LOCATION OF THE 2-CENTERS OF THREE POINTS ${ }^{1}$

(Optimal location, medians, centers of finite sets, characterization of inner product spaces)
Carlos Benítez, Manuel Fernández and María L. Soriano
Departamento de Matemáticas. Universidad de Extremadura. 06071 Badajoz (Spain).
E-mail address: cabero@unex.es, ghierro@unex.es, 1soriano@unex.es

Abstract

We prove that a real normed space X of dimension greater or equal than 3 is an inner product space if and only if, for every three points $u, v, w \in X$, the set of points at which the function $x \in X \rightarrow\|u-x\|^{2}+\|v-x\|^{2}+$ $+\|w-x\|^{2}$ attains its minimum intersects the convex hull of these three points.

1. INTRODUCTION

Let S and S^{*} be the unit spheres of a real normed space X and its topological dual X^{*}, respectively. For $u \in X$ and $f \in X^{*}$, denote $J u=\left\{f \in S^{*}: f(u)=\|u\|\right\}$ and $J^{*} f=\{u \in S$: $f(u)=\|f\|\}$.

A point $z \in X$ is said to be a 2 -center of the points u, v, $w \in X$ when

$$
\begin{gathered}
\|u-z\|^{2}+\|v-z\|^{2}+\|w-z\|^{2}= \\
=\inf _{x \in X}\left(\|u-x\|^{2}+\|v-x\|^{2}+\|w-x\|^{2}\right)
\end{gathered}
$$

and it is said to be a Chebyshev center, or ∞-center, when

$$
\begin{aligned}
& \sup (\|u-z\|,\|v-z\|,\|w-z\|)= \\
= & \inf _{x \in X} \sup (\|u-x\|,\|v-x\|,\|w-x\|) .
\end{aligned}
$$

The set of 2 -centers, the set of ∞-centers, and the convex hull of the points $u, v, w \in X$ will be denoted by $Z^{2}(u, v, w), Z^{\infty}(u, v, w)$, and $\operatorname{co}(u, v, w)$, respectively.

A well-known theorem of Garkavi [4] and Klee [7] says that a real normed space X of dimension ≥ 3 is an inner product space (i.e., its norm is induced by an inner product) if and only if, for every $u, v, w \in X$,

$$
Z^{\infty}(u, v, w) \cap \operatorname{co}(u, v, w) \neq \varnothing
$$

[^0]We shall prove that the same is true for $Z^{2}(u, v, w)$ instead of $Z^{\infty}(u, v, w)$.

2. RESULTS

Lemma 1 ([3, 5]). Let X be a real normed space and let $u, v, w \in X$. Then $0 \in Z^{2}(u, v, w)$ if and only if there exist $f \in J u, g \in J v$ and $h \in J w$ such that

$$
\|u\| f+\|v\| g+\|w\| h=0
$$

Lemma 2. Let X be a real normed space and let u, v, $w \in X \backslash\{0\}$ be such that $0 \in Z^{2}(u, v, w)$. If f, g, h are as in Lemma 1 and if $z \in Z^{2}(u, v, w)$, then $z \in \operatorname{ker} f \cap \operatorname{ker} g \cap$ ker h, and, for every $r, s, t \in[0,1]$,

$$
0 \in Z^{2}(u-r z, v-s z, w-t z)
$$

Proof. Since the function

$$
r \in \mathbb{R} \rightarrow\|u-r z\|^{2}+\|v-r z\|^{2}+\|w-r z\|^{2}
$$

is convex and attains its minimum at $r=0$ and $r=1$, it is obvious that, for every $r \in[0,1], 0 \in Z^{2}(u-r z, v-r z$, $w-r z$).

Let f, g, h be as in Lemma 1 and let $r \in[0,1]$. Then

$$
\begin{gathered}
\|u-r z\|^{2}+\|v-r z\|^{2}+\|w-r z\|^{2}=\|u\|^{2}+\|v\|^{2}+\|w\|^{2}= \\
=\|u\| f(u)+\|v\| g(v)+\|w\| h(w)= \\
=\|u\| f(u-r z)+\|v\| g(v-r z)+\|w\| h(w-r z) \leq \\
\leq\|u\|\|u-r z\|+\|v\|\|v-r z\|+\|w\|\|w-r z\| \leq \\
\leq \frac{1}{2}\left(\|u-r z\|^{2}+\|u\|^{2}+\|v-r z\|^{2}+\right. \\
\left.\quad+\|v\|^{2}+\|w-r z\|^{2}+\|w\|^{2}\right)
\end{gathered}
$$

and, thus, $f(u-r z)=\|u-r z\|=\|u\|=f(u)$. Therefore, $f(z)=0$, and $f \in J(u-r z)$. The same argument can be
used to obtain that $g(z)=0$ and $g \in J(v-s z), h(z)=0$ and $h \in J(w-t z)$.

Hence,

$$
\|u-r z\| f+\|v-s z\| g+\|w-t z\| h=0
$$

as we wished to show (see Lemma 1).

Lemma 3 ([2, 1, 6]). A real normed space X of dimension ≥ 3 is an inner product space if and only if there is a norm-1 linear projection of X onto every 2-dimensional subspace of it.

Proposition 1. A real normed space X of dimension ≥ 3 is an inner product space if and only if, for every $u, v, w \in X$,

$$
Z^{2}(u, v, w) \cap \operatorname{co}(u, v, w) \neq \varnothing
$$

Proof. Although the necessary part is essentially in [8], it is easy to repeat it here. Suppose that X is an inner product space and that $x \notin \operatorname{co}(u, v, w)$. Since $\operatorname{co}(u, v, w)$ is a convex and compact set, there exists a closed hyperplane H that strictly separates x and $\operatorname{co}(u, v, w)$.

Let $y=P_{H}(x)$ be the orthogonal projection of x into H and let $u^{\prime}, v^{\prime}, w^{\prime}$ be the intersection with H of the straight lines that connect x with u, v, w, respectively.

Then, it follows from $u-x=u-y+y-x$, that

$$
\|u-x\|^{2}=\|u-y\|^{2}+\|y-x\|^{2}+2(u-y \mid y-x)
$$

where $(u-y \mid y-x)$ is the inner product of $u-y$ and $y-x$.
Since $u-y=u-u^{\prime}+u^{\prime}-y$ and $u^{\prime}-y \perp y-x$, $(u-y \mid y-x)=\left(u-u^{\prime} \mid y-x\right)$, but $u-u^{\prime}=\rho\left(u^{\prime}-x\right)$, with $\rho>0$, and, hence, $\left(u-u^{\prime} \mid y-x\right)=\rho\left(u^{\prime}-x \mid y-x\right)$. Finally, it follows from $u^{\prime}-x=u^{\prime}-y+y-x$ and $u^{\prime}-y \perp y-x$, that
$\|u-x\|^{2}=\|u-y\|^{2}+\|y-x\|^{2}+2 \rho(y-x \mid y-x)>\|u-y\|^{2}$.
Analogous calculations for $v-x$ and $w-x$ yield to

$$
\begin{aligned}
\|u-y\|^{2}+ & \|v-y\|^{2}+\|w-y\|^{2}<\|u-x\|^{2}+ \\
& +\|v-x\|^{2}+\|w-x\|^{2}
\end{aligned}
$$

i.e., $x \notin \mathrm{Z}^{2}(u, v, w)$.

So, the continuous function $x \in X \rightarrow\|u-x\|^{2}+$ $+\|v-x\|^{2}+\|w-x\|^{2}$ attains its minimum in the compact set $\operatorname{co}(u, v, w)$, i.e., not only $Z^{2}(u, v, w) \cap \operatorname{co}(u, v, w) \neq \varnothing$, but $Z^{2}(u, v, w) \subset \operatorname{co}(u, u, w)$.

Taking into account the nature of the hypothesis and the fact that X is an inner product space if and only if so is every 3-dimensional subspace of it, to prove the converse we may suppose that $\operatorname{dim} X=3$. In this way we can use the kind property that $J^{*} f \neq \varnothing$ for any $f \in X^{*}$.

Let $P=\operatorname{ker} k$, with $k \in S^{*}$, be an homogeneus plane of X and let $u, v \in S \cap P$ be two non-proportional vectors such that there are $f \in J u$ and $g \in J v$ whose restrictions, $\left.f\right|_{P}$ and $\left.g\right|_{P}$, to P are non-proportional. Then, the straight line $L=\operatorname{ker} f \cap \operatorname{ker} g$ is non-contained in P and $\left\{\left.f\right|_{P},\left.g\right|_{P}\right\}$ is a basis of P^{*}.

We shall prove that S is supported at any $w \in S \cap P$ by the straight line $w+L$, i.e., that

$$
x \in X \rightarrow(x+L) \cap P
$$

is a norm-1 linear projection of X onto P (see Lemma 3).
This is equivalent to see that, for every $w \in S \cap P$, there exist $\lambda, \mu \in \mathbb{R}$ such that $\|\lambda f+\mu g\|=1$ and $w \in J^{*}(\lambda f+\mu g)$, i.e.,

$$
S \cap P=\bigcup_{\|\lambda f+\mu g\|=1} J^{*}(\lambda f+\mu g) \cap P
$$

Since $\left\{\left.f\right|_{P},\left.g\right|_{P}\right\}$ is a basis of P^{*}, for every $w \in S \cap P$ there are $\lambda, \mu \in \mathbb{R}$ such that
$1=\left\|\left.\lambda f\right|_{P}+\left.\mu g\right|_{P}\right\|=\sup _{y \in S \cap P}|\lambda f(y)+\mu g(y)|=\lambda f(w)+\mu g(w)$, i.e.,

$$
S \cap P=\bigcup_{\left\|\left.\cdot f\right|_{P}+\left.\mu g\right|_{P}\right\|=1} J *\left(\left.\lambda f\right|_{P}+\left.\mu g\right|_{P}\right)
$$

Hence, we only need to show that any $\lambda f+\mu g$ such that $\|\lambda f+\mu g\|=1$, attains its norm at $S \cap P$, i.e.,

$$
\sup _{x \in S}|\lambda f(x)+\mu g(x)|=\sup _{y \in S \cap P}|\lambda f(y)+\mu g(y)|
$$

or, equivalently,

$$
J^{*}(\lambda f+\mu g) \cap P \neq \varnothing .
$$

This is obvious for either $\lambda=0$ or $\mu=0$. Assume, by contradiction, that there are $\lambda, \mu \in \mathbb{R} \backslash\{0\}$ such that $J^{*}(\lambda f+\mu g) \cap P=\varnothing$ and denote $h=-(\lambda f+\mu g)$. Since $J * h$ is convex, changing if necessary the sign of k we can assume that $k(y)>0$ for every $y \in J^{*} h$. Then, since X is finite dimensional, $J^{*} h$ is a non-void compact subset of S and there exists $w \in J^{*} h$ such that

$$
0<k(w)=\inf _{y \in J^{*} h} k(y) .
$$

It follows from Lemma 1 and

$$
\lambda f+\mu g+h=|\lambda|(\operatorname{sign} \lambda) f+|\mu|(\operatorname{sign} \mu) g+h=0
$$

that $0 \in Z^{2}(\lambda u, \mu v, w)$.
Since $0 \notin \operatorname{co}(\lambda u, \mu v, w)$, there is $z \in Z^{2}(\lambda u, \mu v, w) \cap$ $\operatorname{co}(\lambda u, \mu v, w)$ and, by Lemma $2, z \in L=\operatorname{ker} f \cap \operatorname{ker} g$, $w-z \in J^{*} h$. Furthermore, it follows from $z \in \operatorname{co}(\lambda u$, $\mu v, w) \backslash P, k(u)=k(v)=0$ and $k(w)>0$ that $k(z)>0$. Hence, $k(w-z)<k(w)$ which contradicts the definition of w.

Remark 1. It is well known [8] and easy to prove that the hypothesis $Z^{2}(u, v, \mathrm{w}) \cap \operatorname{co}(u, v, w) \neq \varnothing$ is equivalent to the apparently weaker condition $Z^{2}(u, v, w) \cap \operatorname{aff}(u, v$, $w) \neq \varnothing$, where $\operatorname{aff}(u, v, w)$ is the affine hull of u, v, w.

Remark 2. We have seen in the well known first part of the proof of Proposition 1 that if X is a real inner product space, then $\varnothing \neq Z^{2}(u, v, w) \subset \operatorname{co}(u, v, w)$. Furthermore, it is also easy to check that, in this case, $Z^{2}(u, v, w)$ has a unique element.

Example 1. Some straightforward calculations show that if $X=l_{1}^{3}$ and $u=(1,0,0), v=(0,1,0), w=(0,0,1)$, then $Z^{2}(u, v, w)=\{(0,0,0)\}$ and, hence, $Z^{2}(u, v, w) \cap$ $\operatorname{co}(u, v, w)=\varnothing$.

Example 2. If $X=l_{\infty}^{2}$ and $u=(1,1), v=(1,0)$, $w=(-2,0)$, then $Z^{2}(u, v, w)=\{(0, t): 0 \leq t \leq 1\}$ and, hence, $Z^{2}(u, v, w) \cap \operatorname{co}(u, v, w) \neq \varnothing$, but $Z^{2}(u, v, w) \not \subset \operatorname{co}(u, v, w)$.

Remark 3. It is easy to see that if X is reflexive, then $Z^{2}(u, v, w) \neq \varnothing$ for every $u, v, w \in X$. However, L. Veselý
has proved in [9] (not only for 2-centers, but with considerably greater generality) that if X is non-reflexive, then there are $u, v, w \in X$ and an equivalent norm in $X,\| \| \cdot\| \|$, such that $Z_{\||\cdot|| |}^{2}(u, v, w)=\varnothing$.

ACKNOWLEDGEMENT

We thank the referee for his several suggestions that improved the presentation of this paper.

REFERENCES

1. Blaschke, W. (1923). Vorlesungen über Differentialgeometrie, II: Affine Differentialgeometrie, 45, Berlin.
2. Brunn H. (1889). Über kurven ohne wendepunkte, Habili-tations-schrift, Munchen.
3. Dubovickii, A. Ja. \& Miljutin, A. A. (1965). Extremal problems with constraints, USSR Comput. Math. Phys. 5, no. 3, 1-81.
4. Garkavi, A. L. (1964). On the Chebyshev center and the convex hull of a set, Uspekhi Mat. Nauk USSR 19, 139145.
5. Gol'štec̆n, E. G. (1967). Problems of best approximation by elements of a convex set and some properties of support functionals, Soviet Math. Dokl. 8, 504-507.
6. Kakutani, S. (1939). Some characterizations of Euclidean space, Jap. J. Math. 16, 93-97.
7. Klee, V. (1960). Circumspheres and inner products, Math. Scand. 8, 363-370.
8. Wendell, R. E. \& Hurter, A. P. (1973). Location theory, dominance, and convexity, Oper. Res. 21, 314-321.
9. Veselý, L. (1993). A characterization of reflexivity in the terms of the existence of generalized centers, Extracta Math. 8, 125-131.

[^0]: ${ }^{1} 1991$ Mathematics Subject Classification. 46B20, 46C15, 90 B85.

