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ABSTRACT

We prove that a real normed space X of dimension
greater or equal than 3 is an inner product space if and
only if, for every three points u, v, w € X, the set of points
at which the function x € X — [|u — x| + ||v = x||* +
+ |lw — x]||* attains its minimum intersects the convex
hull of these three points.

1. INTRODUCTION

Let S and S* be the unit spheres of a real normed space
X and its topological dual X*, respectively. For u € X and
feX* denote Ju={ feS*:f(u)=||ul|} and J*f={ues:
@) =[£I}

A point z € X is said to be a 2-center of the points u, v,
w € X when

e = zIP +llv = 2l + [|w — 2| =

=inf (lu — x|’ + [Jv = x[? + [|w - x|P)
xeX

and it is said to be a Chebyshev center, or co-center,
when

sup(llu = zl, llv = z[l, llw =zl =

= inf sup(flu — x|l [[o = x| {lw = x[)).

The set of 2-centers, the set of co-centers, and the con-
vex hull of the points u, v, w € X will be denoted by
Z*(u, v, w), Z*(u, v, w), and co(u, v, w), respectively.

A well-known theorem of Garkavi [4] and Klee [7]
says that a real normed space X of dimension =3 is an
inner product space (i.e., its norm is induced by an inner
product) if and only if, for every u, v, w € X,

Z7(u, v, w) N co(u, v, w) # &.
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We shall prove that the same is true for Z*(u, v, w) in-
stead of Z*(u, v, w).
2. RESULTS

Lemma 1 ([3, 5]). Let X be a real normed space and
let u, v, w € X. Then 0 € Z*(u, v, w) if and only if there
exist f € Ju, g € Jv and h € Jw such that

llullf+ [[v]lg + llwllh = 0.

Lemma 2. Let X be a real normed space and let u, v,
w e X\ {0} be such that 0 € Z*(u, v, w). If f, g, h are as in
Lemma 1 and if z € ZX(u, v, w), then z € ker f N ker g N
ker h, and, for every r, s, t € [0, 1],

0eZ’(u—-rz v—sz, w- 7).
Proof. Since the function
reR—|lu—rz| +|lo = rz|P + [lw = rz|P

is convex and attains its minimum at r=0and r = 1, it is
obvious that, for every r € [0, 1], 0 € ZXu - rz, v - 1z,
w — 7).

Let f, g, h be as in Lemma 1 and let r € [0, 1]. Then
lu = rzlP +[lv = rzlP +[lw = rzll = lul? + [[o|P* + ||w]|* =
= [Jull f(u) + [|v][g(@) + [Iw]|A(w) =
= [lullfu = rz) + |[v]lg(v = r2) + [|wl|h(w — rz) <
Slullflu = rz|l + [Joll {lo = rzll + [Iw]] lw = rz|l <

1 )
<5 (Il = rzll? + |ull? + [lv = rz|? +

+ [0l + llw = rzlP* + [lwlP)

and, thus, f(u — rz) = ||u = rz|| = ||ul]] = f(u). Therefore,
f(2) =0, and f € J(u — rz). The same argument can be


mailto:cabero@unex.es
mailto:ghierro@unex.es
mailto:lsoriano@unex.es

516 Carlos Benitez et al.

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 2000; 94

used to obtain that g(z) =0 and g € J(v — s2), h(z) =0 and
heldw - tz).

Hence,
llu = rzllf+[lv = szllg + [lw — 2z]|h = 0,
as we wished to show (see Lemma 1). O

Lemma 3 ([2, 1, 6]). A real normed space X of di-
mension 23 is an inner product space if and only if there
is a norm-1 linear projection of X onto every 2-dimen-
sional subspace of it.

Proposition 1. A real normed space X of dimension
23 is an inner product space if and only if, for every
u,v,we X,

Z*u, v, w) N co(u, v, w) # .

Proof. Although the necessary part is essentially in
[8], it is easy to repeat it here. Suppose that X is an inner
product space and that x ¢ co(u, v, w). Since co(u, v, w) is
a convex and compact set, there exists a closed hyper-
plane H that strictly separates x and co(u, v, w).

Let y = P,(x) be the orthogonal projection of x into H
and let u’, v’, w' be the intersection with H of the straight
lines that connect x with u, v, w, respectively.

Then, it follows from u — x = u — y + y — x, that

N = x| = 1lu = yIP +[ly = x| + 2@ = y|y = %)
where (1 — y|y — x) is the inner product of u — y and y — x.

Sinceu ~y=u-—-u"+u —yandu" —yly-—ux,
uu-yly-x)=@-u'ly —x),butu—u = pu" - x),
with p > 0, and, hence, (u — u'|y — x) = p(u’ — x|y — x).
Finally, it follows from #" — x = 4" — y + y — x and
u' —y Ll y—x, that
[l = x[P=[lu=yIP+1ly = xIP +2p(y = x|y = x) > [Ju ~ y|".

Analogous calculations for v — x and w — x yield to

e = yIP +llo = yIP + w = yIP < llu = x| +

+ v = x| + [lw - x|,
ie., x & Z%u, v, w).

So, the continuous function x € X — |lu — x||* +
+|v = x||* + ||w — x||* attains its minimum in the compact
set co(u, v, w), i.e., not only Z%(u, v, w) Ncolu, v, w) # &,
but Z*(u, v, w) < co(u, u, w).

Taking into account the nature of the hypothesis and
the fact that X is an inner product space if and only if so is
every 3-dimensional subspace of it, to prove the converse
we may suppose that dim X = 3. In this way we can use
the kind property that J* f# ¢ for any f € X*

Let P = ker k, with k € $* be an homogeneus plane of
X and let u, v € S N P be two non-proportional vectors
such that there are f € Ju and g € Jv whose restrictions, f],
and g|,, to P are non-proportional. Then, the straight line
L = ker fN ker g is non-contained in P and { f|,, g|,} isa
basis of P*.

We shall prove that S is supported at any w € SN P by
the straight line w + L, i.e., that

xeX—=>x+L)NP
is a norm-1 linear projection of X onto P (see Lemma 3).

This is equivalent to see that, for every w € S N P, there
exist 4, ;€ R such that || Af + ug|| = 1 and w € J*(Af + ug),
1.e.,

snp= ) J¥f+ug NP

14f + ngli=1

Since { f1,, glp} is a basis of P*, for every w e SN P
there are 4, u € R such that

V=14l + ugloll= sup |Af(y) +ug(y)]= 4 (W) + ug(w),
ie.,

snp= |

Waf1p+ pelpll =1

5 1p + uglp)-

Hence, we only need to show that any Af + pg such
that ||Af + pg|| = 1, attains its norm at S N P, i.e.,

sup |4 (x) + ug(x)| = Sup_ [Af(y) + p1g(y)|

or, equivalently,
JAM + ug) NP = .

This is obvious for either 4 = 0 or = 0. Assume, by
contradiction, that there are A, u € R\{0} such that
J¥(Af + ug) N P = & and denote h = —(Af + ug). Since
J*h is convex, changing if necessary the sign of k we can
assume that k(y) > O for every y € J*h. Then, since X is
finite dimensional, J*h is a non-void compact subset of S
and there exists w € J*h such that

0 < k(w) = inf k(y).

veJth
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It follows from Lemma 1 and
M+ ug+h=|1(sign Df + |u|(sign wyg + h=0
that 0 € Z*(ut, v, w).

Since 0 ¢ co(iu, uv, w), there is z € Z*(Au, pv, w) N
co(Au, uv, w) and, by Lemma 2, z € L = ker f N ker g,
w — zeJ*h. Furthermore, it follows from zeco(Au,
uo, w\P, k(u) = k(v) = 0 and k(w) > O that k(z) > 0. Hence,
k(w — 7) < k(w) which contradicts the definition of w. O

Remark 1. Itis well known [8] and easy to prove that
the hypothesis Z*(u, v, w) N co(u, v, w) # & is equivalent
to the apparently weaker condition Z*(u, v, w) N aff(u, v,
w) # (&, where aff(u, v, w) is the affine hull of u, v, w.

Remark 2. We have seen in the well known first part
of the proof of Proposition 1 that if X is a real inner prod-
uct space, then & # Z*(u, v, w) =co(u, v, w). Further-
more, it is also easy to check that, in this case, Z*(u, v, w)
has a unique element.

Example 1. Some straightforward calculations show
thatif X =/} and u = (1,0,0), v = (0, 1,0), w = (0,0, 1),
then Z*(u, v, w) = {(0, 0, 0)} and, hence, Z*(u, v, w) N
co(u, v, w) = .

Example 2. If X = /2 and u = (1, 1), v = (1, 0),
w=(=2,0), then Z*(u, v, w) = {(0, ) : 0<¢< 1} and, hence,
Z(u, v, w) N co(u, v, w) # &, but ZX(u, v, w) ¢co(u, v, w).

Remark 3. It is easy to see that if X is reflexive, then
Z*(u, v, w) # & for every u, v, w € X. However, L. Vesely

has proved in [9] (not only for 2-centers, but with consi-
derably greater generality) that if X is non-reflexive, then
there are u, v, w € X and an equivalent norm in X, |||-|||,
such that Z} | (u, v, w) = .

ACKNOWLEDGEMENT

We thank the referee for his several suggestions that
improved the presentation of this paper.

REFERENCES

1. Blaschke, W. (1923). Vorlesungen iiber Differen-
tialgeometrie, 1I: Affine Differentialgeometrie, 45, Berlin.

2. Brunn H. (1889). Uber kurven ohne wendepunkte, Habili-
tations-schrift, Munchen.

3. Dubovickii, A. Ja. & Miljutin, A. A. (1965). Extremal
problems with constraints, USSR Comput. Math. Phys. 5,
no. 3, 1-81.

4. Garkavi, A. L. (1964). On the Chebyshev center and the
convex hull of a set, Uspekhi Mat. Nauk USSR 19, 139-
145.

S. Gol’stein, E. G. (1967). Problems of best approximation by
elements of a convex set and some properties of support
functionals, Soviet Math. Dokl. 8, 504-507.

6. Kakutani, S. (1939). Some characterizations of Euclidean
space, Jap. J. Math. 16, 93-97.

7. Kilee, V. (1960). Circumspheres and inner products, Math.
Scand. 8, 363-370.

8. Wendell, R. E. & Hurter, A. P. (1973). Location theory,
dominance, and convexity, Oper. Res. 21, 314-321.

9. Vesely, L. (1993). A characterization of reflexivity in the
terms of the existence of generalized centers, Extracta
Math. 8, 125-131.



