Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp) Vol. 94, N.º 4, pp 515-517, 2000 Monográfico: Perspectivas en Análisis Matemático

LOCATION OF THE 2-CENTERS OF THREE POINTS¹

(Optimal location, medians, centers of finite sets, characterization of inner product spaces)

CARLOS BENÍTEZ, MANUEL FERNÁNDEZ and MARÍA L. SORIANO

Departamento de Matemáticas. Universidad de Extremadura. 06071 Badajoz (Spain). *E-mail address:* cabero@unex.es, ghierro@unex.es, lsoriano@unex.es

ABSTRACT

We prove that a real normed space X of dimension greater or equal than 3 is an inner product space if and only if, for every three points $u, v, w \in X$, the set of points at which the function $x \in X \rightarrow ||u - x||^2 + ||v - x||^2 +$ $+ ||w - x||^2$ attains its minimum intersects the convex hull of these three points.

1. INTRODUCTION

Let *S* and *S*^{*} be the unit spheres of a real normed space *X* and its topological dual *X*^{*}, respectively. For $u \in X$ and $f \in X^*$, denote $Ju = \{f \in S^* : f(u) = ||u||\}$ and $J^*f = \{u \in S : f(u) = ||f||\}$.

A point $z \in X$ is said to be a 2-center of the points $u, v, w \in X$ when

$$||u - z||^{2} + ||v - z||^{2} + ||w - z||^{2} =$$

=
$$\inf_{x \in Y} (||u - x||^{2} + ||v - x||^{2} + ||w - x||^{2})$$

and it is said to be a Chebyshev center, or ∞ -center, when

$$\sup(||u - z||, ||v - z||, ||w - z||) =$$

=
$$\inf_{x \in X} \sup(||u - x||, ||v - x||, ||w - x||).$$

The set of 2-centers, the set of ∞ -centers, and the convex hull of the points $u, v, w \in X$ will be denoted by $Z^2(u, v, w), Z^{\infty}(u, v, w)$, and co(u, v, w), respectively.

A well-known theorem of Garkavi [4] and Klee [7] says that a real normed space X of dimension ≥ 3 is an inner product space (i.e., its norm is induced by an inner product) if and only if, for every $u, v, w \in X$,

$$Z^{\infty}(u, v, w) \cap \operatorname{co}(u, v, w) \neq \emptyset$$

We shall prove that the same is true for $Z^2(u, v, w)$ instead of $Z^{\infty}(u, v, w)$.

2. RESULTS

Lemma 1 ([3, 5]). Let X be a real normed space and let u, v, $w \in X$. Then $0 \in Z^2(u, v, w)$ if and only if there exist $f \in Ju$, $g \in Jv$ and $h \in Jw$ such that

$$|u||f + ||v||g + ||w||h = 0.$$

Lemma 2. Let X be a real normed space and let $u, v, w \in X \setminus \{0\}$ be such that $0 \in Z^2(u, v, w)$. If f, g, h are as in Lemma 1 and if $z \in Z^2(u, v, w)$, then $z \in \ker f \cap \ker g \cap \ker h$, and, for every r, s, $t \in [0, 1]$,

$$0 \in Z^2(u - rz, v - sz, w - tz).$$

Proof. Since the function

$$r \in \mathbb{R} \to ||u - rz||^2 + ||v - rz||^2 + ||w - rz||^2$$

is convex and attains its minimum at r = 0 and r = 1, it is obvious that, for every $r \in [0, 1]$, $0 \in Z^2(u - rz, v - rz, w - rz)$.

Let f, g, h be as in Lemma 1 and let $r \in [0, 1]$. Then

$$\begin{split} ||u - rz||^{2} + ||v - rz||^{2} + ||w - rz||^{2} &= ||u||^{2} + ||v||^{2} + ||w||^{2} \\ &= ||u||f(u) + ||v||g(v) + ||w||h(w) = \\ &= ||u||f(u - rz) + ||v||g(v - rz) + ||w||h(w - rz) \leq \\ &\leq ||u|| ||u - rz|| + ||v|| ||v - rz|| + ||w|| ||w - rz|| \leq \\ &\leq \frac{1}{2} (||u - rz||^{2} + ||u||^{2} + ||v - rz||^{2} + \\ &+ ||v||^{2} + ||w - rz||^{2} + ||w||^{2}) \end{split}$$

and, thus, f(u - rz) = ||u - rz|| = ||u|| = f(u). Therefore, f(z) = 0, and $f \in J(u - rz)$. The same argument can be

¹ 1991 Mathematics Subject Classification. 46B20, 46C15, 90B85.

used to obtain that g(z) = 0 and $g \in J(v - sz)$, h(z) = 0 and $h \in J(w - tz)$.

Hence,

$$||u - rz||f + ||v - sz||g + ||w - tz||h = 0,$$

as we wished to show (see Lemma 1).

Lemma 3 ([2, 1, 6]). A real normed space X of dimension ≥ 3 is an inner product space if and only if there is a norm-1 linear projection of X onto every 2-dimensional subspace of it.

Proposition 1. A real normed space X of dimension ≥ 3 is an inner product space if and only if, for every $u, v, w \in X$,

$$Z^{2}(u, v, w) \cap \operatorname{co}(u, v, w) \neq \emptyset.$$

Proof. Although the necessary part is essentially in [8], it is easy to repeat it here. Suppose that X is an inner product space and that $x \notin co(u, v, w)$. Since co(u, v, w) is a convex and compact set, there exists a closed hyperplane H that strictly separates x and co(u, v, w).

Let $y = P_H(x)$ be the orthogonal projection of x into H and let u', v', w' be the intersection with H of the straight lines that connect x with u, v, w, respectively.

Then, it follows from u - x = u - y + y - x, that

$$||u - x||^{2} = ||u - y||^{2} + ||y - x||^{2} + 2(u - y|y - x)$$

where (u - y | y - x) is the inner product of u - y and y - x.

Since u - y = u - u' + u' - y and $u' - y \perp y - x$, (u - y|y - x) = (u - u'|y - x), but $u - u' = \rho(u' - x)$, with $\rho > 0$, and, hence, $(u - u'|y - x) = \rho(u' - x|y - x)$. Finally, it follows from u' - x = u' - y + y - x and $u' - y \perp y - x$, that

 $||u - x||^{2} = ||u - y||^{2} + ||y - x||^{2} + 2\rho(y - x|y - x) > ||u - y||^{2}.$

Analogous calculations for v - x and w - x yield to

$$\begin{split} \|u - y\|^2 + \|v - y\|^2 + \|w - y\|^2 < \|u - x\|^2 + \\ &+ \|v - x\|^2 + \|w - x\|^2, \end{split}$$

i.e., $x \notin Z^2(u, v, w)$.

So, the continuous function $x \in X \rightarrow ||u - x||^2 +$ + $||v - x||^2 + ||w - x||^2$ attains its minimum in the compact set co(u, v, w), i.e., not only $Z^2(u, v, w) \cap co(u, v, w) \neq \emptyset$, but $Z^2(u, v, w) \subset co(u, u, w)$. Taking into account the nature of the hypothesis and the fact that X is an inner product space if and only if so is every 3-dimensional subspace of it, to prove the converse we may suppose that dim X = 3. In this way we can use the kind property that $J^* f \neq \emptyset$ for any $f \in X^*$.

Let $P = \ker k$, with $k \in S^*$, be an homogeneus plane of X and let $u, v \in S \cap P$ be two non-proportional vectors such that there are $f \in Ju$ and $g \in Jv$ whose restrictions, $f|_P$ and $g|_P$, to P are non-proportional. Then, the straight line $L = \ker f \cap \ker g$ is non-contained in P and $\{f|_P, g|_P\}$ is a basis of P^* .

We shall prove that *S* is supported at any $w \in S \cap P$ by the straight line w + L, i.e., that

$$x \in X \longrightarrow (x + L) \cap P$$

is a norm-1 linear projection of X onto P (see Lemma 3).

This is equivalent to see that, for every $w \in S \cap P$, there exist $\lambda, \mu \in \mathbb{R}$ such that $\|\lambda f + \mu g\| = 1$ and $w \in J^*(\lambda f + \mu g)$, i.e.,

$$S \cap P = \bigcup_{\|\lambda f + \mu g\| = 1} J^*(\lambda f + \mu g) \cap P.$$

Since $\{f|_P, g|_P\}$ is a basis of P^* , for every $w \in S \cap P$ there are $\lambda, \mu \in \mathbb{R}$ such that

$$1 = \left|\left|\lambda f\right|_{P} + \mu g\left|_{P}\right|\right| = \sup_{y \in S \cap P} \left|\lambda f(y) + \mu g(y)\right| = \lambda f(w) + \mu g(w),$$

i.e.,

$$S \cap P = \bigcup_{\|\lambda f|_P + \mu g|_P\| = 1} J^*(\lambda f|_P + \mu g|_P).$$

Hence, we only need to show that any $\lambda f + \mu g$ such that $\|\lambda f + \mu g\| = 1$, attains its norm at $S \cap P$, i.e.,

$$\sup_{x \in S} |\lambda f(x) + \mu g(x)| = \sup_{y \in S \cap P} |\lambda f(y) + \mu g(y)|$$

or, equivalently,

$$J^*(\lambda f + \mu g) \cap P \neq \emptyset.$$

This is obvious for either $\lambda = 0$ or $\mu = 0$. Assume, by contradiction, that there are λ , $\mu \in \mathbb{R} \setminus \{0\}$ such that $J^*(\lambda f + \mu g) \cap P = \emptyset$ and denote $h = -(\lambda f + \mu g)$. Since J^*h is convex, changing if necessary the sign of k we can assume that k(y) > 0 for every $y \in J^*h$. Then, since X is finite dimensional, J^*h is a non-void compact subset of S and there exists $w \in J^*h$ such that

$$0 < k(w) = \inf_{y \in J^*h} k(y).$$

Carlos Benítez et al.

It follows from Lemma 1 and

$$\lambda f + \mu g + h = |\lambda| (\operatorname{sign} \lambda) f + |\mu| (\operatorname{sign} \mu) g + h = 0$$

that $0 \in Z^2(\lambda u, \mu v, w)$.

Since $0 \notin co(\lambda u, \mu v, w)$, there is $z \in Z^2(\lambda u, \mu v, w) \cap co(\lambda u, \mu v, w)$ and, by Lemma 2, $z \in L = \ker f \cap \ker g$, $w - z \in J^*h$. Furthermore, it follows from $z \in co(\lambda u, \mu v, w) \setminus P$, k(u) = k(v) = 0 and k(w) > 0 that k(z) > 0. Hence, k(w - z) < k(w) which contradicts the definition of w. \Box

Remark 1. It is well known [8] and easy to prove that the hypothesis $Z^2(u, v, w) \cap co(u, v, w) \neq \emptyset$ is equivalent to the apparently weaker condition $Z^2(u, v, w) \cap aff(u, v, w) \neq \emptyset$, where aff(u, v, w) is the affine hull of u, v, w.

Remark 2. We have seen in the well known first part of the proof of Proposition 1 that if X is a real inner product space, then $\emptyset \neq Z^2(u, v, w) \subset co(u, v, w)$. Furthermore, it is also easy to check that, in this case, $Z^2(u, v, w)$ has a unique element.

Example 1. Some straightforward calculations show that if $X = l_1^3$ and u = (1, 0, 0), v = (0, 1, 0), w = (0, 0, 1), then $Z^2(u, v, w) = \{(0, 0, 0)\}$ and, hence, $Z^2(u, v, w) \cap co(u, v, w) = \emptyset$.

Example 2. If $X = l_{\infty}^2$ and u = (1, 1), v = (1, 0), w = (-2, 0), then $Z^2(u, v, w) = \{(0, t) : 0 \le t \le 1\}$ and, hence, $Z^2(u, v, w) \cap co(u, v, w) \ne \emptyset$, but $Z^2(u, v, w) \not \in co(u, v, w)$.

Remark 3. It is easy to see that if X is reflexive, then $Z^2(u, v, w) \neq \emptyset$ for every $u, v, w \in X$. However, L. Veselý

has proved in [9] (not only for 2-centers, but with considerably greater generality) that if X is non-reflexive, then there are $u, v, w \in X$ and an equivalent norm in X, $||| \cdot |||$, such that $Z^2_{||| \cdot |||}(u, v, w) = \emptyset$.

ACKNOWLEDGEMENT

We thank the referee for his several suggestions that improved the presentation of this paper.

REFERENCES

- 1. Blaschke, W. (1923). Vorlesungen über Differentialgeometrie, II: Affine Differentialgeometrie, 45, Berlin.
- **2.** Brunn H. (1889). Über kurven ohne wendepunkte, Habilitations-schrift, Munchen.
- 3. Dubovickii, A. Ja. & Miljutin, A. A. (1965). Extremal problems with constraints, USSR Comput. Math. Phys. 5, no. 3, 1-81.
- 4. Garkavi, A. L. (1964). On the Chebyshev center and the convex hull of a set, *Uspekhi Mat. Nauk USSR* 19, 139-145.
- 5. Gol'šteĭn, E. G. (1967). Problems of best approximation by elements of a convex set and some properties of support functionals, *Soviet Math. Dokl.* **8**, 504-507.
- 6. Kakutani, S. (1939). Some characterizations of Euclidean space, *Jap. J. Math.* 16, 93-97.
- 7. Klee, V. (1960). Circumspheres and inner products, *Math. Scand.* **8**, 363-370.
- 8. Wendell, R. E. & Hurter, A. P. (1973). Location theory, dominance, and convexity, *Oper. Res.* 21, 314-321.
- **9.** Veselý, L. (1993). A characterization of reflexivity in the terms of the existence of generalized centers, *Extracta Math.* **8**, 125-131.