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ABSTRACT 

By definition, quasi-linear maps F; X -^ [R on a quasi-
Banach i^-space X can be approximated by linear maps. 
We investigate the nature of the method F —> m{F) that 
yields the almost optimal approximation, and which we 
call metric projection. We shall show that the method of 
concentrators of Kalton and Roberts that works for L^-
spaces is quasi-linear and non-linear. We shall also show 
that there exists a linear metric projection if and only if 
the Banach envelope of X is an £j-space. 

1. INTRODUCTION 

Some quasi-Banach spaces X have the following nice 
property, for which they are awarded with the term K-
spaces: whenever F is a quasi-Banach containing a one-
dimensional subspace R such that F/IR = X and t. M—>X 
is an operator from another quasi-Banach space M then t 
can be lifted to an operator T: M -^ E. Equivalently, 
every exact sequence 0->IR—>F-^X->0 splits. Equiv­
alently, still, every quasi-linear map F: X ̂  [R is at finite 
distance from some linear map L: X-> [R. The prelimina­
ries section contains precise definitions for these terms. 
When X is a Banach space then the preceding statements 
are equivalent to: whenever F is a quasi-Banach space 
such that F/[R = X then F is itself a Banach space (and 
thus isomorphic to [R@X). 

The main examples of jSr-spaces are: B-convex Banach 
spaces and quasi-Banach L^^ spaces, 0 <p < 1, proved by 
Kalton in [17]; and the £,̂  -spaces (proved by Kalton and 
Roberts in [24]). On the opposite side, the main examples 
of non-/^-spaces are the X,-spaces. The three proofs have 
different nature. The proof for ^-convex Banach spaces 
consists in directly showing that the so-called twisted 
sum space F is locally convex. The proof for L^^ is a cun­
ning computation that shows that given a quasi-linear 
map F on a finite dimensional /̂ //t) space the «obvious» 
linear map lie^) = F{e^ is at finite distance (independent­

ly of n) from F However, the proof for X^-spaces is 
highly nontrivial. 

Kalton and Roberts proved in [24] is that If F : /^(Q) -^ 
-^ ^ is a quasilinear map then there is a linear func­
tional L : /^(Q) -^ U with \F{x) - L{x)\ < 100 Q{F) ||x||, 
where Q(F) is the quasilinear constant ofF. Let us give a 
different statement. Recall that a function/: J 4 . ^ IR de­
fined on an algebra of subsets of a set Q is said to be 
e-approximately additive i f / (0 ) = 0 and for every pair 
A, B of disjoint sets one has 

\f(AUB)-f(A)-f(B)\<8. 

Given a quasi-linear map F : /^(ü) -^ IR, then f(A) = 
= F(l^) defines a 2(F)-approximately additive function 
on 2^. Additive set-functions are the 0-approximately ad­
ditive, and correspond to the linear maps /oc(0) -^ U. 
Thus, what is proved in [24] is the existence of a univer­
sal constant K < 45 with the property that iff : J^ -^ IR is 
Is.-approximately additive, there is an additive function 
AÍ : J4. ^ [R with i/(A) - ii{A) | < 7̂  • A. In fact, they ob­
serve that it suffices to consider the case of finite alge­
bras. The proof gets the additive map from the existence 
of a process called «concentrator». One of our purposes 
is to show that concentrators are actually quasi-linear 
non-linear maps. 

Thus, in the way of understanding the proof, we be­
came interested in the methods F —> L{F) to obtain, in 
a i^-space, linear maps at «almost optimal» finite dis­
tance. That is, the nature of the «almost optimal approxi­
mation map» F —> L{F) such that, for some constant C, 
||F - L(F)II < C dist(F, X'). We shall call to such map a 
metric projection. Which is the nature of the metric pro­
jection? Could it be even linear? 

The interest in finding such linear method was fostered 
by the following attack: Let/ : Ĵ t -^ [R be a 1-approxi­
mately additive function in a finite algebra Ji. Suppose 
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there exists a linear m e t h o d / ^ ^ ( / ) to define, for some 
r < 1, a r-approximately additive map m(f) : JA-^ U 
such that \m(f)(A) -f(A)\ < 1. If so, we can iterate the 
method to obtain m\f) : Ji-^U such that \m~(f)(A) -
- m(f)(A) I < r and m\f) would be r^-approximately ad­
ditive; and so on. The sequence {m^ifyj is contained in 
the compact subset of P " T,JZl. 

{g:\g(A)\<\f(A)\ + (l-r-')]. 

Therefore, if l i denotes a free ultrafilter on N then 

L(f)(A) = lim^(„^ m,Xf)(^) 

defines a linear map L(f) : ^ ^ U which verifies 
|/(A) - L(/)(A)| < (1 - r~^). In the end, we would have ob­
tained a hnear metric projection/-^ L( / ) . Can we do this? 

We do not want to spoil the forthcoming surprises, so 
we shall only say: no. 

2. PRELIMINARIES 

A quasi-norm on a (real or complex) vector space X is 
a nonnegative real-valued function ||-|| satisfying 

i) \\x\\ = 0 if and only if x = 0; 

¿i) \\Àx\\ = \À\ \\x\\ for all X e X and XEK; 

Hi) \\x + y\\ < K(\\x\\ + llyll) for some constant i^inde­
pendent of X, y e X. 

A quasi-normed space is a vector space X together with a 
specified quasi-norm. On such a space one has a (vector) 
topology defined by the fundamental system of neighbor­
hoods of 0 given by the multiples of the set {x G X.-11 x 11 < 1}, 
called the unit ball of the quasi-norm. A complete quasi-
normed space is called a quasi-Banach space. In the se­
quel, the word operator means linear continuous map. 
The algebraic dual X' of X is the space of linear, not 
necessarily continuous, maps; it shall also be denoted 
L(X, R), or simply L. The subspace of X' formed by the 
linear continuous maps, the topological dual of X, shall 
be denoted X*. An operator X —> F means always a linear 
continuous map. The space of homogeneous and 
bounded (i.e., such that the image of the unit ball is a 
bounded set) maps shall be denoted B(X, [R), or simply B. 
The term bounded map shall always mean homogeneous 
bounded map. Given two homogeneous maps A, B acting 
between the same spaces, their (eventually infinite) dis­
tance is defined as 

B\\ = sup||.v||<, ||Ax - 5x||. 

Exact sequences of (quasi) Banach spaces. For gen­
eral information about exact sequences the reader can 
consult [15]. Information about categorical constructions 
in the (quasi) Banach space setting can be found in the 

monograph [9]. A diagram 0 - ^ F — > X ^ Z - ^ O o f 
quasi-Banach spaces and operators is said to be an exact 
sequence if the kernel of each arrow coincides with the 
image of the preceding. This means, by the open map­
ping theorem, that Fis (isomorphic to) a closed subspace 
of X and the corresponding quotient is (isomorphic to) Z 
We shall also say that X is a twisted sum of Y and Z or an 
extension of Y by Z. Two exact sequences 0 - ^ F —> X ^ 

0 and 0 X, 0 are said to be 
equivalent if there is an operator T making the diagram 

0 

0 

X 
IT 
X, -

z 
II 
z 

0 

0 

commutative. The following standard result of algebra 
(see [15]) and the open mapping theorem imply that T 
must be an isomorphism. 

The 3-lemma. Assume that one has a commutative dia­
gram of vector spaces and linear maps 

0 

0 

Y X 

X, 

z 

z, 

0 

0 

with exact rows. If a and y are injective (resp. surjective) 
so is p. 

An exact sequence 0 - ^ F - ^ X - ^ Z - > O i s said to split 
if it is equivalent to the trivial sequence 0 —> F ^ Y@Z 
—> Z —> 0. This already implies that X is isomorphic to 
the direct sum Y@Z. 

Quasi-linear and 0-linear maps. The by now classi­
cal theory of Kalton and Peck [21] describes short exact 
sequences of quasi-Banach spaces in terms of the so-
called quasi-linear maps. A map F: Z ^ Y acting be­
tween quasi-normed spaces is said to be quasi-linear if it 
is homogeneous and satisfies that for some constant K 
and all points x, y in Z one has 

||F(x + 3 ; ) - F ( x ) - F ( j ) | | < ^ ( | | x | | + |b | | ) . 

The smallest constant satisfying the inequality above is 
denoted Q(F) and referred to as the quasi-linearity con­
stant of the map F. We shall denote ^(X, U) the space of 
all quasi-linear maps X ^ [R. 

We shall say that a quasi-linear map is trivial when it 
can be written as the sum of a linear and a bounded map; 
or else, when it is at finite distance from a linear map. 
Two quasi-linear maps F and G (defined between the 
same spaces) are said to be equivalent if F-G is trivial. In 
this case we shall also say as in [2] that F is a version of 
G (or vice versa). Quasi-linear maps give rise to twisted 
sums: given a quasi-linear map F: Z—^ F then it is poss­
ible to construct a twisted sum, which we shall denote by 
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Y@pZ, endowing the product space Yx Z with the quasi-
norm 

\\(y.z)\\ = \\y-Fiz)\\ + \\z\\. 

Clearly, the map Y-^ Y(^f,Z sending of y to (y, 0) is 
an into isometry, and so F can be thought as a subspace of 
Y@p.Z; moreover, the corresponding quotient is isometric 
to Z Conversely, an exact sequence 0 -^ y-^x—> Z—> 0 
comes defined by a quasi-linear map: pick a bounded se­
lection B for the quotient map q (which exists by the 
open mapping theorem) and then a linear selection L; the 
difference B - Lis quasi-linear and takes values in Y since 
q(B - L) = 0. The two processes are one inverse of the 
other and, moreover, one has the following fundamental 
result of [21]. 

Proposition 2.1. Two exact sequences 0 Y -> 
r e ^ Z - > Z - > O a / í ( ¿ 0 - > F ^ Y®çZ ~> Z ^ O are 
equivalent if and only F and G are equivalent. Therefore, 
an exact sequence O^Y^>Y@pZ~>Z-^Ois equivalent 
to the trivial exact sequence 0 — > y - ^ F ® Z - ^ Z - ^ O i / " 
and only F is trivial {i.e., F is at finite distance from some 
linear map). 

The quasi-Banach space 7 © ^ Z constructed via a quasi-
Unear map F need not be locally convex, even when Y 
and Z are. A result of Dierolf [11] asserts that there exists 
a nonlocally convex twisted sum of Y and Z if and only if 
there exists a nonlocally convex twisted sum of IR and Z 
Hence, a Banach space is a i^-space when every twisted 
sum with [R is locally convex. It is however possible to 
obtain a simple characterization of when a given twisted 
sum of Y and Z is locally convex: the key is to give the 
characterization in terms of the quasi-linear map F and 
not in terms of the factor spaces. 

Definition. A quasi-linear map F.Z-^Y acting be­
tween quasi-normed spaces is said to be ^-linear if there 
is a constant K such that whenever {x-} is a finite set of 
elements of Z then 

||F(i;::';x,)-x;'.,f(x,)||</^i;.'=,lk.||. 

The smallest constant satisfying the inequality above 
is denoted Z{F) and referred to as the 0-linearity constant 
of the map F. The space of all 0-linear maps X - ^ [R shall 
be denoted Z(X, IR). One has (see [2, 7, 9]). 

Proposition 2.2. A twisted sum of Bcmach spaces 
Y@pZ is locally convex (being thus isomorphic to a Ba­
nach space) if and only if F is 0-linear. 

It is clear that 0-linear maps are quasi-linear. It is not 
true, however, that quasi-linear maps are 0-linear. Ribe 
[29] provided the simplest example of a quasi-linear not 

(observe that the map is only defined on finitely supported 
sequences; however there exist extension theorems for 
quasi and 0-linear maps (see [21])). The quasi-linearity 
can be seen in [22] (actually Q(R) = 2) while the fact that 
R is not 0-linear is very simple to check: R(e,) = 0 for all 
n while R{TrJ e¡) = -N log Â ; since U-Z^ \\e.\\ = N, the 
estimate in the definition of 0-linear map is impossible. 

It is moreover clear that a quasi-linear map F such that 
| |F - L|| < /T for some linear map K necessarily is 0-lin­
ear and Z(F) < 2K. Hence Z(F) < dist (F, L). In particu­
lar, Ribe's map R cannot be approximated by linear 
maps. As for the converse, one can see that using the 
Hahn-Banach theorem. Proposition 2.2 can be refor­
mulated in terms of approximation by linear maps as fol­
lows (we shall give a direct proof for this result later): 

Proposition 2.3. A quasi-linear map X—>U is 0-lin­
ear if and only if it is at finite distance from a linear map. 

In this way we obtain that a Banach space X is a K-
space if and only if every quasi-linear map X - ^ [R is 
0-linear. 

The pull-back square. Let A: U -^Z and B: y —> Z 
be two arrows in a given category C. The pull-back of 
{A, B} is an object E in C and two arrows u:E^ U and 
v: E-^V such that Au = Bv; and such that given another 
object r in C for which there exist arrows a.T —> U and 
fi: r -^ V verifying Aa = B^ then there exists a unique 
arrow y: F -> H such that j] = vy and a = uy. If one 
prefers the categorical language, the pull-back makes 
commutative the diagram 

U 

4 
z 

V 

0-linear map /? : /, given by 

and is universal with respect to this property. 

In the category of quasi-Banach spaces and operators, 
as well as in the subcategory of Banach spaces pull-backs 
exist. If A: U -^Z and B: V^ Z are two operators, the 
pull-back of {A, B} is the space S ={(u, u): Au = Bv} 
endowed with the induced product topology together 
with the restrictions of the canonical projections of 
U® Vonto, respectively, i/and V. If 0 -> F - > X - > Z - > 0 
is an exact sequence with quofient map q and T: M -^Z 
is a surjective operator and H denotes the pull-back of the 
couple {q, T] then the diagram 

0-> Y-^X-> Z ^0 
II Î t'f 

0-^Y^E-^M ^0 

R(x) = l¡x¡ log \x¡\ - I-x. log | I x . | is commutative with exact rows and columns. 
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3. LINEAR METRIC PROJECTIONS 
ON BANACH SPACES 

As we have already seen, 0-linear maps on Banach 
spaces can be approximated by linear maps; thus, one has 
the decomposition 

Z(X, iR) = B(X, U) + L(X, R) 

On a quasi-Banach üT-space one even has 

£(X, R) = B(X, U) + L(X, U). 

Given a quasi-linear map F, let D{F) = dist (F, L(X, R)). 
Our main concern now is the nature of the map F —> m(F) 
that associates to F an «almost optimal» selection, i.e. 
m(F) is a linear map such that | |F - m(F)\\ < C D(F) 
(with C a prescribed finite constant). We have already 
seen that Z(-) < 2D(-), hence it will be enough to study 
methods m such that \\F - m(F)\\ < CZ(F). 

Our questions now are: 

Question 1. Do there exist Banach K-spaces in which 
the metric projection 

m : QSX, U) -> L(X, R) 

is linear? 

Question 2. Do there exist quasi-Banach K-spaces in 
which the metric projection 

m : QiX, L(X, U) 

is linear? 

Observe that the hypothesis of being a ^-space is 
necessary. Without it we can only ask: 

Question 3. Do there exist Banach spaces in which 
the metric projection 

m : Z(X, U) -^ L(X, U) 

is linear? 

We begin answering questions 1 and 3. 

Proposition 3.1. The metric projection m : Z(X, R) 
- ^ L(X, R) is linear if and only ifX is an L^-space. 

Proof. Let us consider first the case of a quasi-linear 
map F : I" - ^ IR. Obviously D(F) is finite and F is 0-
linear. If (Cf) is the unit vector basis of l[\ we can define a 
linear map by l{e,) = F(e¡) (and linearly on the rest). We 
then have that for x = J.,,Xf^e^ in l" 

1^(1^--^A) - l{^k^kek)\ ^ IFilk^k^k) - X^x^F(e^)| < 

. <Z(F)\\l,x,e,\\=Z(F)\\x\\ 

and thus ||F - /|| < Z(F). The correspondence F-^m{F) = 
= I is clearly linear. 

We pass to an infinite dimensional Xj-space X; let F : 
X ^ !R be a 0-linear map. Assume that X = [JX^ where X^ 
is A-isomorphic to /f and X^ is A-complemented in X. For 
each a, the map F^ = F^^ :X—>R admits a linear map /,̂  : 
X^-^R such that \\F^ - \ | | < ÀZ(F). Let 4 be an exten­
sion of /̂  to the whole X obtained by setting L^^iy) = 0 
when y does not belong to X .̂ Since for every x and 
eventually all a one has \L^(x)\ < \\F(x)\\ + A Z(F) it 
makes sense to define a linear map L : X - ^ IR by 

Lix) = lim^(,) 4(x) 

where 1L/ is a free ultrafilter on index set (a) refining the 
Fréchet filter with respect to the natural ordering defined 
by the net (XJ. The application L is well defined and 
linear. One moreover has | |F - L|| < ÀZ(F) as follows 
from the following inequality choosing the index a care­
fully after e: 

\L(x) - Fix)I < \L(x) - L,(x)I + \L,(x) - F(x)\ <8 + A Z(F). 

Finally, the procedure F —> m{F) = Lis linear. 

We pass to the converse implication. Let Z be a Ba­
nach space and assume the existence of a linear map m : 
Z(X, IR) -> L(X, R) such that \\F - m(F)\\ < C • D(F). 

Applying a uniform boundedness principle of Kalton 
[17] (the reader shall find a careful description of such 
principles in [3], there exists a constant C such that for 
every 0-linear map D{F) < C Z{F). 

Let now V be an ultrasummand; i.e., a Banach space 
complemented in its bidual. Let G : X - ^ V be an arbitrary 
0-linear map. We define a map L : X ^ V** by 

<L(x), i;*> = <m(u*o G), x>, 

which is linear since m is linear, and well defined since 
L{x) is continuous: 

||L(x) = sup{<L(x), i ;*>: | | i ;* | |< l} = 

= sup {<m(i;*o G), x> : ||i;*|| ^ 1} = 

= sup {<m{v'' o G) - 1 ; * o G, jc> + <i;*o G,x> : ||r*|| < 1} < 

<sup { C D ( Í ; * O G ) | | X | | + | | Î ;*| | ||G(JC)|| : | b * | | < 1} < 

< sup {CZ{v^^^ o G)\\x\\ + ||i;*|| | |G(x)||: ||i;*|| < 1} < 

< sup {Cn|i;*||Z(G)||x|| + ||i;*|| ||G(x)||: | | Í ;*| | < 1} < 

< C'Z(G) ||x|| + ||G(x)||. 



Félix Cabello Sánchez et al. Rev.RAcad.Cienc.Exact.Fis.Nat. (Esp), 2000; 94 All 

Since 

|<G(x) - L(x), Í;^^>| = |<G(x), t;*> - <m(r*o G), x>| = 

= |i;^^^oG(x) ~m(,v''oG){x)\ < 

<2CZ(v'^oG)\\x\\ < 

<2C\\vnZ(G)\\x\\ 
we get 

| |G -L | | - sup„ , . „ , , | |G (x ) -L(x ) | | = 

= sup,ĵ .,l<, sup||,,.,|< j I <G(x), i?*> - <L(x), i;̂ >̂ I < 

< 2 • C • Z(G). 

To conclude we shall prove a result asserting that in 
the situation just described the space X has to be an £^-
space. The if part is a result of Lindenstrauss [27] (al­
though our proof shall be «considerably simpler») while, 
although the result is essentially known, we have no ex­
plicit reference for the only if part. 

Proposition 3.2. A Banach space Q is an L^-space if 
and only if for every ultrasummand Y every exact se­
quence Q-^Y-^X-^Q-^0 splits. 

Proof Assume that every exact sequence 0 —> F - ^ 
~>W -^ Q -^ Q splits when Y is complemented in its 
bidual. We shall prove that Q^^ is injective. For this, con­
sider a exact sequence 0 - ^ g'^' ^ X - ^ Z —> 0. One has 

0 

0 

Z^-^ X''-^ Q'^'^ 
II Î Î 

0 

0 

where P is the pull-back of the quotient map X'""' -^ Q"^'"' 
and Q -^ g-̂ -̂  is the canonical inclusion. Observe the 
diagram 

0 

0 

0 

0 

Ï 

Í 

II 

i 

i 

î 
PB 

Z 

i 

w 
z^^, 
î 
z 

0 

0 

0 

0 

where the second row is the bitraspose of the first row, 
and the second and third rows form the adjoint of the 
previous pull-back diagram. The third and fourth rows 
form a pull-back diagram with respect to the quotient 
map P'̂ ' - ^ Z'̂ "̂ ' and the canonical inclusion Z -> Z'*''̂  

The third row splits since it is transpose of the se­
quence 0 - ^ Z'̂ ' ̂  p -_> g - ^ 0, which splits since Z'̂ ' is 
complemented in its bidual; thus, the fourth rows splits. 
But the first and fourth sequences are equivalent: since 
PB is the pull-back space of F* -> Z''^ midZ-->Z'^''^ and 

we have arrows X ^ Z (quotient map in the first line) and 
X^ P^ (vertical central line downwards) making a com­
mutative square with the two previous aiTows, there must 
exist an arrow a.X-^ PB making the two triangles com­
mutative. That makes the restriction a | 2 * = id, and 
means that the upper and lower sequences are equivalent. 

Now a proof for Lindenstrauss statement. Let Z be an 
X¡-space and let 0 ^ F -> X -> Z -> 0 be an exact se­
quence in which Y is an ultrasummand. Consider the 
commutative diagram: 

0 

0 

Y 

Í 

X 

Í 
y*̂ ^ -^ x*= 

z 
i 

0 

0 

Since Z'^' is an injective space the dual sequence 0 -^ 
—> Z* - ^ X'^' -^ y* -^ 0 splits, and so does the bidual 
sequence; hence, F"̂ "̂  is complemented in X"̂ *, since Y is 
complemented in P^*, it turns out that F must be comple­
mented in X and the original sequence splits. D 

From all this we conclude: 

Corollary 3.3, Let X be a Banach space. It does not 
exist a linear metric projection 

£(X, U) -> L(X, 31). 

Proof Since, that would imply a linear metric projec­
tion Z(X, U) -^ L(X, U) and, as we have seen, then X 
would be an /,-space. But X,-spaces are not /^-spaces, 
and thus they admit quasi-linear maps that cannot be ap­
proximated by linear maps, which makes the existence of 
any selection method impossible. D 

4. LINEAR METRIC PROJECTIONS 
ON QUASI-BANACH SPACES 

Quasi-Banach spaces, however, conceal some sur­
prises worth being uncovered. Let thus X be a quasi-Ba-
nach /^-space. Assume moreover that it has trivial dual; 
i.e., X'̂ ' = 0 (here is where we need to have X not locally 
convex). The spaces L̂ XO, 1) with 0 </7 < 1 provide good 
examples of this situation. 

Since X is a i^-space, Q(X, R) = B(X, U) + L(X, U). 
Since X has trivial dual then B(X, IR) fl L(X, R) = {0} (no 
map X —> [R can be simultaneously linear and continu­
ous). Therefore £(X, U) = B(X, IR) x L(X, U). Let us 
show now that the canonical projection onto L(X, IR) is, 
in addition to linear, a metric projection. 

To this end, let us recall that given a quasi-Banach 
space X one can consider two semi-metrics (they are not 
Hausdorff) on £(X, IR) : Q{-) and di-) = dist(-, L). Let us 
observe that they are equivalent: the uniform bounded-
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ness principie mentioned earlier shows that the two in­
duced norms are equivalent on Q(X, [R)/L; now, L is the 
kernel of the two seminorms, and thus they are also 
equivalent. 

In the present situation Q{X, U) = B(Z, iR 
they adopt the form Q{b, I) = Q{b)\ and d{b, I) •• 
The application 

n(b,l) = \\b\\ 

X L(Z, ÍR) 
:dist(è,L). 

defines a complete (since the space B(X, U) is complete 
in this norm) seminorm on QiX, IR); since n> d, it turns 
out to be also equivalent to J(-) and Q('). But the canoni­
cal projection 

m(b, I) = I 

is a metric projection for n; i.e., that n{F - m(F)) < C 
Q(F): 

n{b + l-m{b, / ) )= \\b\\. D 

5, LINEAR METRIC PROJECTIONS FOR GER-
LINEAR MAPS 

As we have already seen, given an arbitrary Banach 
space, no linear method F —> m(F) is able to assign to 
each quasi-linear map F a linear map m(F) at a prefixed 
distance C. Could such linear method be obtained if one 
restricts the attention to smaller subclasses of quasi-lin­
ear maps? For instance, for 0-linear maps such linear 
method exists in £j-spaces. 

Until now we have only considered two classes: the 
class Q^ of quasi-linear maps and the class Z, of 0-linear 
maps. There exist other interesting classes worth con­
sideration. One of them was isolated by Lima and Yost in 
[25]: the class T of pseudo-linear maps, that is, quasi-
linear maps Q satisfying 

||Q(x + y) - Q(x) - Q(y)\\ < \\x\\ + | | j | | - \\x + j | | . 

The appendix 1.9 in [9] contains a rather complete sur­
vey about these maps. Another class introduced and 
studied in [5] (see also [14]) is formed by the Ger-linear 
maps. A quasi-linear map F : X -^ Y is said to be Ger-
linear if 

\\F{x + y)-F(x)-F(y)\\<C\\x + y\\ 

for some constant C > 0 and all x, y e X. The infimum of 
those constants C verifying the previous inequality is 
called the Ger-linearity constant of G and denoted G{F). 
The space of all Ger-linear maps X—> Y shall be denoted 
Ç(X, Y). A simple induction argument shows that a Ger-
linear map is 0-linear and Z(-) < G(-). 

The interesting feature of Ger-linear maps is their con­
nection with classical problems about the existence of 
Lipschitz projections on Banach spaces. More precisely 
(see [5]) 

Proposition 5.1. Are exact sequence of Banach 
spaces Q-^Y—>X-^Z^Ois defined by a Ger-linear 
map G '.Z-^Y if and only if there exists a Lipschitz pro­
jection from X onto Y. Moreover, that happens if and only 
if the metric projection p: F @ ^ Z - > Y given by p(y, z) = 
= y - G(z) is Lipschitz. 

It is still an open problem to know if there exist non-
trivial pseudo-linear maps. However, nontrivial Ger-lin­
ear maps do exist: it is not hard to verify that the Aha-
roni-Lindenstrauss (nontrivial) sequence 0 - ^ C[0, 1] —> 
-^ D ^ CQ--> 0 (see [1]) comes defined by a Ger-linear 
map. The interesting point for us now is that, as it was 
shown in [5], Ger-linear or pseudo-linear maps from a 
Banach space into an ultrasummand are trivial. We show 
now that the metric projection for Ger-linear maps is lin­
ear. 

As proposition 5.1 suggests, and almost proves, and 
contrarily to intuition, not all trivial maps are Ger-linear 
maps. Indeed, if a Ger-linear map G is trivial then not 
only it can be decomposed G = ^ -i- L as a sum of a 
bounded homogeneous plus a linear map; in this case the 
bounded map has to be Lipschitz (to make Lipschitz the 
map p). 

So, when all Ger-linear maps are trivial we shall write 
Ç = Bj + L to indicate that the bounded map is Lipschitz. 
The example of the Aharoni-Lindenstrauss construction 
shows that the hypothesis «Fis an ultrasummand» in the 
next proposition is not superfluous. 

Proposition 5.2. Let X be a quasi-Banach space and 
let Y be a quasi-Bcmach ultrasummand. Then all Ger-
linear mapsX^Yare trivial and, moreover, there exist 
a linear metric projection 

m: Q{X,Y)^UX, Y) 

(of course, the same linear method would work for 
pseudo-linear maps). 

Proof. Let pi be a Banach limit (i.e., an invariant mean) 
in the commutative group {X, +) and let n : F*'^ - ^ Fbe a 
projection. We define 

m {G){x) = 7i(weak^=-lim^,,) G(x + y) - G(y)). 

Observing that the definition of Ger-linear map could 
have also been (how could G recognize who is x, who is y 
and who is jc + >'?) 

||G(x + 3 0 - G ( x ) - G ( 3 ; ) | | < C | | x | | 
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it follows that \\G(x + y) - G(y)\\ < C\\x\\ + \\G(x)\l and 
thus {G(x + y) ~ G(y)}y^^ lies in a weak*-compact set 
and using a Banach limit makes sense. Since 

m(G)(x + z) = weak'̂ -lim^̂ ^̂ ,) G(x + z + y) - G(y) = 

= weak*-lim^ (̂̂ .3 G(x + z + y) -

- G{z + y) + G(z + y)- G(y) = 

= weak*-lim ,̂(^^ ,̂) G(x + z + y) - G(z + y) + 

+ weak*-lim^ (̂̂ ,) G(z + y) - Giy) = m(G)(x) + m(G)(z) 

we have the linearity of m(G). Moreover, for every e > 0 
one can choose y* so that 

\\m(G)(x) - G(x)\\ < \rim(G)(x) - G{x))\ + e < 

<2s + \y^iG(x + y)-G(y))-G(x))\< 

<2£ + \\G(x + y)-G(y)-G(x)\\< 

<2s + C\\x\\. 

We now show that m is a linear metric projection. There 
is little doubt that it is linear. To show that it is a met­
ric projection let us show that G(-) is proportional to 
dist(-, L(X, Y)). We shall shorten for the rest of this proof 
h(X, Y) to simply L. 

Proposition 5.3. Let Y and Z be two Banach spaces. 
Assume that all Ger-linear maps Z-^Y are trivial. Then 
there is a constant p such that for every Ger-linear map 
F: Z—> Y, one has dist(F, L) < p G(F). 

Proof. Consider the following two norms on Bj + L/L. 
The first one is the quotient metric D(-) = dist(-, L), and 
the other is G(-)- One has D 

Lemma 5.4. (B, +L/L, D) is a Banach space. 

Proof Easy, since B, + L/L = B, -h L/L = B,/B, fl L 
and (B,, d) is complete. D 

Lemma 5.5. (Ç(Z, F)/L, G) is a Banach space. 

Proof Let ([GJ) be a G-Cauchy sequence. Fix a nor­
malized Hamel basis (̂ „)„ for Z and observe that if H : 
Z - ^ y is a Ger-linear map then there exists a unique rep­
resentative F of [H] vanishing on all the elements of the 
basis; take 

From now on, F,̂  shall be the representative of [//,J 
vanishing on the basis. The sequence {F^) is pointwise 
convergent because if z = ^K^y then 

||(F„ - F,„)(z)|| < Z(F„ - F,„)S|A,.| < G{F„ - F J I | 1 , | . 

Let F be its pointwise limit, 

F(z) = lim F,(z). 

We show that [F] is the G-limit of ([FJ) = ([/ /J) . Let 
(Zj) be a finite set of points such that S-z- = 0, and let e > 0. 
Choose indices n(j) so that y ||(F - F ,̂(y))(Zy)|| < 2~̂ £. One 
has: 

IIS/F - F„Kzj)\\ < | | I , ( F - f „ , , ) a ; + F„,^,)(zj) -F„(z,)ll < 

< ZJ|(F - F„,,,)(z.)|| + G(F„j, - FJ^jWzjW < 

which is everything one needs since the sequence {[FJ) 
was G-Cauchy. From that it also follows that F is Ger-
linear since G(F) < G{F - F J + G{F,). D 

End of the proof Since G(- ) < D(-) on ^ = B, + L 
then, the norms G and D are comparable on (gíL = B, -(-
-f- L/L. The open mapping theorem ensures that G and D 
are equivalent. D 

6. SUB-LINEAR METHODS FOR 0-LINEAR 
MAPS 

What has happened recently raises again the doubt: 
what occurs with 0-linear maps that no linear method is 
available? The answer could be that Ger-linear maps 
seem to be nicely coupled with Banach limits, while the 
class of 0-linear maps (whose definition involves many 
decompositions into a finite number of points) does not 
seem to be suitable to match with a single linear method. 
As a further evidence it is the fact that 0-linear maps X-> 
Y are not automatically trivial when Y is an ultrasum-
mand (even reflexive! recall the existence ofnontrivial 
sequences, say, 0 ^ /2 —> /«̂  - ^ IJI2 -^ 0). Following 
this line, we show now that there is a method F -> m{F) 
for obtaining almost optimal linear maps which can be 
decomposed in only two methods, one of them hnear and 
the other sub-linear. This will show that 0-linear maps, if 
not as polite as Ger-linear maps, are definitely not totally 
disastrous. 

Proposition 6.1. Let X be a quasi-Banach space. 
There is a metric projection m : Z(X, IR) - ^ L that can be 
decomposed as 

m = A m, 

where m, is sub-linear and X is linear. 

Proof It is not hard to see that the preceding method 
(using an invariant mean to get a linear map) not only 
works whit Ger-linear maps; it actually works with sub-
linear maps S such that S{Xx) = X S{x) for positive X (that 
we shall call +-homogeneous). Let ^X, R) be the class 
of all sublinear -[--homogeneous functions X ^ [R. If 
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S G c^X, U) then \S{x + y) - S{y)\ < max{|5(jc)|, \S(-x)\} 
and the method 

A(S)(x) = lim^,,,5(x + v ) - 5 ( j ) 

still provides a linear map. 

Now, let F be a 0-linear map with constant Z(F); then 
if we define 

(F)(x) = inf <̂  X ^(- /̂) + ^(^) I ll-̂ .ll -^=1 ^i 

what we get is a sub-linear and +-homogeneous map 
m,(F) satisfying ||F - mi(F)|| < Z{F). To prove this last 
assertion, note that m^{x) < F(x) + Z(F) \\x\\ while for no 
matter which decomposition x = Sx- we have, by the 
definition of 0-linear map F(x) < ^Fix¡) + Z(F) \\x\\. 

So, the composition method 

Z >L 

Sub-linear and 
positively homogeneous 

yields a «sub-linear» metric projection. 

Let us show now that, against what we could guess, 
this situation is perfectly reasonable. 

7, THE METRIC PROJECTION 
IS A QUASI-LINEAR MAP 

We only have to enlarge our working category. Let Met 
be the category of vector spaces endowed with a metric, 
and linear lipschitz maps as arrows. Our key examples 
are (L, d), (B + L, d) and ((B + L)/L, D) = ((B + L)/L, 
Z(-)), where d(A, B) = \\A - B\\ and /)(•) = disti-, L) is the 
induced metric. 

Let ^ : B H- L -> (B + L)/L be the quotient map, and let 
s : (B + L)/L - ^ B + L be a linear selection for q. We 
define the map G : (B + L)/L —> L by means of 

G(x + h) = X - m(x) - s{x + L). 

Lemma 7,1. The map G : [(B + L)/L, D] -^ [L, d] is 
quasi-linear. 

Proof. Keep in mind that m, satisfies m^{b + I) = 
m^(h) + /, while A is linear. This makes G well defined 

since X - s(x + L) e h and m(x) e L; and, moreover, if 
X - y = I eh then 

G(x + L) = X ~ m{x) - s(x + L) = 

= y + I - m(y + I) - s(y + L) = 

= y + I - m(y) - I - s{y + L) = 

= Giy + L). 

The quasi-linearity of G means that: 

dist(G(jc + y + L), G{x + L) + G(y + L)) = 

= ||x + y - m(x + y) - x + m(x) - y + m(y)\\ < 

< 2 ( l + a ) ( | | x + L|| + |Lv + L||). D 

One should not be surprised. After all, the map G has 
been constmcted in the standard way for a quasi-linear map: 

G(x + L) = X - m(x) - s(x + L) 

bounded selection linear selection 
for ¿J for q 

and since the two selections are defined (B + L)/L —> 
B -h L and the kernel of ^ is precisely L it is not strange to 
get: 

Lemma 7.2. The quasi-linear map G defines, in the 
category Met, the exact sequence 

O ^ L - > B - ^ L ^ ( B + L)/L -> 0. 

Proof To check that, we construct the exact sequence 

0 ,(B + L ) / L - ^ ( B + L)/L 0 

in the standard way: the metric in the twisted sum space is 

p{{y.z)Ay\z')) = \y-y\z-z\\a = 

-\\y-y -G{z~z)\\ + \\z-zt 

and show that the two sequences are equivalent: the map 
T{x) = (A - ^ q{x), q(x)) is obviously linear, makes the 
diagram 

0 B + L (B 4- L)/L -> 0 

0 -> L - ^ L®c(B + L)IL ^{B + L)IL 0 

commutative and is lipschitz: 

p[{x - s q(x), q(x)), {y - s q(y), qiy))) = 

= ||(x - s q(x) - y + .V qiy), q(x) ~ qiy)\\ = 

= \\ix - y - s qix - v), q{x - y)\\ = 

= ||x - y - .V qix - y) - G qix - y)|| + \\qix - v)|| = 

= \\x - y - m{c¡ix - >0) - ix - y)|| + \\qix - 3OII < 

<3||x-3ni. • 

file://-//y-y
file:////qix
file:////qix
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We are ready for a nice result. It is only a little 
of glittering make-up to write the algebraic dual X' in­
stead of L(X, U) and the topological dual X"^ instead of 
B(X, U) n L(X, U), and B/B n L instead of (B + L)/L. 

Proposition 7.3. Let X be a Banach space. The fol­
lowing are equivalent: 

i) There exists a linear metric projection m : Z{X, 
U)-^X' 

ii) Z(X, U) = X'@B(X, U)/X^\ 

Hi) X' is complemented in Z(X, R). 

Proof. As for the proof, just observe that if m were 
linear, G would be trivial and the sequence 

0 -> X' ^ Z(X, U) -^ B/X^ -> 0 

would split. And conversely, if this sequence splits then 
X' is complemented in Z(X, R); equivalently, there exists 
a linear metric projection m : Z(X, U) -^ X\ D 

And also: 

Proposition 7.4. Let X be a quasi-Banach K-space. 
The following are equivalent: 

i) There exists a linear metric projection m : QfX, M) 

ii) £(X, U) = X'®B(X, U)/X^. 

Hi) X' is complemented in QiX, R). 

We have seen so far two instances of this situation: the 
conditions in proposition 7.3 are equivalent to the fact 
that X is an £,-space; on the other hand, we know that 
conditions in proposition 7.4 hold when X is a AT-space 
with trivial dual. Let us give a unifying theorem. 

Recall that the Banach envelope of a quasi-Banach 
space co{X) is defined as the closure in X'̂ '̂  of the ca­
nonical image of X ^ X'^* under the map ô{x){x'^') = 
= x*(x). It has the universal property that every operator 
T: X - ^ IR admits an extension T: co{X) -^ R such that 
To = T. In this way we arrive to the central result of the 
paper. 

Now, if here exists a linear metric selection m : Z{X, R) 
-^ L(X, R) then the same proof of proposition 3.1 shows 
that every 0-linear map X —> V, where V is an ultrasum-
mand, is trivial. By the result mentioned above, every 
0-linear map co{X) ^ F is trivial, and thus, by the char­
acterization 3.2, co{X) is an Xj-space. 

Conversely, assume that co{X) is an Xj-space. The 
existence of a linear metric selection m : Z(X, R) -> 
L(X, R) is equivalent to the splitting of the exact sequence 

0->X^->Z(X, (B + L)/L - ^ 0; 

hence, equivalent to the existence of a linear Lipschitz 
selection s: (B + L)/L - ^ Z. Since (B + L)/L = B/B n L, 
we are asking about the existence of a linear Lipschitz 
selection B/X* ^ B + L. But since X* = co(X)* and 
co(X) is an £,-space, X* is injective. So, the sequence 
O ^ X ^ - ^ B -> B/X* -> 0 splits. A look at the com­
mutative diagram 

0 - ^ X ' - > 5 4 - L - ^ ( 5 + L)/L -> 0 
t Î II 

O ^ X * ^ B -> ^/X* ^ 0 

should convince us that when the lower sequence splits 
so does the upper sequence. D 

This result includes the previous cases: if X is itself a 
Banach space then X = co(X). If X is a quasi-Banach with 
trivial dual then co(X) - 0, which is certainly an i],-space. 

Things could be pushed further making homogeneity 
disappear and moving to quasi-Banach groups. The reader 
is referred to [5] for an introduction, reference and full 
development of the theory of quasi-additive maps on 
controlled semigroups. With essentially (except for a 
tricky point of the theory of groups: that 0-additive maps 
are not automatically close to an additive map) the same 
proof as before one gets. 

Proposition 7.6. Let (G, p) be a quasi-normed group 
such that every 0-additive map (G, p) —> IR is asymptoti­
cally additive. The following are equivalent: 

a) There exist an additive metric projection Z -^ L. 

b) co(G) is an L^-space. 

Tlieorem 7.5. Let X be a quasi-Banach space. Then 
there exist a linear metric projection m : Z(X, R) -^ 
L(X, R) if and only if co(X) is an L^-space. 

Proof The proof requires the duality techniques de­
veloped in [2] for Banach spaces and extended in [5] to 
quasi-normed groups. Precisely, that given a 0-additive 
map / : G ~> IR on a quasi-normed group there exists a 
0-linear map F : co{G) —> R such that Fô is a version off 

8. THE UNIVERSAL coziX) SPACE 

The Banach envelope co(X) of a quasi-Banach space 
is an universal object characterized by the following 
property: every operator T: X —> Y into a Banach space 
factorizes through the operator X —> co(X). Does there 
exists a similar object for 0-linear maps? The answer is 
yes and this new object provides a deep insight into the 
problem of finding a linear metric projection. 
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Proposition 8.1. There exists a Banach space coz{X) 
and a 0-linear map ô'.X—^ coziX) with the property that 
for every 0-linear map F : X ^ IR there exists a linear 
continuous map n^ : coz{X) — such that 71 pd - F. 

Proof. Let coz{X) = [Z(X, R), Z(-)]*. The space 
[Z, (X, R), Z(-)] is a semi-normed space (see [4] for a 
related construction yielding a semi-Banach space) space. 
The operator ô: X ^ coz(X) is «essentially» obviously 
defined by ô(x)(F) = F(x). The reader may observe that 
ô(x) e Z(X, Uy and might not be continuous. It is not 
difficult to define a linear map L: X ^ Z{X, R)' such 
that, for every xeX, ô(x) - L{x) e [Z(Z, R), Z(-)]* : just 
consider a Hamel basis (x„) of norm one vectors of Z and 
define L{x.^ = ¿(x,). It is clear now that 

\F(X ^x;} -1 kF(x^\ < Z(F)1\L\ 

and thus \\ô{x) - L(x)\\ < S |/̂ k,|. The presence of L does 
not modifies the 0-linear character of á, which should be 
self-evident. Finally, if F : X —> [R is a 0-linear map then 
since [Z(X, U), Z(-)]* is a vector subspace of IR̂ ^̂ ' ^\ then 
Tip is the restriction to [Z(X, IR), Z(-)]''' of the projection 
onto the F-coordinate. The linearity and continuity of 
such map are obvious. D 

What is interesting for us now is the following prop­
erty: 

Proposition 8.2. There exists a linear metric selec­
tion m : Z(X, [R) - ^ X' if and only if ô can be approxi­
mated by a linear map. 

Proof. liS-.X 

that IIF 
< M < +0C then UpL : X 

^S\\ 

coz(X) is a linear map such that 
5 is a linear map such 

MZ(F), as we show now: 

|Fx - UpSxl = \SXP) - npS(x)\ = 

<\\np\\\\ô-S\\\\x\\. 

On the other hand, there is little doubt that the process 
F —> KpL is linear. 

Conversely, if there exists a linear metric selection 
F —> m(F) then, as we have already seen, co(X) is an 
£,-space, in which case every 0-linear map co(X) -^ V 
taking values in an ultrasummand is trivial (reasoning as 
in 3.1). By the duality results cited at the beginning of the 
proof of theorem 7.5, every 0-linear map from X into an 
ultrasummand is trivial. Since coz(X) is a dual space, it is 
complemented in its bidual, hence it is an ultrasummand 
and thus ô is trivial. D 

9. APPENDIX: A TWIST OF THE SCREW 

In the previous sections we have worked with the se­
quence 

0 B + L ^ (B + L)/L -^ 0 

of metric spaces under the metric ||-||. We could have 
also considered the same sequence under the semi-metric 
2(0 ; it is not Hausdorff because the linear maps form the 
closure of 0. To be a i^-space means that the norms in­
duced on (B -I- L)/L by II • II and Q(-) coincide. Let us con­
sider now the situation on finite dimensional spaces to 
recover the meaning of the Kalton-Roberts theorem and 
to put in perspective the results proved in the paper. 

Let Q be a finite set. Let /^ (J^(Q)) be the space of all 
(all = bounded) maps T(Q) —> U. The subspace of all 
additive maps is precisely /,(Q), and the embedding is 

?,(0) /oc(y(Û)) 

Jl li{A) = Y^.^^li{i). 

Thus, one has the exact sequence (of vector spaces) 

0 ^ /,(Q) -^ unm) ^ unci)) 11, (ÇÏ) -^ 0 

Consider now the sequence in the semi-norm 

Q{p) = sup {\id(AUB)- ¡.¿(A) - fi(B)\ : A, B disjoint}. 

One has only an exact sequence of semi-Banach 
spaces since /,(Q) = {0}^^^; however, the quotient 
1^{T(Q))/ 1^{Q) is a certain finite-dimensional Banach 
space. 

However, if the sequence is considered in the usual 
II'11^ norm, the embedding of /,(0) into L^[T(Q)) is no­
thing different from a Rademacher-like embedding of 
l,(n) into IJT) (in fact, if |Q| = n then | T(Q)\ = T). This 
embedding is not so accurate as to be isometric since one 
can only obtain 2"' \\p\\i < \\Jl\\ < ||//||,. In this way, the 
sequence is just the exact sequence of Banach spaces 

0 ̂ / , (n)-^ U2") ^ U2'V/iW 0 

for which one is perfectly able to prove two things: that it 
splits (like all sequences with finite dimensional spaces 
do), and that it does with projections having norms tending 
to infinity (since /j is not complemented in an £^-space). 

In this context, the Kalton-Roberts theorem says that the 
Banach spaces (1^(2')/l,(n), ||-1|,) and (/^(2"))//i(n), Q(-)) 
are 90-isomorphic independently on n. While our the­
orem about the nonexistence of a linear metric projection 
method «essentially» means that /, is not complemented 
in /^ (2^). 
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