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Abstract

Equivalence testing is the natural approach to many statistical problems. First, its main application,
bioequivalence testing, is reviewed. The basic concepts of bioequivalence testing (2×2 crossover
designs, TOST, interval inclusion principle, etc.) and its problems (TOST biased character, the carry-
over problem, etc.) are considered. Next, equivalence testing is discussed more generally. Some
applications and methods are reviewed and the relation of equivalence testing and distance-based
inference is highlighted. A new distance-based method to determine whether two gene lists are
equivalent in terms of their annotations in the Gene Ontology illustrates these ideas. We end with
a general discussion and some suggestions for future research.
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1 Introduction and motivation

Consider the following situation: an experimenter has obtained some data under each
of two distinct experimental conditions (e.g. control and treated patients), with the
objective of demonstrating the non-existence (or more properly, the near non-existence)
of differences between the two experimental conditions –e.g. the absence of an adverse
drug reaction. In the subsequent statistical analysis, a known (but still frequent in
practice) error is to test a null hypothesis stating equality (e.g. the corresponding means
are equal) vs. an alternative hypothesis stating the existence of differences.
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Suppose that the above test has been properly applied. If the computed p-value is
greater than the previously stated significance level (e.g. a p-value of 0.12 when the
significance level was 0.05), the null hypothesis will not be rejected. As is well known
(but not always taken into account in practice), non-rejection of the null hypothesis
is not “proof” of its validity. In such a situation, the p-value may be accompanied by
some post-experiment or post-hoc power calculations, in order to give more “credibility”
to the null hypothesis. Such observed power computations consist of calculating the
probability of rejecting the null hypothesis under a distributional setting compatible
with the test assumptions, and under parameter values defined by appropriate summary
statistics obtained from the data. For example, under the typical Student’s t-test for
comparing the means of two separate groups, the post-experiment power calculations
will assume normality and a nature state compatible with the alternative hypothesis,
characterised by the estimated difference of means and the value of the pooled variance
estimate. The assumed rationale of these power calculations is that a high observed
power (e.g. greater than 0.9 or 0.95) “reinforces the credibility” of the null hypothesis,
which could not be rejected “even” under such high power or low type II error
probability. In fact, observed power calculations do not have any evidential value: see,
for example, Hoenig and Heisey (2001).

It might also be possible to find a situation where the p-value leads to significant results
with a very high power, possibly due to a very large sample size. The null hypothesis of
effect non-existence would, therefore, be rejected, even if such an effect was negligible, i.e.
the effect is statistically but not practically (e.g. clinically) significant.

More tenable approaches are based on improving the evidential value of p-values,
for example using some sort of p-value calibration (preferably under a Bayesian point of
view), as in Sellke et al. (2001) or in Girón et al. (2006), or, in a fully Bayesian setting,
using Bayes factors and posterior probabilities, as in Moreno and Girón (2006). Under
a frequentist approach, the best policy would be to recognise the inherent asymmetry
of the risks associated with both hypotheses, and to invert their roles. If the end goal is
to “demonstrate” the non-existence of effect (or more generally, of differences), a more
dependable approach would be to establish an alternative hypothesis of “near equality”
(not of strict equality) versus a complementary null hypothesis of “sufficiently large
difference”. This approach, where the alternative hypothesis defines the effect non-
existence as equivalence of parameters rather than strict equality, is taken in equivalence
testing. It is also compatible with a Bayesian point of view.

The rest of the paper is organised as follows. The second section is devoted to
bioequivalence (BE) testing, by far the most common equivalence situation. This will
provide a reference case sufficient to establish the main ideas and problems. The third
section is devoted to evaluating the potentialities of this approach in more general terms,
to establish their relations with a distance-based approach to statistics and to illustrate
these ideas with a new distance-based equivalence test in bioinformatics. The last
section brings together these ideas in a final discussion.
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2 Bioequivalence testing

2.1 Statement of the bioequivalence problem

When the patent period of a drug is going to expire, the company that developed
the brand-name “innovator” product based on this drug may try to develop a new
formulation or dosage form with the same active ingredient, in order to extend its
market exclusivity. Concurrently, other companies may try to develop generic forms
based on the same active principle as the innovator product. To obtain approval
of these alternatives, most regulatory agencies, including the U.S. Food and Drug
Administration (FDA) and the European Medicines Agency (EMEA), require proof of
“equivalence of average bioavailabilities” or average bioequivalence (ABE), between
the brand (innovator) product, commonly referred to as the “reference” (R) product, and
the new dosage form or generic copy, commonly referred to as the “test” (T) product.
An equivalence trial is much less expensive and easier to perform than a clinical trial
for the development of a brand new drug. The former is based on sample sizes usually
of 24 to 36 healthy volunteers as experimental subjects, in comparison with the sample
sizes of thousands of patients commonly required in the latter.

The concept of bioavailability refers to the rate and extent by which the drug
is available at its site of action. This is a complex and multidimensional concept.
Quantitatively, it is expressed by several measures obtained from the curve of the
concentration of drug in blood or plasma versus time, observed in each subject after a
single-dose administration. The main bioavailability measures are tmax, the time until the
maximum concentration is reached, Cmax, the maximum concentration, AUC0−t, the area
under the curve from the dose administration to the last observation time, and AUC0−∞,
the area under the curve until infinity. The underlying assumption in the requirement
of equivalence of average bioavailability is that, as the drug or active principle is the
same in all formulations under comparison, its therapeutic effect depends mainly on its
concentration at the site of action, which should be similar for all products.

As summarised in Chow and Liu (2000), several criteria of ABE have been used
since the 1970s, according to several regulatory recommendations. These include what
are known as the 80/20 rule, the 75/75 rule, the ±20% rule and the (currently most
widely used) 80%/125% rule.

The 80/20 rule states that, to declare bioequivalence, these two conditions must be
fulfilled:

1. The test and reference means should not be statistically significantly different
(commonly at a 5% level).

2. There should be at least an 80% power of detecting differences if the true
difference were at least as large as 20% of the observed reference average.
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Note that condition (ii) is an example of “observed power” computation.
The 75/75 states that at least 75% of the subjects must show a bioavailability

value for the new formulation that is at least 75% of the corresponding bioavailability
measurement for the reference formulation.

The ±20% rule concludes bioequivalence if the mean bioavailability of the test
formulation, μT , is within ±20% of the mean of the reference formulation, μR, i.e., in
terms of a ratio of means, if 0.8 < μT / μR < 1.20.

Most regulatory agencies (e.g. CDER, 2001) recommend making all analyses for
log-transformed data. The 80%/125% rule adapts the preceding criterion to analyses
made at a logarithmic scale and, at the same time, enables bioequivalence to be stated
in terms of a difference rather than a ratio. If, at the original bioavailability scale, a
geometric means ratio between 0.8 and 1.25 is admissible, i.e. 0.8 < mT / mR < 1.25 =
1 / 0.8, assuming that the means of the log-transformed variables correspond to the log-
transformed geometric means, this inequality becomes −0.22314 = log(0.8) < μT − μR

< log(1.25) = +0.22314. This is the basis of the ±0.223 rule on the logarithmic scale,
equivalent to the 80%/125% rule on the original scale.

The ±20% and the 80%/125% criteria are used in conjunction with inferential
procedures to ensure type I and type II error control. The first one requires inferential
methods on the ratio of means; and the second one, on the difference.

Metzler (1974) was possibly the first author to recognise the inadequacy of the
classical testing approach in bioavailability studies and the need for an equivalence
approach, though the need for such an approach in a more general context can be traced
back to Lehmann (1959). The reviews by Senn (2001) and Zapater and Horga (1999) are
to some extent complementary to the present paper. In the next subsections we review
bioequivalence in its most common setting: under a fixed sample size crossover design
and for normal log-transformed data.

2.2 Average Bioequivalence. Design and basic statistical analysis

The commonest experimental design in bioequivalence studies is a 2×2 crossover
design. In it, each experimental subject receives a single dose of both formulations,
R and T, in one and only one of two possible orders or treatment sequences, RT or TR.
There is always a “washout period” between dose administrations, in order to avoid
“carry-over” effects, a possible influence or interaction of the first dose on the second.
A sample of N = n1 + n2 subjects are randomly allocated, n1 to sequence RT and n2

to sequence TR. For a given variable Y on the logarithmic scale, say Y = log Cmax or
Y = log AUC0−t, Yi jk will designate an observation made on the i-th individual, in the
j-th period and the k-th sequence, i = 1, . . . , nk, j = 1,2 and k = 1,2.

With slight variants, all authors follow the linear model and basic analysis for 2×2
crossover trials proposed by Grizzle (1965). We consider the following underlying linear
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model:

Yi jk = μ + Pj + F( j,k) +C( j−1,k) + S i(k) + ei jk (1)

where μ is an overall mean, Pj is the fixed effect of the administration period j, F( j,k)

is the fixed effect of the formulation administered on the k-th sequence and j-th period,
and C( j−1,k) corresponds to the fixed effect of carry-over. It can only occur during the
second period.

The possible carry-over effect of the reference formulation from the first period to
the second period in sequence 1 is denoted by CR, while the equivalent effect of the test
formulation in sequence 2 is denoted by CT . Therefore:

C( j−1,k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CR if j = 2 and k = 1
CT if j = 2 and k = 2
0 otherwise

with CR = −CT = C. Similarly,

F( j,k) =

{
FR if j = k
FT if j � k

with FR = FT = F, and P1 = P2 = P as we consider
∑2

j=1 Pj = 0.
We will designate the formulation effect as φ = FT – FR = –2F, the period effect as

π = P2 – P1 = –2P and the carry-over effect as κ = CT – CR = –2C.
S i(k) ∼ N

(
0, σ2

S

)
represents the random effect of the i-th subject nested in the

k-th sequence and ei jk ∼ N(0, σ2
τ( j,k)) is the random error or residual, or disturbance

term. Additionally, we assume independence between all S i(k) and all ei jk, and mutual
independence between {S i(k)} and {ei jk}.

Subindex τ ( j, k) in the residual variance indicates a possible dependence on the
experimental conditions. Obviously one possibility is constant variance, σ2 = σ2

τ( j,k).
We will assume a slightly more general model, with possible dependence on the
administered formulation:

σ2
τ( j,k) =

{
σ2

R if j = k
σ2

T if j � k.
(2)

The inference on the formulation effect is based on the period difference contrasts for
each subject i within each sequence k, dik = 0.5 (Yi2k −Yi1k). Its expectation and variance
are:

E (dik) =

{
1
2

(π + φ +CR) if k = 1
1
2

(π − φ +CT ) if k = 2
var (dik) = 1

4

(
σ2

R + σ
2
T

)
.

(3)
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If d̄k = n−1
k

nk∑
i=1

dik are the sample means of the period differences, its difference:

D̄ = d̄1 − d̄2 (4)

is an unbiased estimate of the formulation effect φ, provided that no carry-over is
present, i.e. if κ = 0.

The standard error of D̄ can be independently estimated by

ŝeD̄ = σ̂d

√
1
n1

+
1
n2

= σ̂d

√
N

n1n2

(5)

where

σ̂2
d =

1
n1 + n2 − 2

2∑
k=1

nk∑
i=1

(
dik − d̄k

)2
(6)

estimates the variance in (3). Alternatively, one may consider that σ̂2
d corresponds to

half the ANOVA estimate of the disturbance terms variance:

σ2 =
1
2

(
σ2

R + σ
2
T

)
, (7)

sometimes denoted σ̂2
Res(for “residual”) or σ̂2

W (for “within” subjects).
An alternative way of defining D̄ is based on the “least squares” means of the test

and reference formulation:

ȲR =
1
2

(
Ȳ·11 + Ȳ·22

)
and ȲT =

1
2

(
Ȳ·21 + Ȳ·12

)
,

where Ȳ· jk = (1/nk)
∑nk

i=1 Yi jk is the average of all observations in the j-th period and k-th
sequence. Its difference coincides with (4):

D̄ = ȲT − ȲR. (8)

The establishment of ABE is stated in terms of an equivalence test for the formulation
effect φ:

H0 : φ ≤ θ1 and φ ≥ θ2

H1 : θ1 < φ < θ2
(9)

where normally −θ1 = θ2 = θ = 0.223. In the following, if nothing more is specified, we
will assume symmetrical equivalence limits, ±θ = ±0.223 for data on the logarithmic
scale.
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Schuirmann (1987) suggested decomposing the above hypothesis testing problem in
two one-tail hypothesis testing problems:

H01 : φ ≤ θ1

H11 : φ > θ1
and

H02 : φ ≥ θ2

H12 : φ < θ2
(10)

and to conclude ABE, if and only if both H01 and H02 were rejected at a chosen α nominal
level of significance (e.g. 0.05). The one-sided tests are easily implemented, since the
statistic

T =
D̄ − φ

ŝeD̄

(11)

follows a Student’s central distribution, with N – 2 degrees of freedom. This provides
an α level test, as a direct consequence of the intersection-union principle: see Berger
(1982) and Berger and Hsu (1996).

The above procedure, known as the Two One-Sided Test (TOST) procedure, is
operationally equivalent to the “confidence interval inclusion principle”, say, to declare
ABE if the usual 1 – 2α shortest confidence interval:

D̄ ± t(α,N−2) ŝeD̄ (12)

where t(α,N−2) is the 1 – α quantile of a Student’s t distribution with N – 2 degrees of
freedom, is fully included in the bioequivalence limits, [θ1, θ2]. This principle was first
pointed out by Westlake (1972). See Wellek (2003) for a discussion in more general
terms. Declaring ABE if the 90 % interval (12) for log-transformed data is included
between the limits ±0.233 is the current methodological mainstream in bioequivalence
studies.

The use of a 1 − 2α interval for a test of size α may seem counter-intuitive. As
is shown in Munk and Pflüger (1999) in more general terms, this relation between
confidence and test size requires the fulfilment of two conditions: convexity of
the parametric region associated with the alternative hypothesis and an equivariance
property of the confidence interval. If I1−2α stands for a 1–2α confidence interval,
particularising the equivariance condition to the inference problem considered here,
it may be stated as I1−2α

(
dφ

(
D̄

)
, ŝeD̄

)
= 2φ − I1−2α

(
D̄, ŝeD̄

)
with respect to the

transformation dφ(x) = 2φ – x. This equivariance condition is fulfilled by (12) but
relaxing this requirement in other confidence intervals leads to 1 – α confidence intervals
associated to α size tests. This is the case for the three confidence intervals described
below.

Westlake (1976), from controversial considerations on the need of symmetry for any
bioequivalence decision rule, introduced the following confidence interval:[

D̄ − t2 ŝeD̄, D̄ − t1 ŝeD̄

]
(13)
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where t1 and t2 must satisfy the equations

Pr {t1 < T < t2} = 1 − α
(t1 + t2) ŝeD̄ = 2D̄

(14)

in order to define a symmetric around-zero interval, with 100 % coverage if the true
formulation effect (in the logarithmic scale) is null, φ = 0, and coverage tends to 1 –
α as φ tends to infinity. It ensures a bioequivalence test of size α when the interval
inclusion rule is applied. The computation of (13) needs a trial-and-error iteration.

Hsu et al. (1994) introduced the following intervals not requiring any trial and error
step, also with confidence level 1 – α and associated with bioequivalence tests of size α:

±
(∣∣∣D̄∣∣∣ + t(α,n1+n2−2) ŝeD̄

)
(15)

and [
min

(
0, D̄ − t(α,n1+n2−2) ŝeD̄

)
, max

(
0, D̄ + t(α,n1+n2−2) ŝeD̄

)]
. (16)

Interval (15) is symmetrical and both have asymptotic confidence level 1 – α, and 100 %
coverage if φ = 0. By construction, there is an inclusion relation in the sense of (16) ⊂
(15) ⊂ (13). Thus, from (13) to (16), the power of the corresponding α level tests is not
decreasing, and possibly increases.

The properties of the above intervals, and their relation to α level tests, are
summarized in Chow and Shao (2002).

Rodda and Davis (1980) interpreted the confidence interval inclusion principle from
a Bayes point of view. Under model (1) and no carry-over effect, the statistics d̄1, d̄2

and (N − 2) σ̂2
d are independently distributed, d̄k ∼ N

(
ξk,

σ2

2

)
with ξ1 = 0.5 (π + φ),

ξ2 = 0.5 (π − φ) and (N − 2) σ̂2
d ∼ σ2

2
χ2

N−2. Assuming independent and locally uniform
non-informative priors for ξ1, ξ2 and σ2, it is finally found that the posterior distribution
of

φ − D̄
ŝeD̄

(17)

is a central Student’s t with N – 2 degrees of freedom. This allows a probabilistic
interpretation in terms of credible intervals. For example, the 1 – 2α highest density
interval is computationally identical to the shortest confidence interval (12). But now,
declaring bioequivalence when it is included within the bioequivalence limits ±θ may
be interpreted as imposing the condition that the posterior probability of –θ < φ < +θ
must be no less than 1 – 2α.
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2.3 An ABE study example

We illustrate the preceding basic bioequivalence analyses with the results of Al Mohizea
et al. (2007), a bioequivalence study on two forms (the new form gemifloxacin 320
mg/tablet vs. the reference form factive 320 mg/tablet) of the antibiotic Gemifloxacin.
The study was performed in 24 healthy volunteers under a 2×2 crossover design.

AUC0−t AUC0−∞ Cmax

Interval limits
Lower Upper Lower Upper Lower Upper

In
te

rv
al

ty
pe

“Shortest” (12) 87.48 107.83 88.72 108.19 92.08 113.47
Westlake (13) 87.12 114.79 88.15 113.44 87.55 114.22
Symmetric (15) 87.48 114.32 88.71 112.72 88.13 113.47
“Optimal” (16) 87.48 107.83 88.71 108.19 92.08 113.47

The D̄ values for log AUC0−t, log AUC0−∞ and log Cmax were –0.0292, –0.0205 and
0.0220, respectively. The standard errors ŝeD̄ for the same pharmacokinetic measures
were 0.0609, 0.0578 and 0.0608. These results lead to the following standard “shortest”
90 % confidence interval for log AUC0−t:

D̄ ± t(α,N−2) ŝeD̄ = −0.0292 ± 1.7171 × 0.0609 = [−0.1338, 0.0754]

which leads to the following confidence interval for the ratio in the original scale:
[exp(−0.1338), exp(0.0754)] = [0.8748, 1.0783] or [87.48, 107.83] in percentage terms.

As this interval is included in the bioequivalence limits [80, 125], bioequivalence
should be declared. Similarly, the confidence intervals for the other variables are
indicated in the table above, with a similar conclusion of bioequivalence.

Equivalently, the p-value for the upper and lower Schuirmann’s TOST is less than
0.0001 in all cases.

The limits of the alternative confidence intervals discussed in the previous section
are also shown in the table. In all cases bioequivalence should be declared. Note that
to compute the 95 % Westlake confidence interval, we first need the limits satisfying
equations (14). For example, these values are t1 = −2.7442 and t2 = 1.7845 for AUC0−t.

2.4 The power of the TOST procedure and scaling methods

The power of the TOST test, or its interval inclusion equivalent, can be computed as:

β (φ, σ) =
ν(θ/σ; n1 , n2, α)∫

0

[
Φ

(√
n1n2

N
(θ − φ)
σ

− t(α,N−2)ν

)
− Φ

(√
n1n2

N
(θ + φ)
σ

− t(α,N−2)ν

)]
√

N − 2 gχ
(√

N − 2ν
)

dν
(18)
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where gχ stands for the χ-distribution with N – 2 degrees of freedom and

ν (θ/σ; n1, n2, α) =

√
n1n2

N
θ

σ

(see Wellek, 2003, p. 211).
The most obvious consequence of (18) is that, for a fixed sample size, β(φ, σ)→ 0 as

σ→ ∞, for any value of the formulation effect, φ. This means that there are alternatives
with β(φ, σ) < α. This biased character of the TOST procedure has great practical
importance in “high-variability” (HV) drugs or drug products. These are products
containing drugs of poor pharmaceutical quality as a cause of their high variability.

A drug is assumed to be HV when the observed coefficient of variation CV (on the
original scale) associated with the ANOVA estimate σ̂2

Res = 2σ̂2
d exceeds 30 % (Blume

and Midha, 1993). Sometimes this threshold is put at 25 %. The coefficient of variation
on the original scale is related to variance on the logarithmic scale by means of the
relation:

CV
(
σ2

)
=

√
exp (σ2) − 1. (19)

A general discussion on HV drugs analysis can be found in Shah et al. (1996). The
main problem with HV drugs is the low power of the TOST procedure when used
with the usual sample sizes in bioequivalence trials: at most, a few dozen subjects.
Bioequivalence trials with hundreds or even thousands of individuals, which would be
required for some HV drugs, are generally considered unfeasible.

Anderson and Hauck (1983) proposed a procedure that is more powerful than TOST,
but does not adequately control Type I error probability. The test of Berger and Hsu
(1996) is nearly unbiased and uniformly more powerful than TOST, but it is not widely
used in practice, possibly due to its (moderate) complexity and because the rejection
region includes values of D̄ outside the limits ±θ for large values of ŝeD̄. This counter-
intuitive character was pointed out by Schuirmann in the discussion accompanying
Berger and Hsu (1996), and questioned in Perlman and Wu (1999) in a well-founded
argument. This latter paper (which adopts a Fisherian perspective) seems to continue
the debate between Fisher and Neyman (see Barnett, 1999). In fact, the approaches that
are commonly taken in practice rely on widening in some way the alternative hypothesis
(i.e., the bioequivalence limits), which may also seem arbitrary.

Widening the bioequivalence limits to new fixed values has been regulated by the
FDA (70 %/143 % or ±0.3567 in logarithmic scale), which assumed the proposals in
Shah et al. (1996), and by the EMEA (75 %/133 % or ±0.2877) in CPMP (2001).
These proposals mainly refer to Cmax, the bioavailability measure most frequently found
to be HV. Clearly, these enlargements do not solve in a general way the power problems
of the ABE testing procedures.
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Boddy et al. (1995) suggested linearly scaling the bioequivalence limits in function
of variability, jointly with deciding bioequivalence in the usual way, according to the
confidence interval inclusion principle based on the classical shortest interval. Under
this setting, the bioequivalence limits (BEL) become ∓kσS C instead of a fixed quantity,
±θ. In 2×2 crossover studies, the most reasonable choice for the scaling variance σ2

S C

is the residual variance σ2. As it is unknown, it must be replaced by an appropriate
estimate. Then, the scaled bioequivalence limits become a random function of data:

BELsc = ∓kσ̂S C . (20)

There are some possibly reasonable choices for the constant k (1.116 in CDER, 2003;
1.0 in Boddy et al., 1995; and 0.759 in Tothfalusi and Endrenyi, 2003), but in any
case the choice is somewhat arbitrary. The selection of the constant k should be drug-
specific and the responsibility of regulatory agencies. Additionally, for a sufficiently
large estimated variance, bioequivalence will be declared for D̄ values far from the
usual bioequivalence limits, a similar criticism to the one about the Berger and Hsu
(1996) method. To try to mitigate these drawbacks, families of more flexible scaled
limits were developed. Technical details, with an illustrative example, can be found in
http://hdl.handle.net/2072/5456.

Apart from their possible arbitrariness, all these bioequivalence limit functions share
the same problem: the size and in general the statistical properties of the decision
criteria based on them are not guaranteed, as they are not based on known and
constant bioequivalence limits, but on limits that are random functions of data, and
no additional theoretical support is provided. As is done with individual and population
bioequivalence (see below), the bootstrap method gives a possible approach, but this
possibility has still not been sufficiently explored.

A more well-founded approach is to make equivalency inferences on scaled
parameters for fixed limits, rather than to scale the equivalency limits. In other words,
one may restate the problem as that of establishing bioequivalence from fixed limits
using a scaled metric φ/σsc. Again, under 2×2 crossover designs, the most natural
choice for scaling variability is the residual variance (7). Then σS C = σ and equivalence
is stated as:

−k <
φ

σ
< +k. (21)

An adequate criterion would be to base the final decision on an appropriate confidence
interval or test procedure for this scaled parameter. A direct approach is to use the fact
that, on rescaling the previous inequality as

−k̃ < φ̃ < +k̃ (22)
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with φ̃ = (φ/σ)
√

2n1n2/N and k̃ = k
√

2n1n2/N, the statistic T = D̄
/

ŝeD̄ has a non-
central Student’s t distribution with N − 2 degrees of freedom and a non-centrality
parameter (φ/σ)

√
2n1n2/N. This defines the following 1 – 2α confidence interval:

tα(λ,N − 2) ≤ φ̃ ≤ t1−α(λ,N − 2) (23)

where tα(λ, N – 2) corresponds to the α quantile of a non-central Student’s t distribution
with N – 2 degrees of freedom and non-centrality parameter T . Bioequivalence is
declared if the above confidence interval lies within the limits ±k̃ = ±k

√
2n1n2/N. Ob-

viously, the choice of k still remains arbitrary; as before. Some reasonable choices may
be 1.116, 1 or 0.759.

The above interval inclusion procedure is equivalent to a testing procedure with
rejection region of general form

{c1 < T < c2}

which is optimal (in the sense of being most powerful unbiased) for a wide class of
distributions, including the normal case discussed here, as is extensively shown in
Wellek (2003).

The scaled procedure, despite its optimality, is not always accepted as the adequate
approach to the bioequivalence problem, which is still primarily articulated in the scale
of the means and not of the scaled means.

2.5 The carry-over controversy

As has been mentioned, under model (1), D̄ is an unbiased estimator of the true
formulation effect φ only in absence of carry-over effect.

The analysis of the carry-over effect is straightforward. In order to estimate it, we
first form the sums inside each individual, Yi j· = Yi j1 + Yi j2. Simple computations from
model (1) lead to the following expressions:

var
(
Yi j·

)
= 4σ2

S + σ
2
R + σ

2
T = σ

2
+

E (Yi1·) − E (Yi2·) = κ.
(24)

Then, the difference:

κ̂ = Ȳ·1· − Ȳ·2· =
1
n1

n1∑
i=1

Yi1· − 1
n2

n2∑
i=1

Yi2· (25)

is an unbiased estimator of the carry-over effect with standard error estimated by:
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ŝeκ̂ =

√√√√ n1∑
i=1

(
Yi1· − Ȳ·1·

)2
+

n2∑
i=1

(
Yi2· − Ȳ·2·

)2

n1n2 (N − 2) /N
. (26)

According to standard results (e.g. Chow and Liu, 2000, pp. 60-61) the statistic:

κ̂ − κ
ŝeκ̂

(27)

follows an Student’s central t distribution with N – 2 degrees of freedom if κ = 0.
Grizzle (1965) proposed testing this null hypothesis of non-existence of carry-over at
a significance level of α = 0.1, or even 0.15, in order to have enough power. In case
of no rejection of the null hypothesis, he recommended proceeding with the standard
analysis under no carry-over. Otherwise, the recommendation was to use only the data
of the first period, like data obtained in a fully randomised parallel trial. This strategy is
recommended by the FDA (CDER, 2001).

This two-stage procedure is widely used in practice, despite the criticisms of Brown
(1980) in terms of cost and those of Senn (1988) and Freeman (1989) in terms of its
inadequate test size and power. Additional arguments against the two-stage procedure
are given in Senn (1996) and Senn et al. (2004).

When higher-order crossover studies are performed, another possibility is to adjust
for the presence of carry-over, assuming specific models for it, as in Laird et al. (1992)
and Putt and Chinchilli (1999). This approach is also discouraged in Senn (1992), Senn
and Lambrou (1998) and Senn et al. (2004) in terms of the implausibility of assumptions
on carry-over and the analysis’ lack of robustness.

Both detractors to the two-stage procedure and opponents to adjusting for carry-
over state that the best policy is to not previously test for carry-over (or not use this
test to take any further decision on the analysis course) and to proceed as if it was
absent. In well-performed experiments, carry-over will usually be absent as ‘washout’
will normally succeed in eliminating it. This opinion seems to be confirmed in D’Angelo
et al. (2001) in their review of 324 two-way and 96 three-way crossover studies. Only
a small proportion of these studies, compatible with the common significance level at
which they were performed, resulted in a significant carry-over. Moreover, for the subset
of these studies reporting the p-value, its empirical distribution was very close to the
uniform. With these data, this distributional null hypothesis is never rejected by the
Kolmogorov-Smirnov (KS) test (Senn et al., 2004). These results are contested in Putt
(2005, 2006) with simulations that suggest the lack of power of these KS tests. Senn et
al. (2005) rebut the arguments of Putt, arguing the irrelevance of power calculations to
interpretation of their observational data.

Putt’s analysis is not an observed power study (in the sense of our introductory
section). However, as the author herself recognises, it does not prove that carry-over
existed – as in Senn et al. (2004), results are not a proof of non-existence of carry-over.
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These latter authors note the difference between significant and important (sufficient to
distort the subsequent analysis) carry-over and the appropriateness of an equivalence
approach. This last suggestion refers to their analyses of the possible uniformity of p-
value data lists, but it would also be a more suitable approach to directly discarding the
possible presence of sufficiently distorting carry-over in each particular crossover study.

To perform an equivalence test for scaled carry-over:

H0 :
|κ|
σ+
≥ ε vs. H1 :

|κ|
σ+
< ε (28)

Wellek (2003, pp. 196-203) uses the fact that the statistic:

T =
κ̂

ŝeκ̂
(29)

follows a non-central t-distribution with N – 2 degrees of freedom and non-centrality
parameter ε

√
n1n2/N in the boundaries of the equivalence region. The p-value

associated with an observed sample value, Tobs, may be computed as Pr
{
F < T 2

obs

}
,

where F stands for a random variable with non-central F distribution, with non-
centrality parameter ε2 (n1n2/N) and 1 and N – 2 degrees of freedom. Alternatively,
if one wishes to test the absolute carry-over, κ, an approach like Schuirmann’s test for
bioequivalence can be performed with the “inside each subject sum” data Yi j· and using
results from (24) to (27). As the variance in (24) may be high, this last approach may
result in a test with low power.

On the other hand, what seems to be the most interesting measurement of the possible
disturbing effect of carry-over is its size in relation with the formulation effect, and not
its absolute or relative value in relation with variability.

An interesting alternative to the two-stage procedure, although for the moment
not sufficiently developed for practical use in bioequivalence testing, is the synthetic
estimators of Longford (2001), a way to combine the with-carry-over and without-carry-
over formulation effect estimators. Similarly, the Bayesian approach taken in Grieve
(1985) avoids taking an all-or-nothing approach for possible carry-over. The usefulness
and/or correctness of this approach is contested by some authors, but it is successfully
used with real data, as shown by Racine et al. (1986).

2.6 Other approaches to BE

An obvious extension of the preceding techniques is to make them multivariate, i.e.
to test simultaneously for all available bioavailability measures and not separately for
each one. The basic approach to ABE, based on confidence interval inclusion, was
generalised to the multivariate case by Wang et al. (1999). Ghosh and Gonen (2008)
provide a semi-parametric Bayesian solution to ABE. Using Montecarlo Markov Chain
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Methods (MCMC), these authors assume a realistic multivariate prior, with dependent
parameters.

Pharmacokinetic measures like Cmax or AUC are statistical summaries computed
from the concentration-by-time curves, which are the true raw data in bioavailability
experiments. Thus, another possible approach to bioequivalence is to directly analyse
these curves, either as multivariate data or by any modelling approach that adequately
describes the curves. In this context, a standard tool are mixed models, and an adequate
approach would be to establish the equivalence of their parameters or, perhaps better, to
compute confidence regions for the mean curves. However, up to the authors knowledge,
equivalence testing in mixed models is a still unexplored field, with the exception of
Rashid (2003).

Even though all these approaches to BE may be very interesting, the regulatory
approach exclusively recommends testing pharmacokinetic parameters individually,
which makes the multivariate approach rare in theoretical papers and nearly absent in
practical work. Next we describe two (univariate) BE approaches that have merited
regulatory consideration.

Complete or nearly complete similarity between the means does not imply
equivalence between both formulations. If for example the bioavailability of the test
formulation is much more variable than the bioavailability of the reference formulation
(σ2

T � σ2
R), replacing R by T will probably imply some user risks. The concept of

“population bioequivalence” (PBE) refers to equivalence both in mean and in variability;
and more generally, to equivalence in the general form of the distribution of the
bioavailability variable. This concept tries to express the idea that a generic form
is fully prescribable to a patient who initiates its treatment. However, even when
the distributions under T or R are marginally equivalent, it is not guaranteed that R
is exchangeable with T in a patient who started treatment with R. The concept of
“individual bioequivalence” (IBE) tries to reflect this last concept of exchangeability
within the same individual.

These concepts were introduced by Anderson and Hauck (1990) and formalised
in Schall and Luus (1993). These authors suggested the following aggregate scaled
measure of global dissimilarity to define PBE:

φ2 + σ2
totT − σ2

totR

σ2
totR

(30)

where

σ2
totR = var (Yi11) = var (Yi22) = σ2

S + σ
2
R

σ2
totT = var (Yi12) = var (Yi21) = σ2

S + σ
2
T

(31)

are the “total” variances (that is, including both the between-subject variance, σ2
S ,

and the residual variance) of the response under each treatment. The corresponding



166 On equivalence and bioequivalence testing

moment-based measurement of individual bioequivalence uses the concept of subject-
by-formulation interaction that requires higher-order crossover designs and will not be
dealt with here.

Measure (30) combines, rather arbitrarily, a squared Euclidean distance, φ2, with
a difference of variances. The natural scaling factor for the first summand is residual
variance (7) and not the total variance under the reference formulation. Given these
and other difficulties with the above-mentioned concept of population bioequivalence,
Schall (1995) proposed a criterion based on the probabilities of discrepancy between the
responses under the test and the reference formulation, in relation to the same probability
when both individuals receive the reference formulation. In a completely different
approach, Wellek (2000) proposed a “disaggregate” test in the sense of separately testing
for φ/σ and for σ2

totT/σ
2
totR and then combining both tests by means of the intersection-

union principle.
In the FDA guidance CDER (2001), there are precise instructions for individual

and population bioequivalence. But CDER (2003) seems to abandon the requirement
of individual and population bioequivalence and to return to average bioequivalence
exclusively, perhaps due to the difficulties in these concepts and in their implementation.
Moreover, Senn (2001) points out that the concept of exchangeability of drugs is
meaningless in clinical terms and only prescribability is useful when the clinician has to
decide whether to prescribe a formulation.

3 Equivalence testing: a more general perspective

3.1 Some selected equivalence problems and applications

Bioequivalence is just one of the potential applications of the equivalence testing
concept. There are many applications and potential applications of the equivalence
concept, focusing either on statistical methodology or on specific fields of application.

Wellek (2003) reviews some common statistical problems that may be treated
more adequately under an equivalence approach. These include comparing binomial
variables, goodness of fit to a distribution, testing for homoscedasticity and testing for
non-importance of interactions, i.e. for additivity in a linear model. Barker et al. (2001)
perform an extensive (though not complete, as is pointed out by Martı́n Andrés and
Herranz Tejedor, 2002) review of equivalence tests for binomial variables. Bayesian
alternatives to some of these tests are discussed in Williamson (2007).

The following are some discussions of the applicability and/or concrete applications
of equivalence testing in diverse areas: Stegner et al. (1996) in social sciences, Burns
and Elswick (2001) in dental clinical trials, Barker et al. (2002) in epidemiology and
Mecklin (2003) in educational research. Van Steen et al. (2005) propose an equivalence
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procedure in DNA sequence comparison. This is an example of the distance-based
approach to equivalence, to be treated in more detail in the next section.

A problem of central practical importance is simulation model validation. According
to Sargent (2005), operational validation is “determining whether the simulation model’s
output behaviour has the accuracy required for the model’s intended purpose over the
domain of the model’s intended applicability”. If the modelled system is observable,
the objective methods for validation are, essentially, two (or more) sample comparison
methods: the data observed in the real system vs. the generated data experimenting with
the model (i.e., simulating). Reynolds and Deaton (1982) and Kleijnen (1999) review
hypothesis test methods for validation.

In contradiction with the preceding quoted definition (which in our opinion
reflects pretty well the concept that simulation practitioners have in mind), the
common approach to model validation states a null hypothesis of exact model
validity. This strategy leads to severe methodological problems, illustrated by common
recommendations (e.g. Sargent, 2005) of not using too large sample sizes (especially
from the simulated data side), in order to avoid rejecting adequate (to the goals of
the study) models. It is obvious that an equivalence approach would be much more
dependable. The authors are not aware of any equivalence approach to simulation model
validation, except Robinson and Froese (2004) and the ideas outlined in Warner (2002).

Most likely, in model validation a difficult problem will be to establish the
equivalence limits, which may be very application area- and model-dependent. There
are some regulations on how to construct and validate simulation models (e.g.
http://cdds.ucsf.edu/research/sddgpreport.php is a best-practice document on simulation
in drug development), but none of them considers the equivalence approach in depth.

3.2 Equivalence testing and distance-based Statistics

The great majority of the equivalence problems commented on above admit a distance-
based representation, with general form:

H0 : d (A, B) ≥ d0 vs. H1 : d (A, B) < d0 (32)

where d is a distance or dissimilarity index, A and B are two objects (distributions,
models. . . ) to be compared and d0 is an equivalence limit. For example, admitting
model (1) and in absence of carry-over and period effects, the distributions under T and
R are, respectively,

A ≡ N
(
μT = μ +CT ;σ2

totT

)
and B ≡ N

(
μR = μ +CR;σ2

totR

)
. (33)

The ABE distance and criterion are d (A, B) = |μT − μR| = |φ| < d0 (= θ) . The index d is
a true distance measure under σ2

totT = σ
2
totR.
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PBE is based on the index:

d (A, B) =
( μT − μR)2 + σ2

totT − σ2
totR

σ2
totR

. (34)

Note that (34) is not a metric distance, nor a reasonable dissimilarity measurement. For
example, it is possible that d(A, B) = 0, when μT � μR and σ2

totT � σ
2
totR. Index (34)

rewards a generic product with less variability than the brand product.
This distance-based approach is explicitly taken in Munk and Czado (1998), using a

trimmed version of the pth Mallows distance between distributions:

Γα,p (F,G) = (1 − 2α)−1

{∫ 1−α

α

∣∣∣F−1 (u) −G−1 (u)
∣∣∣p

du

}1/p

α ∈
[
0, 1

2

)
, p ≥ 1 (35)

Their asymptotic results allow non-parametric goodness of fit testing, and average and
population bioequivalence testing, in a unified way. One drawback of these tests is that
their true size exceeds the nominal size, unless large sample sizes (much larger than is
usual in bioequivalence testing) are employed.

Dragalin et al. (2003) use the squared Kullback-Leibler divergence, d ( f , g) =
Δ2

1 ( f , g), where

Δ1 ( f , g) =
√

I ( f , g) + I (g, f ) (36)

is the Jeffreys J-divergence based on the Kullback-Leibler information:

I ( f , g) = E f

{
log

f (X)
g (X)

}
(37)

for densities f and g. (36) is not a distance index, but has reasonable dissimilarity
properties.

If fT and fR are the densities of (33), PBE is associated with the index:

d ( fT , fR) =
1
2

{
( μT − μR)2 + σ2

totT + σ
2
totR

} ( 1
σ2

totT

+
1
σ2

totR

)
− 2. (38)

Equivalent results are also obtained for the exponential family of distributions and for
the multivariate normal case. An obvious advantage of the distance approach is that the
generalisation to the multivariate case is much more straightforward.

In the univariate normal case, when σ2
totT = σ

2
totR = σ

2
tot, the preceding index defines

a scaled BE criterion in relation to total variance, not in relation to residual variance, as
in (21).

Approximate inference with the preceding indices is based on the interval inclusion
approach. Bioequivalence is declared if the upper limit of the one-sided bootstrap
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percentile interval for d falls below d0. An advantage of using the Kullback-Leibler
metric is that the FDA bioequivalence limits can be easily adapted to the corresponding
d0 values, because both are simple functions of the same moments.

3.3 Combining studies based on Gene Ontology

With the help of recently developed technologies like DNA microarrays, it is now
possible to analyse the behaviour of thousands of genes in a single experiment.
Gene Ontology (GO, www.geneontology.org) is an annotation database created and
maintained by the Gene Ontology Consortium in order to systematise these huge
amounts of quickly growing information. GO is organised in three basic ontologies:
molecular function (MF), biological processes (BP) and cellular components (CC). Each
of them can be viewed as directed acyclical graphs (DAG). The nodes in the DAG
represent concepts that may help to characterise a gene (e.g. the biological processes
in which it participates). The known information on a given gene is expressed as
annotations or hits on one or more nodes in the GO. A way to summarise a given list
of genes (e.g. those over-expressed in individuals suffering from a specific disease) is
to determine its GO profile for a given level in one of the three GO ontologies. A level
is the set of all nodes at the same distance from the origin of the ontology; it is like
a cross-section in the rich DAG structure. A profile is the vector of annotation counts
(or percentages or relative frequencies) in the s nodes of the chosen level, for all genes
on the list: P̂ = ( p̂1, p̂2, . . . , p̂s). To compute the relative frequency p̂i, one counts the
number of annotations in node i. As a given gene may be annotated in two (or more)
nodes, these relative frequencies may add more than one.

Figure 1 illustrates these concepts for a list of three human genes (FANCG,
PRKAR1B and PKIA) annotated in several nodes (in grey) at level three in the MF
ontology. GO nodes are solely identified with a node code, GO:nnnnnnn. Note that
the sum of annotation percentages is greater than 100 %, because one of the genes is
annotated in two nodes. Thus, direct use of chi-squared tests or related techniques is not
adequate for overall comparison of profiles.

In Sánchez et al. (2007), a statistical model for GO profiles is provided. It allows a
distance-based analysis, using squared Euclidean distance:

d
(
P̂, Q̂

)
=

s∑
i=1

( p̂i − q̂i)
2. (39)

The comparison of two sample lists of genes, in terms of the squared Euclidean distance
over their GO profiles, is studied in Salicrú et al. (2008). The comparisons can be made
in terms of either a difference problem (i.e., H0 : d(P,Q) = 0 vs. H1 : d(P,Q) > 0) or an
equivalence problem (i.e., H0 : d(P,Q) ≥ d0 vs. H1 : d(P,Q) < d0).
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Figure 1: Functional profile at level 3 of MF Ontology associated with a list of three genes

In the most general case, one wishes to compare a sample of n genes with another
sample of m genes, with n = n1 + n0 and m = m1 + n0. The quantity n0 corresponds with
the number of genes shared by both lists. If n0 = 0, the two lists of genes are mutually
excluding: e.g., a set of recessive vs. a set of dominant genes. If m1 = 0, the first list
completely includes the second one: e.g., all genes analysed in a microarray vs. those
differentially expressed in a given pathology.

Designating as P̂1, Q̂1 and P̂0 the profiles associated with the n1, m1 and n0 genes,
respectively, and the sample profiles to be compared as:

P̂ =
n0

n
P̂0 +

n1

n
P̂1 and Q̂ =

n0

m
P̂0 +

m1

m
Q̂1. (40)

If P and Q are the population profiles, the asymptotic distribution of the sample profiles
is multivariate normal:( n m

n + m

)1/2

(P̂ − P, Q̂ − Q)
d−→ Y ∼ N(0, ΣPQ) ≈ N(0, ΣP̂Q̂) (41)

with covariance matrix of form:

ΣP̂Q̂ =

⎛⎜⎜⎜⎜⎜⎝ m
n+m

[
n0

n
ΣP̂0
+ n−n0

n
ΣP̂1

]
n0

n+m
ΣP̂0

n0

n+m
ΣP̂0

n
n+m

[
n0

m
ΣP̂0
+ m−n0

m
ΣQ̂1

] ⎞⎟⎟⎟⎟⎟⎠ . (42)
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The s × s covariance matrices ΣP̂0
, ΣP̂1

and ΣQ̂1
have the general form (Sánchez et al.,

2007) ΣP̂ =
(
σ̂i j

)
, with

σ̂i j =

{
p̂i (1 − p̂i) if i = j
p̂i j − p̂i p̂ j if i � j

(43)

where p̂i j designates the relative frequency of genes simultaneously annotated in nodes
i and j and possibly also annotated in other nodes.

An asymptotic solution to the equivalence problem (i.e., to test whether both GO
profiles are not very dissimilar) may be obtained from:( nm

n + m

)1/2 {
d

(
P̂, Q̂

)
− d (P,Q)

} d−→ Y ∼ N
(
0;ω2

)
(44)

where ω2can be estimated by:

ω̂2 = 4

(
P̂ − Q̂
−(P̂ − Q̂)

)T

ΣP̂Q̂

(
P̂ − Q̂
−(P̂ − Q̂)

)
. (45)

Thus, for a given equivalence limit d0 and according to squared Euclidean distance, we
may conclude equivalence of GO profiles if

d
(
P̂, Q̂

)
− zαω̂

√
1
n
+

1
m
< d0 (46)

where zα corresponds to the α quantile of standard normal distribution. For example, if
α = 0.05, then we have zα = −1.64.

A possible criterion to establish the equivalence limit d0 is to fix a maximum allowed
discrepancy in each GO node, |pi − qi| < ε. Then d0 = sε2, where s is the number of
compared nodes.

To illustrate the above ideas, a comparison between two microarray experiments
performed by Welsh et al. (2001) and Singh et al. (2002) to study prostate tumors
based on gene expression data is put forward. Although the studies were performed
independently, they had similar characteristics in type of tumors, microarray platforms
and sample size (see table).

Study Platform Sample

Welsh et al., 2001 HGU95A 32: normal 8, tumor 24

Singh et al., 2002 HGU95Av2 102: normal 50, tumor 52

The comparability of these studies has been exploited by various authors, such as
Manoli et al. (2006), who used them to compare different microarray data analysis
methods, or Moradi et al. (2006), who combined them in a predictive analysis (one
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data set was used as training set and the other as test set). In either situation the study
combination was justified simply on the basis of their common topic, but no quantitative
argument was given.

The example below shows the results of the equivalence test performed on the second
level of Gene Ontology. The lists of differentially expressed genes were selected using a
p-value cutoff of 0.05. The analysis was performed with R package goProfiles (Sánchez
et al., 2008) available at Bioconductor 2.2 (www.bioconductor.org).

Applying the equivalence tests to the resulting profiles for each of the ontologies
gives the following results:

MF BP CC

Squared Euclidean distance 0.000619 0.001768 0.004081

d0 threshold for equivalence test

(computed as d0 = sε2 with ε = 0.05)

0.037500 0.050000 0.032500

Upper confidence interval limit 0.001329 0.003548 0.006386

Reject null hypothesis of inequivalence Yes Yes Yes

This suggests that it is appropriate to combine the two datasets, as Moradi et al. (2006)
did.

4 Discussion

Equivalence testing is the most adequate way to address situations where the primary
aim is to prove similarity. As is shown with some detail in the case of bioequivalence
testing, it is not free from difficulties or controversy, but it does seem to be the most
dependable approach to bioequivalence and to many other important problems.

As many of the difficulties with the equivalence approach are essentially technical in
nature, solutions to them are likely to be found or, in the worst case, the non-existence
of a solution proven. In practice, other questions are more problematic, such as, in our
view, the adequate determination of the equivalence limits. Wellek (2003, pp. 11-13)
makes some reasonable suggestions regarding the parameters and statistical problems
under consideration. However, this problem still depends, to a great extent, on specific
areas of application and even on specific problems.

The distance-based approach may be a natural way to include many equivalence
problems under the same paradigm, and to permit a smooth path from a univariate to
a multivariate approach. There are many distance or dissimilarity indexes that may be
adequate. To some extent the decision as to which index to use is arbitrary. Some are
adequate due to their simplicity, ease of interpretation or easy mathematical handling.
This is the case with Euclidean distance. Other indexes have nice or natural statistical
properties, unfortunately sometimes associated with some handling difficulties. This
is the case of measurements associated with intrinsic criteria, like those discussed in
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Garcı́a and Oller (2006). A natural intrinsic distance is the distance based on Fisher’s
information metric and proposed in Rao (1945). In this setting some concepts may
have a more natural treatment; for example, the determination of the equivalence limits,
possibly related to concepts like the curvature of the parametric Riemannian manifold.

A final consideration: equivalence problems generally admit either a frequentist
or a Bayesian approach, but frequentist solutions are more common in the literature
and much more often used in practice, despite the nice properties of many Bayesian
solutions. This may be due in part to the weight of regulatory agencies in bioequivalence
testing, the most significant application area. There may well be a regulatory bias
towards the frequentist approach, but it is also likely to be based on criteria of clarity
and ease of use for the potential users of the methods.
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Sánchez, A., Ocaña, J. and Salicrú, M. (2008). goProfiles: an R package for the Statistical Analysis of
Functional Profiles. http://estbioinfo.stat.ub.es/pubs/goProfiles-Usersguide.pdf

Sargent, R. G. (2005). Verification and validation of simulation models. Proceedings of the 2005 Winter
Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong and J. A. Joines, eds., 130-143.

Schall, R. (1995). Assessment of individual and population bioequivalence using the probability that
bioavailabilities are similar. Biometrics, 51, 615-626.

Schall, R. and Luus, H. G. (1993). On population and individual bioequivalence. Statistics in Medicine,
12, 1109-1124.

Schuirmann D. J. (1987). A comparison of the Two One-sided Test procedure and the Power Approach
for assessing the equivalence of Average Bioavailability. Journal of Pharmacokinetics and Bio-
pharmaceutics, 15, 657-680.



176 On equivalence and bioequivalence testing

Sellke, T., Bayarri, M. J. and Berger, O. (2001). Calibration of p values for testing precise null hypotheses.
The American Statistician, 55, 62-71.

Senn, S. (1988). Cross-over trials, carry-over effects and the art of self-delusion. Statistics in Medicine, 7,
1099-1101.

Senn, S. (1992). Is the ‘simple carry-over’ model useful? Statistics in Medicine, 11, 715-726.
Senn, S. (1996). The AB/BA Cross-over: How to perform the two-stage analysis if you can’t be persuaded

that you shouldn’t. Hansen, B and De Ridder, M. eds. Liber Amicorum Roel van Strik, 93-100.
Rotterdam: Erasmus University.

Senn, S. (2001). Statistical issues in bioequivalence. Statistics in Medicine, 20, 2785–2799.
Senn, S., D’Angelo, G. and Potvin, D. (2004). Carry-over in cross-over trials in bioequivalence: theoretical

concerns and empirical evidence. Pharmaceutical Statistics, 3, 133-142.
Senn, S., D’Angelo, G. and Potvin, D. (2005). Rejoinder: Dr. Putt’s analysis. Pharmaceutical Statistics,

4, 217-219.
Shah, V. P., Yacobi, A., Barr, W. H., Benet, L. Z., Breimer, D., Dobrinska, M. R., Endrenyi, L., Fairweather,

W., Gillespie, W., Gonzalez, M. A., Hooper, J., Jackson, A., Lesko, L., Midha, K. K., Noonan, P.
K., Patnaik R. and Williams R. L. (1996). Evaluation of Orally Administered Highly Variable Drugs
and Drug Formulations. Pharmaceutical Research, 13, 1590-1594.

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A. A.,
D’Amico, A. V., Richie, J. P., Lander, E. S., Loda, M., Kantoff, P. W., Golub, T. R. and Sellers, W.
R. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1, 203–209.

Stegner, A. L., Bostrom, A. G. and Greenfield, T. K. (1996). Equivalence testing for use in psychosocial
and services research: An introduction with examples. Evaluation and Program Planning, 19, 193-
198.

Tothfalusi, L. and Endrenyi, L. (2003). Limits for the scaled average bioequivalence of highly variable
drugs and drug products. Pharmaceutical Research, 20, 382-389.

Van Steen, K., Raby, B. A., Molenberghs, G., Thijs, H., De Wit, M. and Peeters M. (2005). An equivalence
test for comparing DNA sequences. Pharmaceutical statistics, 4, 203-214.

Wang, W. W., Hwang, J. T. G. and Dasgupta, A. (1999). Statistical tests for multivariate bioequivalence.
Biometrika, 86, 395-402.

Warner, B. (2002). Equivalence testing. MORS Workshop “Test& Evaluation, Modeling & Simulation and
VV&A: Quantifying the Relationship Between Testing and Simulation”, Kirtland AFB, Albuquerque,
NM. http://www.mors.org/meetings/test eval/presentations/C Warner.pdf.

Westlake, W. J. (1972). Use of confidence intervals in analysis of comparative bioavailability trials.
Journal of Pharmaceutical Science, 61, 1340-1341.

Wellek, S. (2001). On a reasonable disaggregate criterion of population bioequivalence admitting of
resampling-free testing procedures. Statistics in Medicine, 19, 2755-2767.

Wellek, S. (2003). Testing Statistical Hypotheses of Equivalence. Boca Raton: Chapman & Hall/CRC.
Welsh, J. B., Sapinoso, L. M., Su, A. I., Kern, S. G., Wang-Rodriguez, J., Moskaluk, C. A., Frierson Jr,

H. F. and Hampton, G. M. (2001). Analysis of gene expression identifies candidate markers and
pharmacological targets in prostate cancer. Cancer Research, 61, 5974–5978.

Williamson, P. P. (2007). Bayesian equivalence testing for binomial random variables. Journal of Sta-
tistical Computation and Simulation, 77, 739 - 755

Zapater, P., Horga, J. F. (1999). Bioequivalencia y Genéricos. Los estudios de Bioequivalencia. I. Una
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