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ABSTRACT 

We prove that a real normed space X of dimension 
greater or equal than 3 is an inner product space if and 
only if, for every three points u, v,w e X, the set of points 
at which the function x e X —> \\u - x|p + ||Î^ - x\\^ + 
+ | |vv-x |p attains its minimum intersects the convex 
hull of these three points. 

1. INTRODUCTION 

Let 5 and 5* be the unit spheres of a real normed space 
X and its topological dual X*, respectively. For ueX and 
feX^\ denote Ju = {fe 5* :/(w) = \\u\\} mdJJ= {ueS: 
f(u) = 

A point zeXis said to be a 2-center of the points u, v, 
w EX when 

We shall prove that the same is true for Z"(w, v, w) in­
stead of Z^(w, V, w). 

2. RESULTS 

Lemma 1 ([3, 5]). Let X be a real normed space and 
let u, V, w e X. Then 0 e Z^{u, v, w) if and only if there 
exist fe Ju, g e Jv and h e Jw such that 

ll»ll/+l|i'll^ + l|w||/t = 0. 

Lemma 2. Let X be a real normed space and let u, v, 
w EX\{0} be such that 0 G Z^(U, V, W). Iff g, h are as in 
Lemma 1 and if z E Z^(u, v, w), then z E ke r / f l ker g D 
ker h, and, for every r, s, t E [0, I], 

0 E Z^(u - rz, V - sz, w - tz). 

= inf 
XGX 

u - z\ 

u • 

+ ^v- z 
2 

+ \\w-z\V = 
X V x^+ w xf) 

and it is said to be a Chebyshev center, or oo-center, 
when 

sup(||w - z | | . III; - z||, ||w - z\ 

= inf sup(||w - x||, \\v - x\l \\w -
xeX 

x \ \ ) . 

The set of 2-centers, the set of oo-centers, and the con­
vex hull of the points u, v, w E X will be denoted by 
Z^(u, V, w), Z^(u, V, w), and co(w, v, w), respectively. 

A well-known theorem of Garkavi [4] and Klee [7] 
says that a real normed space X of dimension > 3 is an 
inner product space (i.e., its norm is induced by an inner 
product) if and only if, for every u, v, w E X, 

2^(u, V, w) n co(w, V, w) ^ 0. 
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Proof Since the function 

r E \u - rz\r + \\v - rz\\ + w rz\ 

is convex and attains its minimum at r = 0 and r = 1, it is 
obvious that, for every r e [0, 1], 0 e Z^(u - rz, v - rz, 
w - rz). 

Let/, g, h be as in Lemma 1 and let r e [0, 1]. Then 

| w - r z | P + | | r - r z | P + | | w - r z | p : |w|P+lblP + llw|P = 

= \\umu) + \\v\\g(v)^\\w\\h(w) = 

= \\u\\f{u - rz) + ||i^||g(i^ - rz) + \\w\\h(w - rz) < 

< | | w | | | | z i - r z | | + | | i ; | | | | i ) - rz | | + | | w | | | | w - r z | | < 

<^-(\\u-rz\\'^\\u\\' + \\v-rzf + 

+ | | i ; | P+ | |M; - r z | p+ | |w |p ) 

and, thus,/(w - rz) = ||w - rz|| = ||w|| =f(u). Therefore, 
/(z) = 0, a n d / G J(u - rz). The same argument can be 
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used to obtain that g{z) = 0 and g e J(v ~ sz), h(z) - 0 and 
h G /(w - tz). 

Hence, 

\\u - r z | | /+ \\v - sz\\g + ||w - tz\\h = 0, 

as we wished to show (see Lemma 1). D 

Lemma 3 ([2, 1, 6]). A real normed space X of di­
mension >3 is an inner product space if and only if there 
is a norm-l linear projection of X onto every 2-dimen-
sional subspace of it. 

Proposition 1. A real normed space X of dimension 
>3 is an inner product space if and only if for every 
u,v,we X, 

Z^(u, v, w) n co(w, V, w) ^ 0 . 

Proof Although the necessary part is essentially in 
[8], it is easy to repeat it here. Suppose that X is an inner 
product space and that x $ co(u, v, w). Since co(w, v, w) is 
a convex and compact set, there exists a closed hyper-
plane H that strictly separates x and co(w, v, w). 

Let y = Pfj(x) be the orthogonal projection of x into H 
and let u\v',w' ht the intersection with H of the straight 
lines that connect x with w, v, w, respectively. 

Then, it follows from u-x=u-y + y-x, that 

\\u - xf = \\u - y\\' + \\y - xf + 2(u - y\y - x) 

where (u -y\y - x) is the inner product ofu-y and y - x. 

Since u~y = u-u' + u'-y and u' - y JL y - x, 
(u - y\y - x) = (u - u'\y - x), but u - u = p{u' - x), 
with p > 0, and, hence, {u - u'\y - x) = p(u' - x\y - x). 
Finally, it follows from u'-x = u'-y + y - x and 
u' - y Ji- y - X, that 

\\u-xf = \\u-yf + \\y - xf + 2piy - x\y - x)>\\u ~ yf. 

Analogous calculations for i; - x and w - x yield to 

Taking into account the nature of the hypothesis and 
the fact that X is an inner product space if and only if so is 
every 3-dimensional subspace of it, to prove the converse 
we may suppose that dim X = 3. In this way we can use 
the kind property that J^f^0 for a n y / G X*. 

Let P = ker k, with ke S^^\ be an homogeneus plane of 
X and let u, v e S H P he two non-proportional vectors 
such that there are/G Ju and g eJv whose restrictions,/|p 
and gip, to P are non-proportional. Then, the straight line 
L = k e r / n ker g is non-contained in P and {f\p, g\p} is a 
basis of P*. 

We shall prove that S is supported at any w e S HPhy 
the straight line w + L, i.e., that 

xeX->(x + L)nP 

is a norm-l linear projection of X onto P (see Lemma 3). 

This is equivalent to see that, for every weSf) P, there 
exist A, /.¿ G R such that || A/+ jt¿g|| = 1 and w G J%Àf+ ¡ig), 
i.e., 

sç^p= y j%if+^ig)np. 
i i Â / + y i i g i i = i 

Since {/Ip, g|p} is a basis of P*, for every w e S D P 
there are À, fi e U such that 

^ = Uf\p + ^ig\p\\= sup \2f(y)+pg(y)\ = Àf(w) + pgiw\ 
yeSnP 

I.e., 

snp= U ^*Wlp + A^̂ IP)-
\\Àf\p+fig\p\\=i 

Hence, we only need to show that any ?f + ¡.ig such 
that P / + /̂ ¿gll = 1, attains its norm at 5 Pi P, i.e.. 

sup \)f{x) -H ng{x)\ = sup \?f{y) + iig{y)\ 
xeS yeSnP 

or, equivalently, 

j%Áf+ ^ig)np^0. 

\u - yf -^ \\v - y\\' + \\w - yf <\\u - x\\' + 

+ \\v-xf + \\w-x\\\ 

i.e., X 4 Z"(w, V, w). 

So, the continuous function X G X - - > ! | W - X | P + 
+ | | D - X | P + | | W - X | P attains its minimum in the compact 
set co(w, V, w), i.e., not only Z^(w, v, w) fl co(w, v, w) i=^ 0 , 
but Z (̂w, V, w) cico(w, w, w). 

This is obvious for either A = 0 or /¿ = 0. Assume, by 
contradiction, that there are A, p G I R \ { 0 } such that 
J%Àf+ fig) n P = 0 and denote h = -{Xf + ¡ig). Since 
J'^h is convex, changing if necessary the sign of k we can 
assume that k{y) > 0 for every y e J'^h. Then, since X is 
finite dimensional, 7*/t is a non-void compact subset of 5 
and there exists w e J^^h such that 

0 < k(w) = inf k(y). 
ye J* h 
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It follows from Lemma 1 and 

A/+ i^ig + h = |A| (sign A)/+ lî l (sign ¡.i)g + h = 0 

that 0 G Z~(Aw, i^w, w). 

Since 0 ^ co(Aw, ¡iv, w), there is z G Z"(AW, /ii;, w) fi 
co(Aw, ¡.w, w) and, by Lemma 2, z G L = ker / fl ker g, 
w - z^J^^h. Furthermore, it follows from z^co(Àu, 
fiv, w)\P, k{u) = k{v) = 0 and k(w) > 0 that k(z) > 0. Hence, 
k(w - z) < k(w) which contradicts the definition of vv. D 

Remark 1. It is well known [8] and easy to prove that 
the hypothesis Z (̂w, v, w) n co(w, v,w)^ 0 is equivalent 
to the apparently weaker condition Z\u, v, w) f] aff(w, v, 
w) ^ 0 , where aff(w, v, w) is the affine hull of w, i;, w. 

Remark 2. We have seen in the well known first part 
of the proof of Proposition 1 that if X is a real inner prod­
uct space, then 0 ^ Z\u, v, w)c:co(w, v, w). Further­
more, it is also easy to check that, in this case, Z\u, v, w) 
has a unique element. 

Example 1. Some straightforward calculations show 
that if X = ll and u = (1, 0, 0), v = (0, 1, 0), w = (0, 0, 1), 
then Z\u, v, w) = {(0, 0, 0)} and, hence, Z\u, v, w) f] 
CO(W, V, w) = 0. 

Example 2. If X = ll and u = (1, 1), v = (1, 0), 
w = (-2,0), then Z\u, v, w)= {(0,t) :0<t<l} and, hence, 
Z\u, V, w) n co(u, V, w) ^ 0 , but Z"(W, V, W) gtco(w, v, w). 

Remark 3. It is easy to see that if Z is reflexive, then 
Z\u, v,w)^ 0 for every u, v, w e X. However, L. Vesely 

has proved in [9] (not only for 2-centers, but with consi­
derably greater generality) that if Xis non-reflexive, then 
there are u, v, w e X and an equivalent norm in Z, |||'|||, 
such that ZlJu, v, w) = 0. 
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