal que $A_i \in \tau_i$. Por tanto

$$\bar{x} \subset B \subset A$$

y
$$(\Omega, \overline{\bigcup_{\tau_i \in \Gamma}} \tau_i)$$
 es R_o .

Estamos ahora en condiciones de poder enunciar la

Proposición 2. – La familia \mathcal{F} de todas las topologías R_o sobre Ω , ordenada por medio de la inclusión, constituye un retículo completo.

En efecto. La (Prop. 1. -) nos asegura que dada cualquier subfamilia (en particular dos) Γ \subset \mathcal{F} , la topología $\bigcup_{\tau_i \in \Gamma} \tau_i \in \mathcal{F}$ y es el supremo de Γ ; así mismo implica que la topología engendrada por todas las topologías R_o sobre Ω incluidas en $\bigcap_{\tau_i \in \Gamma} \tau_i$ (la grosera será una de ellas), también será de la familia \mathcal{F} , es decir.

$$\overline{\bigcup_{\tau_{j} \in \bigcap_{\tau_{i}} \tau_{i}}} \tau_{j} \in \mathcal{F}$$

y será el ínfimo de Γ . Tendremos, pues, que $(\mathcal{F}, \mathbf{c})$ es un retículo completo y completo, de máximo $\mathfrak{L}(\Omega)$ y mínimo $\{\phi, \Omega\}$.

La interseción de dos topologías R_o , sobre un mismo conjunto, puede

no verificar esta propiedad, tal como muestra el

Ejemplo. Sobre $\Omega = (0,1]$ consideramos dos familias de cerrados que engendran espacios topológicos R_o : C_1 , formada por ϕ , Ω y las uniones finitas de términos de la forma (1/(n+1), 1/n] con $n \in N_o$, y $C_2 = \{\phi, \Omega, (0, \frac{1}{2}], (\frac{1}{2}, 1]\}$. La intersección $C_1 \cap C_2 = \{\phi, \Omega, (\frac{1}{2}, 1]\}$ genera sobre Ω un espacio no- R_o .

Se conocen ejemplos en que no es proximidad sobre Ω la unión y/ola intersección de dos proximidades sobre dicho conjunto. Con todo, estudiaremos ahora el subconjunto $\Delta_r \subset \Delta$, de las proximidades sobre Ω que inducen la misma topología 7, probando que sobre él, el orden dado por **>** es de tipo reticular, con ínfimo dado por la unión.

Proposición 3. — Si Δ_{τ} es el conjunto de las proximidades sobre Ω que inducen τ , y $\{\delta_i \mid i \in \Lambda\}$ $\subset \Delta_{\tau}$ entonces $\bigcup_{i \in \Lambda} \delta_i \in \Delta_{\tau}$.

Veamos primeramente que $\bigcup_{i \in \Lambda} \delta_i$ verifica los axiomas de proximidad. Respecto (A1), (A2) y (A3) basta considerar que

midad. Por ser δ_i proximidad para todo $i \in \Lambda$, tendremos que

$$A \cap B \neq \phi \Rightarrow (A, B) \in \delta_i \quad \forall i \in \Lambda \Rightarrow (A, B) \in \bigcup_{i \in \Lambda} \delta_i.$$

Probemos que verifica (A4):

$$(A \cup B, C) \in \bigcup_{i \in \Lambda} \delta_i \iff \exists k \in \Lambda \ (A \cup B, C) \in \delta_k$$

que por ser δ_k proximidad, equivale a

$$\exists \ k \in \Lambda \ (A,C) \in \delta_k \ \text{\'o} \ (B,C) \in \delta_k \ \Longleftrightarrow \ (A,C) \in \bigcup_{i \in \Lambda} \delta_i \ \text{\'o} \ (B,C) \in \bigcup_{i \in \Lambda} \delta_i.$$

El mayor interés reside en la demostración de (A5), en la que interviene la hipótesis de que todas las $\delta_i \in \Delta_\tau$ inducen la misma topología τ . Observemos que si δ_1 , $\delta_2 \in \Delta_\tau$, se tendrá para todo $A \subset \Omega$ que $\overline{A} = A^{\delta_1} = A^{\delta_2}$ es decir $x \in A^{\delta_1} \Leftrightarrow x \in A^{\delta_2}$ ó equivalentemente $x \delta_1 A \Leftrightarrow x \delta_2 A$. Si $(A, B) \in \bigcup_{i \in \Lambda} \delta_i$ y $\forall b \in B$ $(b, C) \in \bigcup_{i \in \Lambda} \delta_i$ resultará que, existe algún $j \in \Lambda$ para el que $(A, B) \in \delta_j$ y existe algún $k \in \Lambda$ tal que $(b, C) \in \delta_k \forall b \in B$. Pero puesto que $(b, C) \in \delta_k \iff b \in C^{\delta_k} = \overline{C} = C^{\delta_j}$ que equivale a $(b, C) \in \delta_j$, tendremos que

$$\exists j \in \Lambda \text{ tal que } (A, B) \in \delta_i \text{ y } (b, C) \in \delta_i \forall b \in B$$

y por tanto, para algún $j \in \Lambda$ $(A, C) \in \delta_j$ que implica $(A, C) \in \bigcup_{i \in \Delta} \delta_j$.

Probado que $\bigcup_{i \in \Lambda} \delta_i$ es una proximidad sobre Ω , vemos que **p**ertenece a Δ_r : $\bigcup_{i \in \Lambda} \delta_i$

$$x \in A \xrightarrow{i \in \Lambda} \overset{\delta_i}{\iff} x(\bigcup_{i \in \Lambda} \delta_i) A \iff \exists k \in \Lambda \text{ tal que } x \delta_k A \iff \exists k \in \Lambda$$

para el que $x \in A^{\delta_k} \iff x \in \bigcup_{i \in \Lambda} A^{\delta_i} = \bar{A}$

por ser $A^{\delta_i} = \bar{A} \ \forall \ i \in \Lambda$.

Podemos ahora afirmar:

Proposición 4. — El subconjunto Δ_{τ} de las proximidades sobre Ω que inducen la misma topología 7, ordenado por inclusión constituye un retículo completo.

Hemos visto que δ_1 , $\delta_2 \in \Delta_\tau$ implica que δ_1 \mathbf{U} $\delta_2 \in \Delta_\tau$, y está claro que se trata de ínfimo de ambas.

Consideremos la unión de todos elementos de Δ_r incluidos en δ_1 y δ_2 simultáneamente; $\bigcup_{\Lambda_{\tau^3} \delta_i} \zeta$ se trata de un elemento de Δ_r , precisamente el $\Delta_{\tau^3} \delta_i \zeta$ so trata de un elemento de Δ_r , precisamente el $\Delta_{\tau^3} \delta_i \zeta$ so trata de un elemento de Δ_r , precisamente el $\Delta_{\tau^3} \delta_i \zeta$ so trata de un elemento de Δ_r , precisamente el Δ_r so trata de un elemento de Δ_r so trata de un elemento de

menor de los que son simultáneamente mayores que δ_1 y δ_2 , es decir su supremo. Podemos extender la existencia de supremo a una familia cualquiera $\{\delta_i \mid i \in \Lambda\} \neq \phi$ de los elementos de Δ_τ por medio de $\bigcup_{\Lambda_\tau \ni \delta_i} \delta_i$.

Llegamos pues a que (Δ_{τ}, \supset) es un retículo completo, con supremo δ_{τ} (proximidad generada por τ) e ínfimo $\bigcup_{i} \delta_{i}$.

El punto fundamental de este primer objetivo es probar el carácter reticular de (Δ, \supset) ; disponemos ahora de medios suficientes como para enunciar la siguiente

Proposición 5. — El conjunto Δ , de las proximidades sobre Ω , ordenado por medio de la inclusión, constituye un retículo completo.

Sean δ_1 , $\delta_2 \in \Delta$, y τ_{δ_1} , τ_{δ_2} sus topología asociadas; ambas son R_o y, por tanto, también lo es τ_{δ_1} $\overline{\mathbb{U}}$ τ_{δ_2} (Vid. Prop. 1. —). Veamos que la proximidad δ_ν , unión de todas las proximidades cuya topología asociada es T_{δ_1} $\overline{\mathbb{U}}$ T_{δ_2} y son mayores que δ_1 y δ_2

$$\delta_{\scriptscriptstyle{
u}} = \mathop{\cup}\limits_{\Delta_{\, au_{\delta_2}} ar{\mathsf{U}} \, au_{\delta_2}
i \, \delta_j \, \subset \, \delta_1 \, \mathsf{N} \, \delta_2}$$

es el supremo de $\{\delta_1, \delta_2\}$. Desde luego $\delta_r \subset \delta_1 \cap \delta_2$, y por tanto $\delta_r \subset \delta_1$ y $\delta_r \subset \delta_2$, y además $\delta_r \in \Delta_{\tau_{\delta_1} \ \overline{U}} \ \tau_{\delta_2}$, es decir, genera la topología $\tau_{\delta_1} \ \overline{U} \ \tau_{\delta_2}$. Si $\delta' \subset \delta_1$ y $\delta' \subset \delta_2$ resultará que $\tau_{\delta'} \supset \tau_{\delta_1}$ y $\tau_{\delta'} \supset \tau_{\delta_2}$, luego $\tau_{\delta'} \supset \tau_{\delta_1} \ \overline{U} \ \tau_{\delta_2}$; y si $\delta' \supset \delta_r$, tendríamos $\tau_{\delta'} \subset \tau_{\delta_1} \ \overline{U} \ \tau_{\delta_2}$, y por tanto $\delta' \in \Delta_{\tau_{\delta_1} \ \overline{U}} \ \tau_{\delta_2}$ La (Prop. 4. —) asegura $\delta' = \delta_r$.

Partiendo nuevamente de δ_1 , $\delta_2 \in \Delta$ y τ_{δ_1} , τ_{δ_2} , consideramos la topología, R_o sobre Ω , ínfimo de $\{\tau_{\delta_1}, \tau_{\delta_2}\}$, que designaremos por $\tau_{\delta_1} \overline{\bigcap} \tau_{\delta_2}$. En el retículo condicionalmente completo $(\Delta_{\tau_{\delta_1} \overline{\bigcap} \tau_{\delta_2}}, \supset)$ de las proximidades que generan $\tau_{\delta_1} \overline{\bigcap} \tau_{\delta_2}$ tomaremos δ_A , definida por

$$\delta_{\Lambda} = egin{array}{c} oldsymbol{U} & oldsymbol{\delta}_i \ & \Delta \, au_{oldsymbol{\delta}_1 \, ar{\mathsf{D}}} oldsymbol{ au}_{oldsymbol{\delta}_1 \, oldsymbol{\mathsf{D}}} \, oldsymbol{\delta}_i \, oldsymbol{\mathsf{D}} \, oldsymbol{\delta}_1 \, oldsymbol{\mathsf{D}} \, oldsymbol{\delta}_2 \ & \Delta \, au_{oldsymbol{\delta}_1 \, ar{\mathsf{D}}} oldsymbol{\sigma}_2 \, oldsymbol{\mathsf{D}} \, oldsymbol{\mathsf{D}}_1 \, oldsymbol{\mathsf{D}} \, oldsymbol{\mathsf{D}}_2 \ & \Delta \, oldsymbol{\mathsf{D}}_1 \, oldsymbol{\mathsf{D}}_2 \, oldsymbol{\mathsf{D}}_2 \, oldsymbol{\mathsf{D}}_1 \, oldsymbol{\mathsf{D}}_2 \, oldsymbol{\mathsf{D}}_2 \ & \Delta \, oldsymbol{\mathsf{D}}_1 \, oldsymbol{\mathsf{D}}_2 \, oldsymbol{$$

y probaremos que se trata del ínfimo de $\{\delta_1, \delta_2\}$. En primer lugar $\delta_\Lambda \supset \delta_1$ \cup δ_2 , luego $\delta_\Lambda \supset \delta_1$ y $\delta_\Lambda \supset \delta_2$. Dada $\delta' \supset \delta_1$, y $\delta' \supset \delta_2$ tendremos $\tau_{\delta'} \subset \tau_{\delta_1}$ y $\tau_{\delta'} \subset \tau_{\delta_2}$ y, por tanto, $\tau_{\delta'} \subset \tau_{\delta_1} \cap \tau_{\delta_2}$; si además $\delta' \subset \delta_\Lambda$, resultará $\tau_{\delta'} \supset \tau_{\delta_1} \cap \tau_{\delta_2}$ y $\delta' \in \Delta_{\tau_{\delta_1}} \cap \tau_{\delta_2}$, donde δ_Λ es la mayor entre las que verifican ser menores que δ_1 y δ_2 .

Obsérvese que la demostración anterior permanece válida si se substituye $\{\delta_1, \delta_2\}$ por cualquier subfamilia no vacía de Δ , por lo que (Δ, \supset) constituye un retículo completo, con las proximidades discreta y grosera como primer y último elemento.

BIBLIOGRAFÍA

ČECH Topological Spaces. Interscience Publisher; John Wiley and son (1966). Lodato. On topologically induced generalized proximity relations.

Proc. Am. Math. Soc. 15 pag. 417-422. (1964).

Lodato. On topologically induced generalized proximity relations II.

Pacific. J. Math. 17 pag. 131-135 (1966).

NAIMPALYY y WARRACK. Proximity Spaces. Cambridge University Press. (1970) Szász. Théorie des treillis. Dunod. Paris (1971).