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ABSTRACT 

By definition, quasi-linear maps F; X -^ [R on a quasi-
Banach i^-space X can be approximated by linear maps. 
We investigate the nature of the method F —> m{F) that 
yields the almost optimal approximation, and which we 
call metric projection. We shall show that the method of 
concentrators of Kalton and Roberts that works for L^-
spaces is quasi-linear and non-linear. We shall also show 
that there exists a linear metric projection if and only if 
the Banach envelope of X is an £j-space. 

1. INTRODUCTION 

Some quasi-Banach spaces X have the following nice 
property, for which they are awarded with the term K-
spaces: whenever F is a quasi-Banach containing a one-
dimensional subspace R such that F/IR = X and t. M—>X 
is an operator from another quasi-Banach space M then t 
can be lifted to an operator T: M -^ E. Equivalently, 
every exact sequence 0->IR—>F-^X->0 splits. Equiv
alently, still, every quasi-linear map F: X ̂  [R is at finite 
distance from some linear map L: X-> [R. The prelimina
ries section contains precise definitions for these terms. 
When X is a Banach space then the preceding statements 
are equivalent to: whenever F is a quasi-Banach space 
such that F/[R = X then F is itself a Banach space (and 
thus isomorphic to [R@X). 

The main examples of jSr-spaces are: B-convex Banach 
spaces and quasi-Banach L^^ spaces, 0 <p < 1, proved by 
Kalton in [17]; and the £,̂  -spaces (proved by Kalton and 
Roberts in [24]). On the opposite side, the main examples 
of non-/^-spaces are the X,-spaces. The three proofs have 
different nature. The proof for ^-convex Banach spaces 
consists in directly showing that the so-called twisted 
sum space F is locally convex. The proof for L^^ is a cun
ning computation that shows that given a quasi-linear 
map F on a finite dimensional /̂ //t) space the «obvious» 
linear map lie^) = F{e^ is at finite distance (independent

ly of n) from F However, the proof for X^-spaces is 
highly nontrivial. 

Kalton and Roberts proved in [24] is that If F : /^(Q) -^ 
-^ ^ is a quasilinear map then there is a linear func
tional L : /^(Q) -^ U with \F{x) - L{x)\ < 100 Q{F) ||x||, 
where Q(F) is the quasilinear constant ofF. Let us give a 
different statement. Recall that a function/: J 4 . ^ IR de
fined on an algebra of subsets of a set Q is said to be 
e-approximately additive i f / (0 ) = 0 and for every pair 
A, B of disjoint sets one has 

\f(AUB)-f(A)-f(B)\<8. 

Given a quasi-linear map F : /^(ü) -^ IR, then f(A) = 
= F(l^) defines a 2(F)-approximately additive function 
on 2^. Additive set-functions are the 0-approximately ad
ditive, and correspond to the linear maps /oc(0) -^ U. 
Thus, what is proved in [24] is the existence of a univer
sal constant K < 45 with the property that iff : J^ -^ IR is 
Is.-approximately additive, there is an additive function 
AÍ : J4. ^ [R with i/(A) - ii{A) | < 7̂  • A. In fact, they ob
serve that it suffices to consider the case of finite alge
bras. The proof gets the additive map from the existence 
of a process called «concentrator». One of our purposes 
is to show that concentrators are actually quasi-linear 
non-linear maps. 

Thus, in the way of understanding the proof, we be
came interested in the methods F —> L{F) to obtain, in 
a i^-space, linear maps at «almost optimal» finite dis
tance. That is, the nature of the «almost optimal approxi
mation map» F —> L{F) such that, for some constant C, 
||F - L(F)II < C dist(F, X'). We shall call to such map a 
metric projection. Which is the nature of the metric pro
jection? Could it be even linear? 

The interest in finding such linear method was fostered 
by the following attack: Let/ : Ĵ t -^ [R be a 1-approxi
mately additive function in a finite algebra Ji. Suppose 
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there exists a linear m e t h o d / ^ ^ ( / ) to define, for some 
r < 1, a r-approximately additive map m(f) : JA-^ U 
such that \m(f)(A) -f(A)\ < 1. If so, we can iterate the 
method to obtain m\f) : Ji-^U such that \m~(f)(A) -
- m(f)(A) I < r and m\f) would be r^-approximately ad
ditive; and so on. The sequence {m^ifyj is contained in 
the compact subset of P " T,JZl. 

{g:\g(A)\<\f(A)\ + (l-r-')]. 

Therefore, if l i denotes a free ultrafilter on N then 

L(f)(A) = lim^(„^ m,Xf)(^) 

defines a linear map L(f) : ^ ^ U which verifies 
|/(A) - L(/)(A)| < (1 - r~^). In the end, we would have ob
tained a hnear metric projection/-^ L( / ) . Can we do this? 

We do not want to spoil the forthcoming surprises, so 
we shall only say: no. 

2. PRELIMINARIES 

A quasi-norm on a (real or complex) vector space X is 
a nonnegative real-valued function ||-|| satisfying 

i) \\x\\ = 0 if and only if x = 0; 

¿i) \\Àx\\ = \À\ \\x\\ for all X e X and XEK; 

Hi) \\x + y\\ < K(\\x\\ + llyll) for some constant i^inde
pendent of X, y e X. 

A quasi-normed space is a vector space X together with a 
specified quasi-norm. On such a space one has a (vector) 
topology defined by the fundamental system of neighbor
hoods of 0 given by the multiples of the set {x G X.-11 x 11 < 1}, 
called the unit ball of the quasi-norm. A complete quasi-
normed space is called a quasi-Banach space. In the se
quel, the word operator means linear continuous map. 
The algebraic dual X' of X is the space of linear, not 
necessarily continuous, maps; it shall also be denoted 
L(X, R), or simply L. The subspace of X' formed by the 
linear continuous maps, the topological dual of X, shall 
be denoted X*. An operator X —> F means always a linear 
continuous map. The space of homogeneous and 
bounded (i.e., such that the image of the unit ball is a 
bounded set) maps shall be denoted B(X, [R), or simply B. 
The term bounded map shall always mean homogeneous 
bounded map. Given two homogeneous maps A, B acting 
between the same spaces, their (eventually infinite) dis
tance is defined as 

B\\ = sup||.v||<, ||Ax - 5x||. 

Exact sequences of (quasi) Banach spaces. For gen
eral information about exact sequences the reader can 
consult [15]. Information about categorical constructions 
in the (quasi) Banach space setting can be found in the 

monograph [9]. A diagram 0 - ^ F — > X ^ Z - ^ O o f 
quasi-Banach spaces and operators is said to be an exact 
sequence if the kernel of each arrow coincides with the 
image of the preceding. This means, by the open map
ping theorem, that Fis (isomorphic to) a closed subspace 
of X and the corresponding quotient is (isomorphic to) Z 
We shall also say that X is a twisted sum of Y and Z or an 
extension of Y by Z. Two exact sequences 0 - ^ F —> X ^ 

0 and 0 X, 0 are said to be 
equivalent if there is an operator T making the diagram 

0 

0 

X 
IT 
X, -

z 
II 
z 

0 

0 

commutative. The following standard result of algebra 
(see [15]) and the open mapping theorem imply that T 
must be an isomorphism. 

The 3-lemma. Assume that one has a commutative dia
gram of vector spaces and linear maps 

0 

0 

Y X 

X, 

z 

z, 

0 

0 

with exact rows. If a and y are injective (resp. surjective) 
so is p. 

An exact sequence 0 - ^ F - ^ X - ^ Z - > O i s said to split 
if it is equivalent to the trivial sequence 0 —> F ^ Y@Z 
—> Z —> 0. This already implies that X is isomorphic to 
the direct sum Y@Z. 

Quasi-linear and 0-linear maps. The by now classi
cal theory of Kalton and Peck [21] describes short exact 
sequences of quasi-Banach spaces in terms of the so-
called quasi-linear maps. A map F: Z ^ Y acting be
tween quasi-normed spaces is said to be quasi-linear if it 
is homogeneous and satisfies that for some constant K 
and all points x, y in Z one has 

||F(x + 3 ; ) - F ( x ) - F ( j ) | | < ^ ( | | x | | + |b | | ) . 

The smallest constant satisfying the inequality above is 
denoted Q(F) and referred to as the quasi-linearity con
stant of the map F. We shall denote ^(X, U) the space of 
all quasi-linear maps X ^ [R. 

We shall say that a quasi-linear map is trivial when it 
can be written as the sum of a linear and a bounded map; 
or else, when it is at finite distance from a linear map. 
Two quasi-linear maps F and G (defined between the 
same spaces) are said to be equivalent if F-G is trivial. In 
this case we shall also say as in [2] that F is a version of 
G (or vice versa). Quasi-linear maps give rise to twisted 
sums: given a quasi-linear map F: Z—^ F then it is poss
ible to construct a twisted sum, which we shall denote by 
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Y@pZ, endowing the product space Yx Z with the quasi-
norm 

\\(y.z)\\ = \\y-Fiz)\\ + \\z\\. 

Clearly, the map Y-^ Y(^f,Z sending of y to (y, 0) is 
an into isometry, and so F can be thought as a subspace of 
Y@p.Z; moreover, the corresponding quotient is isometric 
to Z Conversely, an exact sequence 0 -^ y-^x—> Z—> 0 
comes defined by a quasi-linear map: pick a bounded se
lection B for the quotient map q (which exists by the 
open mapping theorem) and then a linear selection L; the 
difference B - Lis quasi-linear and takes values in Y since 
q(B - L) = 0. The two processes are one inverse of the 
other and, moreover, one has the following fundamental 
result of [21]. 

Proposition 2.1. Two exact sequences 0 Y -> 
r e ^ Z - > Z - > O a / í ( ¿ 0 - > F ^ Y®çZ ~> Z ^ O are 
equivalent if and only F and G are equivalent. Therefore, 
an exact sequence O^Y^>Y@pZ~>Z-^Ois equivalent 
to the trivial exact sequence 0 — > y - ^ F ® Z - ^ Z - ^ O i / " 
and only F is trivial {i.e., F is at finite distance from some 
linear map). 

The quasi-Banach space 7 © ^ Z constructed via a quasi-
Unear map F need not be locally convex, even when Y 
and Z are. A result of Dierolf [11] asserts that there exists 
a nonlocally convex twisted sum of Y and Z if and only if 
there exists a nonlocally convex twisted sum of IR and Z 
Hence, a Banach space is a i^-space when every twisted 
sum with [R is locally convex. It is however possible to 
obtain a simple characterization of when a given twisted 
sum of Y and Z is locally convex: the key is to give the 
characterization in terms of the quasi-linear map F and 
not in terms of the factor spaces. 

Definition. A quasi-linear map F.Z-^Y acting be
tween quasi-normed spaces is said to be ^-linear if there 
is a constant K such that whenever {x-} is a finite set of 
elements of Z then 

||F(i;::';x,)-x;'.,f(x,)||</^i;.'=,lk.||. 

The smallest constant satisfying the inequality above 
is denoted Z{F) and referred to as the 0-linearity constant 
of the map F. The space of all 0-linear maps X - ^ [R shall 
be denoted Z(X, IR). One has (see [2, 7, 9]). 

Proposition 2.2. A twisted sum of Bcmach spaces 
Y@pZ is locally convex (being thus isomorphic to a Ba
nach space) if and only if F is 0-linear. 

It is clear that 0-linear maps are quasi-linear. It is not 
true, however, that quasi-linear maps are 0-linear. Ribe 
[29] provided the simplest example of a quasi-linear not 

(observe that the map is only defined on finitely supported 
sequences; however there exist extension theorems for 
quasi and 0-linear maps (see [21])). The quasi-linearity 
can be seen in [22] (actually Q(R) = 2) while the fact that 
R is not 0-linear is very simple to check: R(e,) = 0 for all 
n while R{TrJ e¡) = -N log Â ; since U-Z^ \\e.\\ = N, the 
estimate in the definition of 0-linear map is impossible. 

It is moreover clear that a quasi-linear map F such that 
| |F - L|| < /T for some linear map K necessarily is 0-lin
ear and Z(F) < 2K. Hence Z(F) < dist (F, L). In particu
lar, Ribe's map R cannot be approximated by linear 
maps. As for the converse, one can see that using the 
Hahn-Banach theorem. Proposition 2.2 can be refor
mulated in terms of approximation by linear maps as fol
lows (we shall give a direct proof for this result later): 

Proposition 2.3. A quasi-linear map X—>U is 0-lin
ear if and only if it is at finite distance from a linear map. 

In this way we obtain that a Banach space X is a K-
space if and only if every quasi-linear map X - ^ [R is 
0-linear. 

The pull-back square. Let A: U -^Z and B: y —> Z 
be two arrows in a given category C. The pull-back of 
{A, B} is an object E in C and two arrows u:E^ U and 
v: E-^V such that Au = Bv; and such that given another 
object r in C for which there exist arrows a.T —> U and 
fi: r -^ V verifying Aa = B^ then there exists a unique 
arrow y: F -> H such that j] = vy and a = uy. If one 
prefers the categorical language, the pull-back makes 
commutative the diagram 

U 

4 
z 

V 

0-linear map /? : /, given by 

and is universal with respect to this property. 

In the category of quasi-Banach spaces and operators, 
as well as in the subcategory of Banach spaces pull-backs 
exist. If A: U -^Z and B: V^ Z are two operators, the 
pull-back of {A, B} is the space S ={(u, u): Au = Bv} 
endowed with the induced product topology together 
with the restrictions of the canonical projections of 
U® Vonto, respectively, i/and V. If 0 -> F - > X - > Z - > 0 
is an exact sequence with quofient map q and T: M -^Z 
is a surjective operator and H denotes the pull-back of the 
couple {q, T] then the diagram 

0-> Y-^X-> Z ^0 
II Î t'f 

0-^Y^E-^M ^0 

R(x) = l¡x¡ log \x¡\ - I-x. log | I x . | is commutative with exact rows and columns. 
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3. LINEAR METRIC PROJECTIONS 
ON BANACH SPACES 

As we have already seen, 0-linear maps on Banach 
spaces can be approximated by linear maps; thus, one has 
the decomposition 

Z(X, iR) = B(X, U) + L(X, R) 

On a quasi-Banach üT-space one even has 

£(X, R) = B(X, U) + L(X, U). 

Given a quasi-linear map F, let D{F) = dist (F, L(X, R)). 
Our main concern now is the nature of the map F —> m(F) 
that associates to F an «almost optimal» selection, i.e. 
m(F) is a linear map such that | |F - m(F)\\ < C D(F) 
(with C a prescribed finite constant). We have already 
seen that Z(-) < 2D(-), hence it will be enough to study 
methods m such that \\F - m(F)\\ < CZ(F). 

Our questions now are: 

Question 1. Do there exist Banach K-spaces in which 
the metric projection 

m : QSX, U) -> L(X, R) 

is linear? 

Question 2. Do there exist quasi-Banach K-spaces in 
which the metric projection 

m : QiX, L(X, U) 

is linear? 

Observe that the hypothesis of being a ^-space is 
necessary. Without it we can only ask: 

Question 3. Do there exist Banach spaces in which 
the metric projection 

m : Z(X, U) -^ L(X, U) 

is linear? 

We begin answering questions 1 and 3. 

Proposition 3.1. The metric projection m : Z(X, R) 
- ^ L(X, R) is linear if and only ifX is an L^-space. 

Proof. Let us consider first the case of a quasi-linear 
map F : I" - ^ IR. Obviously D(F) is finite and F is 0-
linear. If (Cf) is the unit vector basis of l[\ we can define a 
linear map by l{e,) = F(e¡) (and linearly on the rest). We 
then have that for x = J.,,Xf^e^ in l" 

1^(1^--^A) - l{^k^kek)\ ^ IFilk^k^k) - X^x^F(e^)| < 

. <Z(F)\\l,x,e,\\=Z(F)\\x\\ 

and thus ||F - /|| < Z(F). The correspondence F-^m{F) = 
= I is clearly linear. 

We pass to an infinite dimensional Xj-space X; let F : 
X ^ !R be a 0-linear map. Assume that X = [JX^ where X^ 
is A-isomorphic to /f and X^ is A-complemented in X. For 
each a, the map F^ = F^^ :X—>R admits a linear map /,̂  : 
X^-^R such that \\F^ - \ | | < ÀZ(F). Let 4 be an exten
sion of /̂  to the whole X obtained by setting L^^iy) = 0 
when y does not belong to X .̂ Since for every x and 
eventually all a one has \L^(x)\ < \\F(x)\\ + A Z(F) it 
makes sense to define a linear map L : X - ^ IR by 

Lix) = lim^(,) 4(x) 

where 1L/ is a free ultrafilter on index set (a) refining the 
Fréchet filter with respect to the natural ordering defined 
by the net (XJ. The application L is well defined and 
linear. One moreover has | |F - L|| < ÀZ(F) as follows 
from the following inequality choosing the index a care
fully after e: 

\L(x) - Fix)I < \L(x) - L,(x)I + \L,(x) - F(x)\ <8 + A Z(F). 

Finally, the procedure F —> m{F) = Lis linear. 

We pass to the converse implication. Let Z be a Ba
nach space and assume the existence of a linear map m : 
Z(X, IR) -> L(X, R) such that \\F - m(F)\\ < C • D(F). 

Applying a uniform boundedness principle of Kalton 
[17] (the reader shall find a careful description of such 
principles in [3], there exists a constant C such that for 
every 0-linear map D{F) < C Z{F). 

Let now V be an ultrasummand; i.e., a Banach space 
complemented in its bidual. Let G : X - ^ V be an arbitrary 
0-linear map. We define a map L : X ^ V** by 

<L(x), i;*> = <m(u*o G), x>, 

which is linear since m is linear, and well defined since 
L{x) is continuous: 

||L(x) = sup{<L(x), i ;*>: | | i ;* | |< l} = 

= sup {<m(i;*o G), x> : ||i;*|| ^ 1} = 

= sup {<m{v'' o G) - 1 ; * o G, jc> + <i;*o G,x> : ||r*|| < 1} < 

<sup { C D ( Í ; * O G ) | | X | | + | | Î ;*| | ||G(JC)|| : | b * | | < 1} < 

< sup {CZ{v^^^ o G)\\x\\ + ||i;*|| | |G(x)||: ||i;*|| < 1} < 

< sup {Cn|i;*||Z(G)||x|| + ||i;*|| ||G(x)||: | | Í ;*| | < 1} < 

< C'Z(G) ||x|| + ||G(x)||. 
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Since 

|<G(x) - L(x), Í;^^>| = |<G(x), t;*> - <m(r*o G), x>| = 

= |i;^^^oG(x) ~m(,v''oG){x)\ < 

<2CZ(v'^oG)\\x\\ < 

<2C\\vnZ(G)\\x\\ 
we get 

| |G -L | | - sup„ , . „ , , | |G (x ) -L(x ) | | = 

= sup,ĵ .,l<, sup||,,.,|< j I <G(x), i?*> - <L(x), i;̂ >̂ I < 

< 2 • C • Z(G). 

To conclude we shall prove a result asserting that in 
the situation just described the space X has to be an £^-
space. The if part is a result of Lindenstrauss [27] (al
though our proof shall be «considerably simpler») while, 
although the result is essentially known, we have no ex
plicit reference for the only if part. 

Proposition 3.2. A Banach space Q is an L^-space if 
and only if for every ultrasummand Y every exact se
quence Q-^Y-^X-^Q-^0 splits. 

Proof Assume that every exact sequence 0 —> F - ^ 
~>W -^ Q -^ Q splits when Y is complemented in its 
bidual. We shall prove that Q^^ is injective. For this, con
sider a exact sequence 0 - ^ g'^' ^ X - ^ Z —> 0. One has 

0 

0 

Z^-^ X''-^ Q'^'^ 
II Î Î 

0 

0 

where P is the pull-back of the quotient map X'""' -^ Q"^'"' 
and Q -^ g-̂ -̂  is the canonical inclusion. Observe the 
diagram 

0 

0 

0 

0 

Ï 

Í 

II 

i 

i 

î 
PB 

Z 

i 

w 
z^^, 
î 
z 

0 

0 

0 

0 

where the second row is the bitraspose of the first row, 
and the second and third rows form the adjoint of the 
previous pull-back diagram. The third and fourth rows 
form a pull-back diagram with respect to the quotient 
map P'̂ ' - ^ Z'̂ "̂ ' and the canonical inclusion Z -> Z'*''̂  

The third row splits since it is transpose of the se
quence 0 - ^ Z'̂ ' ̂  p -_> g - ^ 0, which splits since Z'̂ ' is 
complemented in its bidual; thus, the fourth rows splits. 
But the first and fourth sequences are equivalent: since 
PB is the pull-back space of F* -> Z''^ midZ-->Z'^''^ and 

we have arrows X ^ Z (quotient map in the first line) and 
X^ P^ (vertical central line downwards) making a com
mutative square with the two previous aiTows, there must 
exist an arrow a.X-^ PB making the two triangles com
mutative. That makes the restriction a | 2 * = id, and 
means that the upper and lower sequences are equivalent. 

Now a proof for Lindenstrauss statement. Let Z be an 
X¡-space and let 0 ^ F -> X -> Z -> 0 be an exact se
quence in which Y is an ultrasummand. Consider the 
commutative diagram: 

0 

0 

Y 

Í 

X 

Í 
y*̂ ^ -^ x*= 

z 
i 

0 

0 

Since Z'^' is an injective space the dual sequence 0 -^ 
—> Z* - ^ X'^' -^ y* -^ 0 splits, and so does the bidual 
sequence; hence, F"̂ "̂  is complemented in X"̂ *, since Y is 
complemented in P^*, it turns out that F must be comple
mented in X and the original sequence splits. D 

From all this we conclude: 

Corollary 3.3, Let X be a Banach space. It does not 
exist a linear metric projection 

£(X, U) -> L(X, 31). 

Proof Since, that would imply a linear metric projec
tion Z(X, U) -^ L(X, U) and, as we have seen, then X 
would be an /,-space. But X,-spaces are not /^-spaces, 
and thus they admit quasi-linear maps that cannot be ap
proximated by linear maps, which makes the existence of 
any selection method impossible. D 

4. LINEAR METRIC PROJECTIONS 
ON QUASI-BANACH SPACES 

Quasi-Banach spaces, however, conceal some sur
prises worth being uncovered. Let thus X be a quasi-Ba-
nach /^-space. Assume moreover that it has trivial dual; 
i.e., X'̂ ' = 0 (here is where we need to have X not locally 
convex). The spaces L̂ XO, 1) with 0 </7 < 1 provide good 
examples of this situation. 

Since X is a i^-space, Q(X, R) = B(X, U) + L(X, U). 
Since X has trivial dual then B(X, IR) fl L(X, R) = {0} (no 
map X —> [R can be simultaneously linear and continu
ous). Therefore £(X, U) = B(X, IR) x L(X, U). Let us 
show now that the canonical projection onto L(X, IR) is, 
in addition to linear, a metric projection. 

To this end, let us recall that given a quasi-Banach 
space X one can consider two semi-metrics (they are not 
Hausdorff) on £(X, IR) : Q{-) and di-) = dist(-, L). Let us 
observe that they are equivalent: the uniform bounded-
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ness principie mentioned earlier shows that the two in
duced norms are equivalent on Q(X, [R)/L; now, L is the 
kernel of the two seminorms, and thus they are also 
equivalent. 

In the present situation Q{X, U) = B(Z, iR 
they adopt the form Q{b, I) = Q{b)\ and d{b, I) •• 
The application 

n(b,l) = \\b\\ 

X L(Z, ÍR) 
:dist(è,L). 

defines a complete (since the space B(X, U) is complete 
in this norm) seminorm on QiX, IR); since n> d, it turns 
out to be also equivalent to J(-) and Q('). But the canoni
cal projection 

m(b, I) = I 

is a metric projection for n; i.e., that n{F - m(F)) < C 
Q(F): 

n{b + l-m{b, / ) )= \\b\\. D 

5, LINEAR METRIC PROJECTIONS FOR GER-
LINEAR MAPS 

As we have already seen, given an arbitrary Banach 
space, no linear method F —> m(F) is able to assign to 
each quasi-linear map F a linear map m(F) at a prefixed 
distance C. Could such linear method be obtained if one 
restricts the attention to smaller subclasses of quasi-lin
ear maps? For instance, for 0-linear maps such linear 
method exists in £j-spaces. 

Until now we have only considered two classes: the 
class Q^ of quasi-linear maps and the class Z, of 0-linear 
maps. There exist other interesting classes worth con
sideration. One of them was isolated by Lima and Yost in 
[25]: the class T of pseudo-linear maps, that is, quasi-
linear maps Q satisfying 

||Q(x + y) - Q(x) - Q(y)\\ < \\x\\ + | | j | | - \\x + j | | . 

The appendix 1.9 in [9] contains a rather complete sur
vey about these maps. Another class introduced and 
studied in [5] (see also [14]) is formed by the Ger-linear 
maps. A quasi-linear map F : X -^ Y is said to be Ger-
linear if 

\\F{x + y)-F(x)-F(y)\\<C\\x + y\\ 

for some constant C > 0 and all x, y e X. The infimum of 
those constants C verifying the previous inequality is 
called the Ger-linearity constant of G and denoted G{F). 
The space of all Ger-linear maps X—> Y shall be denoted 
Ç(X, Y). A simple induction argument shows that a Ger-
linear map is 0-linear and Z(-) < G(-). 

The interesting feature of Ger-linear maps is their con
nection with classical problems about the existence of 
Lipschitz projections on Banach spaces. More precisely 
(see [5]) 

Proposition 5.1. Are exact sequence of Banach 
spaces Q-^Y—>X-^Z^Ois defined by a Ger-linear 
map G '.Z-^Y if and only if there exists a Lipschitz pro
jection from X onto Y. Moreover, that happens if and only 
if the metric projection p: F @ ^ Z - > Y given by p(y, z) = 
= y - G(z) is Lipschitz. 

It is still an open problem to know if there exist non-
trivial pseudo-linear maps. However, nontrivial Ger-lin
ear maps do exist: it is not hard to verify that the Aha-
roni-Lindenstrauss (nontrivial) sequence 0 - ^ C[0, 1] —> 
-^ D ^ CQ--> 0 (see [1]) comes defined by a Ger-linear 
map. The interesting point for us now is that, as it was 
shown in [5], Ger-linear or pseudo-linear maps from a 
Banach space into an ultrasummand are trivial. We show 
now that the metric projection for Ger-linear maps is lin
ear. 

As proposition 5.1 suggests, and almost proves, and 
contrarily to intuition, not all trivial maps are Ger-linear 
maps. Indeed, if a Ger-linear map G is trivial then not 
only it can be decomposed G = ^ -i- L as a sum of a 
bounded homogeneous plus a linear map; in this case the 
bounded map has to be Lipschitz (to make Lipschitz the 
map p). 

So, when all Ger-linear maps are trivial we shall write 
Ç = Bj + L to indicate that the bounded map is Lipschitz. 
The example of the Aharoni-Lindenstrauss construction 
shows that the hypothesis «Fis an ultrasummand» in the 
next proposition is not superfluous. 

Proposition 5.2. Let X be a quasi-Banach space and 
let Y be a quasi-Bcmach ultrasummand. Then all Ger-
linear mapsX^Yare trivial and, moreover, there exist 
a linear metric projection 

m: Q{X,Y)^UX, Y) 

(of course, the same linear method would work for 
pseudo-linear maps). 

Proof. Let pi be a Banach limit (i.e., an invariant mean) 
in the commutative group {X, +) and let n : F*'^ - ^ Fbe a 
projection. We define 

m {G){x) = 7i(weak^=-lim^,,) G(x + y) - G(y)). 

Observing that the definition of Ger-linear map could 
have also been (how could G recognize who is x, who is y 
and who is jc + >'?) 

||G(x + 3 0 - G ( x ) - G ( 3 ; ) | | < C | | x | | 
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it follows that \\G(x + y) - G(y)\\ < C\\x\\ + \\G(x)\l and 
thus {G(x + y) ~ G(y)}y^^ lies in a weak*-compact set 
and using a Banach limit makes sense. Since 

m(G)(x + z) = weak'̂ -lim^̂ ^̂ ,) G(x + z + y) - G(y) = 

= weak*-lim^ (̂̂ .3 G(x + z + y) -

- G{z + y) + G(z + y)- G(y) = 

= weak*-lim ,̂(^^ ,̂) G(x + z + y) - G(z + y) + 

+ weak*-lim^ (̂̂ ,) G(z + y) - Giy) = m(G)(x) + m(G)(z) 

we have the linearity of m(G). Moreover, for every e > 0 
one can choose y* so that 

\\m(G)(x) - G(x)\\ < \rim(G)(x) - G{x))\ + e < 

<2s + \y^iG(x + y)-G(y))-G(x))\< 

<2£ + \\G(x + y)-G(y)-G(x)\\< 

<2s + C\\x\\. 

We now show that m is a linear metric projection. There 
is little doubt that it is linear. To show that it is a met
ric projection let us show that G(-) is proportional to 
dist(-, L(X, Y)). We shall shorten for the rest of this proof 
h(X, Y) to simply L. 

Proposition 5.3. Let Y and Z be two Banach spaces. 
Assume that all Ger-linear maps Z-^Y are trivial. Then 
there is a constant p such that for every Ger-linear map 
F: Z—> Y, one has dist(F, L) < p G(F). 

Proof. Consider the following two norms on Bj + L/L. 
The first one is the quotient metric D(-) = dist(-, L), and 
the other is G(-)- One has D 

Lemma 5.4. (B, +L/L, D) is a Banach space. 

Proof Easy, since B, + L/L = B, -h L/L = B,/B, fl L 
and (B,, d) is complete. D 

Lemma 5.5. (Ç(Z, F)/L, G) is a Banach space. 

Proof Let ([GJ) be a G-Cauchy sequence. Fix a nor
malized Hamel basis (̂ „)„ for Z and observe that if H : 
Z - ^ y is a Ger-linear map then there exists a unique rep
resentative F of [H] vanishing on all the elements of the 
basis; take 

From now on, F,̂  shall be the representative of [//,J 
vanishing on the basis. The sequence {F^) is pointwise 
convergent because if z = ^K^y then 

||(F„ - F,„)(z)|| < Z(F„ - F,„)S|A,.| < G{F„ - F J I | 1 , | . 

Let F be its pointwise limit, 

F(z) = lim F,(z). 

We show that [F] is the G-limit of ([FJ) = ([/ /J) . Let 
(Zj) be a finite set of points such that S-z- = 0, and let e > 0. 
Choose indices n(j) so that y ||(F - F ,̂(y))(Zy)|| < 2~̂ £. One 
has: 

IIS/F - F„Kzj)\\ < | | I , ( F - f „ , , ) a ; + F„,^,)(zj) -F„(z,)ll < 

< ZJ|(F - F„,,,)(z.)|| + G(F„j, - FJ^jWzjW < 

which is everything one needs since the sequence {[FJ) 
was G-Cauchy. From that it also follows that F is Ger-
linear since G(F) < G{F - F J + G{F,). D 

End of the proof Since G(- ) < D(-) on ^ = B, + L 
then, the norms G and D are comparable on (gíL = B, -(-
-f- L/L. The open mapping theorem ensures that G and D 
are equivalent. D 

6. SUB-LINEAR METHODS FOR 0-LINEAR 
MAPS 

What has happened recently raises again the doubt: 
what occurs with 0-linear maps that no linear method is 
available? The answer could be that Ger-linear maps 
seem to be nicely coupled with Banach limits, while the 
class of 0-linear maps (whose definition involves many 
decompositions into a finite number of points) does not 
seem to be suitable to match with a single linear method. 
As a further evidence it is the fact that 0-linear maps X-> 
Y are not automatically trivial when Y is an ultrasum-
mand (even reflexive! recall the existence ofnontrivial 
sequences, say, 0 ^ /2 —> /«̂  - ^ IJI2 -^ 0). Following 
this line, we show now that there is a method F -> m{F) 
for obtaining almost optimal linear maps which can be 
decomposed in only two methods, one of them hnear and 
the other sub-linear. This will show that 0-linear maps, if 
not as polite as Ger-linear maps, are definitely not totally 
disastrous. 

Proposition 6.1. Let X be a quasi-Banach space. 
There is a metric projection m : Z(X, IR) - ^ L that can be 
decomposed as 

m = A m, 

where m, is sub-linear and X is linear. 

Proof It is not hard to see that the preceding method 
(using an invariant mean to get a linear map) not only 
works whit Ger-linear maps; it actually works with sub-
linear maps S such that S{Xx) = X S{x) for positive X (that 
we shall call +-homogeneous). Let ^X, R) be the class 
of all sublinear -[--homogeneous functions X ^ [R. If 
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S G c^X, U) then \S{x + y) - S{y)\ < max{|5(jc)|, \S(-x)\} 
and the method 

A(S)(x) = lim^,,,5(x + v ) - 5 ( j ) 

still provides a linear map. 

Now, let F be a 0-linear map with constant Z(F); then 
if we define 

(F)(x) = inf <̂  X ^(- /̂) + ^(^) I ll-̂ .ll -^=1 ^i 

what we get is a sub-linear and +-homogeneous map 
m,(F) satisfying ||F - mi(F)|| < Z{F). To prove this last 
assertion, note that m^{x) < F(x) + Z(F) \\x\\ while for no 
matter which decomposition x = Sx- we have, by the 
definition of 0-linear map F(x) < ^Fix¡) + Z(F) \\x\\. 

So, the composition method 

Z >L 

Sub-linear and 
positively homogeneous 

yields a «sub-linear» metric projection. 

Let us show now that, against what we could guess, 
this situation is perfectly reasonable. 

7, THE METRIC PROJECTION 
IS A QUASI-LINEAR MAP 

We only have to enlarge our working category. Let Met 
be the category of vector spaces endowed with a metric, 
and linear lipschitz maps as arrows. Our key examples 
are (L, d), (B + L, d) and ((B + L)/L, D) = ((B + L)/L, 
Z(-)), where d(A, B) = \\A - B\\ and /)(•) = disti-, L) is the 
induced metric. 

Let ^ : B H- L -> (B + L)/L be the quotient map, and let 
s : (B + L)/L - ^ B + L be a linear selection for q. We 
define the map G : (B + L)/L —> L by means of 

G(x + h) = X - m(x) - s{x + L). 

Lemma 7,1. The map G : [(B + L)/L, D] -^ [L, d] is 
quasi-linear. 

Proof. Keep in mind that m, satisfies m^{b + I) = 
m^(h) + /, while A is linear. This makes G well defined 

since X - s(x + L) e h and m(x) e L; and, moreover, if 
X - y = I eh then 

G(x + L) = X ~ m{x) - s(x + L) = 

= y + I - m(y + I) - s(y + L) = 

= y + I - m(y) - I - s{y + L) = 

= Giy + L). 

The quasi-linearity of G means that: 

dist(G(jc + y + L), G{x + L) + G(y + L)) = 

= ||x + y - m(x + y) - x + m(x) - y + m(y)\\ < 

< 2 ( l + a ) ( | | x + L|| + |Lv + L||). D 

One should not be surprised. After all, the map G has 
been constmcted in the standard way for a quasi-linear map: 

G(x + L) = X - m(x) - s(x + L) 

bounded selection linear selection 
for ¿J for q 

and since the two selections are defined (B + L)/L —> 
B -h L and the kernel of ^ is precisely L it is not strange to 
get: 

Lemma 7.2. The quasi-linear map G defines, in the 
category Met, the exact sequence 

O ^ L - > B - ^ L ^ ( B + L)/L -> 0. 

Proof To check that, we construct the exact sequence 

0 ,(B + L ) / L - ^ ( B + L)/L 0 

in the standard way: the metric in the twisted sum space is 

p{{y.z)Ay\z')) = \y-y\z-z\\a = 

-\\y-y -G{z~z)\\ + \\z-zt 

and show that the two sequences are equivalent: the map 
T{x) = (A - ^ q{x), q(x)) is obviously linear, makes the 
diagram 

0 B + L (B 4- L)/L -> 0 

0 -> L - ^ L®c(B + L)IL ^{B + L)IL 0 

commutative and is lipschitz: 

p[{x - s q(x), q(x)), {y - s q(y), qiy))) = 

= ||(x - s q(x) - y + .V qiy), q(x) ~ qiy)\\ = 

= \\ix - y - s qix - v), q{x - y)\\ = 

= ||x - y - .V qix - y) - G qix - y)|| + \\qix - v)|| = 

= \\x - y - m{c¡ix - >0) - ix - y)|| + \\qix - 3OII < 

<3||x-3ni. • 

file://-//y-y
file:////qix
file:////qix
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We are ready for a nice result. It is only a little 
of glittering make-up to write the algebraic dual X' in
stead of L(X, U) and the topological dual X"^ instead of 
B(X, U) n L(X, U), and B/B n L instead of (B + L)/L. 

Proposition 7.3. Let X be a Banach space. The fol
lowing are equivalent: 

i) There exists a linear metric projection m : Z{X, 
U)-^X' 

ii) Z(X, U) = X'@B(X, U)/X^\ 

Hi) X' is complemented in Z(X, R). 

Proof. As for the proof, just observe that if m were 
linear, G would be trivial and the sequence 

0 -> X' ^ Z(X, U) -^ B/X^ -> 0 

would split. And conversely, if this sequence splits then 
X' is complemented in Z(X, R); equivalently, there exists 
a linear metric projection m : Z(X, U) -^ X\ D 

And also: 

Proposition 7.4. Let X be a quasi-Banach K-space. 
The following are equivalent: 

i) There exists a linear metric projection m : QfX, M) 

ii) £(X, U) = X'®B(X, U)/X^. 

Hi) X' is complemented in QiX, R). 

We have seen so far two instances of this situation: the 
conditions in proposition 7.3 are equivalent to the fact 
that X is an £,-space; on the other hand, we know that 
conditions in proposition 7.4 hold when X is a AT-space 
with trivial dual. Let us give a unifying theorem. 

Recall that the Banach envelope of a quasi-Banach 
space co{X) is defined as the closure in X'̂ '̂  of the ca
nonical image of X ^ X'^* under the map ô{x){x'^') = 
= x*(x). It has the universal property that every operator 
T: X - ^ IR admits an extension T: co{X) -^ R such that 
To = T. In this way we arrive to the central result of the 
paper. 

Now, if here exists a linear metric selection m : Z{X, R) 
-^ L(X, R) then the same proof of proposition 3.1 shows 
that every 0-linear map X —> V, where V is an ultrasum-
mand, is trivial. By the result mentioned above, every 
0-linear map co{X) ^ F is trivial, and thus, by the char
acterization 3.2, co{X) is an Xj-space. 

Conversely, assume that co{X) is an Xj-space. The 
existence of a linear metric selection m : Z(X, R) -> 
L(X, R) is equivalent to the splitting of the exact sequence 

0->X^->Z(X, (B + L)/L - ^ 0; 

hence, equivalent to the existence of a linear Lipschitz 
selection s: (B + L)/L - ^ Z. Since (B + L)/L = B/B n L, 
we are asking about the existence of a linear Lipschitz 
selection B/X* ^ B + L. But since X* = co(X)* and 
co(X) is an £,-space, X* is injective. So, the sequence 
O ^ X ^ - ^ B -> B/X* -> 0 splits. A look at the com
mutative diagram 

0 - ^ X ' - > 5 4 - L - ^ ( 5 + L)/L -> 0 
t Î II 

O ^ X * ^ B -> ^/X* ^ 0 

should convince us that when the lower sequence splits 
so does the upper sequence. D 

This result includes the previous cases: if X is itself a 
Banach space then X = co(X). If X is a quasi-Banach with 
trivial dual then co(X) - 0, which is certainly an i],-space. 

Things could be pushed further making homogeneity 
disappear and moving to quasi-Banach groups. The reader 
is referred to [5] for an introduction, reference and full 
development of the theory of quasi-additive maps on 
controlled semigroups. With essentially (except for a 
tricky point of the theory of groups: that 0-additive maps 
are not automatically close to an additive map) the same 
proof as before one gets. 

Proposition 7.6. Let (G, p) be a quasi-normed group 
such that every 0-additive map (G, p) —> IR is asymptoti
cally additive. The following are equivalent: 

a) There exist an additive metric projection Z -^ L. 

b) co(G) is an L^-space. 

Tlieorem 7.5. Let X be a quasi-Banach space. Then 
there exist a linear metric projection m : Z(X, R) -^ 
L(X, R) if and only if co(X) is an L^-space. 

Proof The proof requires the duality techniques de
veloped in [2] for Banach spaces and extended in [5] to 
quasi-normed groups. Precisely, that given a 0-additive 
map / : G ~> IR on a quasi-normed group there exists a 
0-linear map F : co{G) —> R such that Fô is a version off 

8. THE UNIVERSAL coziX) SPACE 

The Banach envelope co(X) of a quasi-Banach space 
is an universal object characterized by the following 
property: every operator T: X —> Y into a Banach space 
factorizes through the operator X —> co(X). Does there 
exists a similar object for 0-linear maps? The answer is 
yes and this new object provides a deep insight into the 
problem of finding a linear metric projection. 
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Proposition 8.1. There exists a Banach space coz{X) 
and a 0-linear map ô'.X—^ coziX) with the property that 
for every 0-linear map F : X ^ IR there exists a linear 
continuous map n^ : coz{X) — such that 71 pd - F. 

Proof. Let coz{X) = [Z(X, R), Z(-)]*. The space 
[Z, (X, R), Z(-)] is a semi-normed space (see [4] for a 
related construction yielding a semi-Banach space) space. 
The operator ô: X ^ coz(X) is «essentially» obviously 
defined by ô(x)(F) = F(x). The reader may observe that 
ô(x) e Z(X, Uy and might not be continuous. It is not 
difficult to define a linear map L: X ^ Z{X, R)' such 
that, for every xeX, ô(x) - L{x) e [Z(Z, R), Z(-)]* : just 
consider a Hamel basis (x„) of norm one vectors of Z and 
define L{x.^ = ¿(x,). It is clear now that 

\F(X ^x;} -1 kF(x^\ < Z(F)1\L\ 

and thus \\ô{x) - L(x)\\ < S |/̂ k,|. The presence of L does 
not modifies the 0-linear character of á, which should be 
self-evident. Finally, if F : X —> [R is a 0-linear map then 
since [Z(X, U), Z(-)]* is a vector subspace of IR̂ ^̂ ' ^\ then 
Tip is the restriction to [Z(X, IR), Z(-)]''' of the projection 
onto the F-coordinate. The linearity and continuity of 
such map are obvious. D 

What is interesting for us now is the following prop
erty: 

Proposition 8.2. There exists a linear metric selec
tion m : Z(X, [R) - ^ X' if and only if ô can be approxi
mated by a linear map. 

Proof. liS-.X 

that IIF 
< M < +0C then UpL : X 

^S\\ 

coz(X) is a linear map such that 
5 is a linear map such 

MZ(F), as we show now: 

|Fx - UpSxl = \SXP) - npS(x)\ = 

<\\np\\\\ô-S\\\\x\\. 

On the other hand, there is little doubt that the process 
F —> KpL is linear. 

Conversely, if there exists a linear metric selection 
F —> m(F) then, as we have already seen, co(X) is an 
£,-space, in which case every 0-linear map co(X) -^ V 
taking values in an ultrasummand is trivial (reasoning as 
in 3.1). By the duality results cited at the beginning of the 
proof of theorem 7.5, every 0-linear map from X into an 
ultrasummand is trivial. Since coz(X) is a dual space, it is 
complemented in its bidual, hence it is an ultrasummand 
and thus ô is trivial. D 

9. APPENDIX: A TWIST OF THE SCREW 

In the previous sections we have worked with the se
quence 

0 B + L ^ (B + L)/L -^ 0 

of metric spaces under the metric ||-||. We could have 
also considered the same sequence under the semi-metric 
2(0 ; it is not Hausdorff because the linear maps form the 
closure of 0. To be a i^-space means that the norms in
duced on (B -I- L)/L by II • II and Q(-) coincide. Let us con
sider now the situation on finite dimensional spaces to 
recover the meaning of the Kalton-Roberts theorem and 
to put in perspective the results proved in the paper. 

Let Q be a finite set. Let /^ (J^(Q)) be the space of all 
(all = bounded) maps T(Q) —> U. The subspace of all 
additive maps is precisely /,(Q), and the embedding is 

?,(0) /oc(y(Û)) 

Jl li{A) = Y^.^^li{i). 

Thus, one has the exact sequence (of vector spaces) 

0 ^ /,(Q) -^ unm) ^ unci)) 11, (ÇÏ) -^ 0 

Consider now the sequence in the semi-norm 

Q{p) = sup {\id(AUB)- ¡.¿(A) - fi(B)\ : A, B disjoint}. 

One has only an exact sequence of semi-Banach 
spaces since /,(Q) = {0}^^^; however, the quotient 
1^{T(Q))/ 1^{Q) is a certain finite-dimensional Banach 
space. 

However, if the sequence is considered in the usual 
II'11^ norm, the embedding of /,(0) into L^[T(Q)) is no
thing different from a Rademacher-like embedding of 
l,(n) into IJT) (in fact, if |Q| = n then | T(Q)\ = T). This 
embedding is not so accurate as to be isometric since one 
can only obtain 2"' \\p\\i < \\Jl\\ < ||//||,. In this way, the 
sequence is just the exact sequence of Banach spaces 

0 ̂ / , (n)-^ U2") ^ U2'V/iW 0 

for which one is perfectly able to prove two things: that it 
splits (like all sequences with finite dimensional spaces 
do), and that it does with projections having norms tending 
to infinity (since /j is not complemented in an £^-space). 

In this context, the Kalton-Roberts theorem says that the 
Banach spaces (1^(2')/l,(n), ||-1|,) and (/^(2"))//i(n), Q(-)) 
are 90-isomorphic independently on n. While our the
orem about the nonexistence of a linear metric projection 
method «essentially» means that /, is not complemented 
in /^ (2^). 
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