Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp) Vol. 94, N.º 4, pp 473-483, 2000 Monográfico: Perspectivas en Análisis Matemático

NONLINEAR METRIC PROJECTIONS IN TWISTED TWILIGHT

FÉLIX CABELLO SÁNCHEZ, JESÚS M. F. CASTILLO and FERNANDO SÁNCHEZ

Departamento de Matemáticas, Universidad de Extremadura. Avda. de Elvas, s/n. 060671 Badajoz (Spain). E-mail: cabello@unex.es; castillo@unex.es; fsanchez@unex.es

Presentado por F. Bombal. Supported in part by DGICYT project PB 97-0377

ABSTRACT

By definition, quasi-linear maps $F: X \to \mathbb{R}$ on a quasi-Banach *K*-space *X* can be approximated by linear maps. We investigate the nature of the method $F \to m(F)$ that yields the almost optimal approximation, and which we call metric projection. We shall show that the method of concentrators of Kalton and Roberts that works for \mathcal{L}_{∞} spaces is quasi-linear and non-linear. We shall also show that there exists a linear metric projection if and only if the Banach envelope of *X* is an \mathcal{L}_1 -space.

1. INTRODUCTION

Some quasi-Banach spaces X have the following nice property, for which they are awarded with the term *K*spaces: whenever *E* is a quasi-Banach containing a onedimensional subspace \mathbb{R} such that $E/\mathbb{R} = X$ and $t: M \to X$ is an operator from another quasi-Banach space *M* then *t* can be lifted to an operator $T: M \to E$. Equivalently, every exact sequence $0 \to \mathbb{R} \to E \to X \to 0$ splits. Equivalently, still, every quasi-linear map $F: X \to \mathbb{R}$ is at finite distance from some linear map $L: X \to \mathbb{R}$. The preliminaries section contains precise definitions for these terms. When X is a Banach space then the preceding statements are equivalent to: whenever *E* is a quasi-Banach space such that $E/\mathbb{R} = X$ then *E* is itself a Banach space (and thus isomorphic to $\mathbb{R} \oplus X$).

The main examples of K-spaces are: B-convex Banach spaces and quasi-Banach L_p spaces, $0 , proved by Kalton in [17]; and the <math>\mathcal{L}_{\infty}$ -spaces (proved by Kalton and Roberts in [24]). On the opposite side, the main examples of non-K-spaces are the \mathcal{L}_1 -spaces. The three proofs have different nature. The proof for B-convex Banach spaces consists in directly showing that the so-called *twisted sum* space E is locally convex. The proof for L_p is a cunning computation that shows that given a quasi-linear map F on a finite dimensional $l_p(n)$ space the «obvious» linear map $l(e_i) = F(e_i)$ is at finite distance (independent-

ly of *n*) from *F*. However, the proof for \mathcal{L}_{∞} -spaces is highly nontrivial.

Kalton and Roberts proved in [24] is that $If F : l_{\infty}(\Omega) \rightarrow \mathbb{R}$ is a quasilinear map then there is a linear functional $L : l_{\infty}(\Omega) \rightarrow \mathbb{R}$ with $|F(x) - L(x)| \leq 100 \ Q(F) ||x||$, where Q(F) is the quasilinear constant of F. Let us give a different statement. Recall that a function $f : \mathcal{A} \rightarrow \mathbb{R}$ defined on an algebra of subsets of a set Ω is said to be ε -approximately additive if $f(\emptyset) = 0$ and for every pair A, B of disjoint sets one has

$$|f(A \cup B) - f(A) - f(B)| \le \varepsilon.$$

Given a quasi-linear map $F: l_{\infty}(\Omega) \to \mathbb{R}$, then $f(A) = F(1_A)$ defines a Q(F)-approximately additive function on 2^{Ω} . Additive set-functions are the 0-approximately additive, and correspond to the linear maps $l_{\infty}(\Omega) \to \mathbb{R}$. Thus, what is proved in [24] is the existence of a universal constant K < 45 with the property that if $f: \mathcal{A} \to \mathbb{R}$ is Δ -approximately additive, there is an additive function $\mu: \mathcal{A} \to \mathbb{R}$ with $|f(A) - \mu(A)| \le K \cdot \Delta$. In fact, they observe that it suffices to consider the case of finite algebras. The proof gets the additive map from the existence of a process called «concentrator». One of our purposes is to show that concentrators are actually quasi-linear non-linear maps.

Thus, in the way of understanding the proof, we became interested in the *methods* $F \rightarrow L(F)$ to obtain, in a *K*-space, linear maps at «almost optimal» finite distance. That is, the nature of the «almost optimal approximation map» $F \rightarrow L(F)$ such that, for some constant *C*, $||F - L(F)|| \leq C \operatorname{dist}(F, X')$. We shall call to such map a *metric projection*. Which is the nature of the metric projection? Could it be even linear?

The interest in finding such linear method was fostered by the following attack: Let $f : \mathcal{A} \to \mathbb{R}$ be a 1-approximately additive function in a finite algebra \mathcal{A} . Suppose there exists a linear method $f \rightarrow m(f)$ to define, for some r < 1, a *r*-approximately additive map $m(f) : \mathcal{A} \rightarrow \mathbb{R}$ such that $|m(f)(A) - f(A)| \leq 1$. If so, we can iterate the method to obtain $m^2(f) : \mathcal{A} \rightarrow \mathbb{R}$ such that $|m^2(f)(A) - m(f)(A)| \leq r$ and $m^2(f)$ would be r^2 -approximately additive; and so on. The sequence $(m^2(f))$ is contained in the compact subset of $\mathbb{R}^{\mathcal{A}}$:

$$\{g: |g(A)| \le |f(A)| + (1 - r^{-1})\}.$$

Therefore, if \mathcal{U} denotes a free ultrafilter on \mathbb{N} then

$$L(f)(A) = \lim_{\mathcal{U}(n)} m_n(f)(A)$$

defines a linear map $L(f) : \mathcal{A} \to \mathbb{R}$ which verifies $|f(A) - L(f)(A)| \le (1 - r^{-1})$. In the end, we would have obtained a linear metric projection $f \to L(f)$. Can we do this?

We do not want to spoil the forthcoming surprises, so we shall only say: no.

2. PRELIMINARIES

A quasi-norm on a (real or complex) vector space X is a nonnegative real-valued function $\|\cdot\|$ satisfying

- *i*) ||x|| = 0 if and only if x = 0;
- *ii)* $||\lambda x|| = |\lambda| ||x||$ for all $x \in X$ and $\lambda \in \mathbb{K}$;
- *iii)* $||x + y|| \le K(||x|| + ||y||)$ for some constant *K* independent of *x*, $y \in X$.

A quasi-normed space is a vector space X together with a specified quasi-norm. On such a space one has a (vector) topology defined by the fundamental system of neighborhoods of 0 given by the multiples of the set $\{x \in X : ||x|| \le 1\}$, called the unit ball of the quasi-norm. A complete quasinormed space is called a *quasi-Banach* space. In the sequel, the word operator means linear continuous map. The algebraic dual X' of X is the space of linear, not necessarily continuous, maps; it shall also be denoted $L(X, \mathbb{R})$, or simply L. The subspace of X' formed by the linear continuous maps, the topological dual of X, shall be denoted X*. An operator $X \rightarrow Y$ means always a linear continuous map. The space of homogeneous and bounded (i.e., such that the image of the unit ball is a bounded set) maps shall be denoted $\mathbf{B}(X, \mathbb{R})$, or simply **B**. The term *bounded* map shall always mean homogeneous bounded map. Given two homogeneous maps A, B acting between the same spaces, their (eventually infinite) distance is defined as

$$||A - B|| = \sup_{||x|| \le 1} ||Ax - Bx||.$$

Exact sequences of (quasi) Banach spaces. For general information about exact sequences the reader can consult [15]. Information about categorical constructions in the (quasi) Banach space setting can be found in the

monograph [9]. A diagram $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ of quasi-Banach spaces and operators is said to be an *exact sequence* if the kernel of each arrow coincides with the image of the preceding. This means, by the open mapping theorem, that Y is (isomorphic to) a closed subspace of X and the corresponding quotient is (isomorphic to) Z. We shall also say that X is a *twisted sum of* Y and Z or an *extension of* Y by Z. Two exact sequences $0 \rightarrow Y \rightarrow X \rightarrow$ $\rightarrow Z \rightarrow 0$ and $0 \rightarrow Y \rightarrow X_1 \rightarrow Z \rightarrow 0$ are said to be equivalent if there is an operator T making the diagram

$$\begin{array}{cccc} 0 \to Y \to X \to Z \to 0 \\ \parallel & \downarrow T & \parallel \\ 0 \to Y \to X_1 \to Z \to 0 \end{array}$$

commutative. The following standard result of algebra (see [15]) and the open mapping theorem imply that T must be an isomorphism.

The 3-lemma. Assume that one has a commutative diagram of vector spaces and linear maps

$$\begin{array}{ccc} 0 \to Y \to X \to Z \to 0 \\ \alpha \downarrow & \downarrow \beta & \downarrow \gamma \\ 0 \to Y_1 \to X_1 \to Z_1 \to 0 \end{array}$$

with exact rows. If α and γ are injective (resp. surjective) so is β .

An exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is said to split if it is equivalent to the trivial sequence $0 \rightarrow Y \rightarrow Y \oplus Z$ $\rightarrow Z \rightarrow 0$. This already implies that X is isomorphic to the direct sum $Y \oplus Z$.

Quasi-linear and 0-linear maps. The by now classical theory of Kalton and Peck [21] describes short exact sequences of quasi-Banach spaces in terms of the so-called *quasi-linear maps*. A map $F: Z \rightarrow Y$ acting between quasi-normed spaces is said to be quasi-linear if it is homogeneous and satisfies that for some constant K and all points x, y in Z one has

$$||F(x + y) - F(x) - F(y)|| \le K(||x|| + ||y||).$$

The smallest constant satisfying the inequality above is denoted Q(F) and referred to as the quasi-linearity constant of the map *F*. We shall denote $Q(X, \mathbb{R})$ the space of all quasi-linear maps $X \to \mathbb{R}$.

We shall say that a quasi-linear map is *trivial* when it can be written as the sum of a linear and a bounded map; or else, when it is at finite distance from a linear map. Two quasi-linear maps F and G (defined between the same spaces) are said to be equivalent if F-G is trivial. In this case we shall also say as in [2] that F is *a version* of G (or vice versa). Quasi-linear maps give rise to twisted sums: given a quasi-linear map $F: Z \rightarrow Y$ then it is possible to construct a twisted sum, which we shall denote by $Y \bigoplus_{F} Z$, endowing the product space $Y \times Z$ with the quasinorm

$$||(y, z)|| = ||y - F(z)|| + ||z||.$$

Clearly, the map $Y \rightarrow Y \bigoplus_F Z$ sending of y to (y, 0) is an into isometry, and so Y can be thought as a subspace of $Y \bigoplus_F Z$; moreover, the corresponding quotient is isometric to Z. Conversely, an exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ comes defined by a quasi-linear map: pick a bounded selection B for the quotient map q (which exists by the open mapping theorem) and then a linear selection L; the difference B - L is quasi-linear and takes values in Y since q(B - L) = 0. The two processes are one inverse of the other and, moreover, one has the following fundamental result of [21].

Proposition 2.1. Two exact sequences $0 \rightarrow Y \rightarrow Y \oplus_F Z \rightarrow Z \rightarrow 0$ and $0 \rightarrow Y \rightarrow Y \oplus_G Z \rightarrow Z \rightarrow 0$ are equivalent if and only F and G are equivalent. Therefore, an exact sequence $0 \rightarrow Y \rightarrow Y \oplus_F Z \rightarrow Z \rightarrow 0$ is equivalent to the trivial exact sequence $0 \rightarrow Y \rightarrow Y \oplus_F Z \rightarrow Z \rightarrow 0$ if and only F is trivial (i.e., F is at finite distance from some linear map).

The quasi-Banach space $Y \bigoplus_F Z$ constructed via a quasilinear map F need not be locally convex, even when Yand Z are. A result of Dierolf [11] asserts that there exists a nonlocally convex twisted sum of Y and Z if and only if there exists a nonlocally convex twisted sum of \mathbb{R} and Z. Hence, a Banach space is a K-space when every twisted sum with \mathbb{R} is locally convex. It is however possible to obtain a simple characterization of when a *given* twisted sum of Y and Z is locally convex: the key is to give the characterization in terms of the quasi-linear map F and not in terms of the factor spaces.

Definition. A quasi-linear map $F: Z \rightarrow Y$ acting between quasi-normed spaces is said to be 0-*linear* if there is a constant K such that whenever $\{x_i\}$ is a finite set of elements of Z then

$$\left\|F\left(\sum_{i=1}^{i=n} x_{i}\right) - \sum_{i=1}^{n} F(x_{i})\right\| \le K \sum_{i=1}^{n} \|x_{i}\|.$$

The smallest constant satisfying the inequality above is denoted Z(F) and referred to as the 0-linearity constant of the map *F*. The space of all 0-linear maps $X \rightarrow \mathbb{R}$ shall be denoted $Z(X, \mathbb{R})$. One has (see [2, 7, 9]).

Proposition 2.2. A twisted sum of Banach spaces $Y \bigoplus_F Z$ is locally convex (being thus isomorphic to a Banach space) if and only if F is 0-linear.

It is clear that 0-linear maps are quasi-linear. It is not true, however, that quasi-linear maps are 0-linear. Ribe [29] provided the simplest example of a quasi-linear not 0-linear map $R : l_1 \rightarrow \mathbb{R}$ given by

$$R(x) = \sum_{i} x_{i} \log |x_{i}| - \sum_{i} x_{i} \log |\sum x_{i}|$$

(observe that the map is only defined on finitely supported sequences; however there exist extension theorems for quasi and 0-linear maps (see [21])). The quasi-linearity can be seen in [22] (actually Q(R) = 2) while the fact that *R* is not 0-linear is very simple to check: $R(e_n) = 0$ for all *n* while $R(\sum_{i=1}^{i=N} e_i) = -N \log N$; since $\sum_{i=1}^{i=N} ||e_i|| = N$, the estimate in the definition of 0-linear map is impossible.

It is moreover clear that a quasi-linear map *F* such that $||F - L|| \le K$ for some linear map *K* necessarily is 0-linear and $Z(F) \le 2K$. Hence $Z(F) \le \text{dist}(F, \mathbf{L})$. In particular, Ribe's map *R* cannot be approximated by linear maps. As for the converse, one can see that using the Hahn-Banach theorem. Proposition 2.2 can be reformulated in terms of approximation by linear maps as follows (we shall give a direct proof for this result later):

Proposition 2.3. A quasi-linear map $X \to \mathbb{R}$ is 0-linear if and only if it is at finite distance from a linear map.

In this way we obtain that a Banach space X is a K-space if and only if every quasi-linear map $X \to \mathbb{R}$ is 0-linear.

The pull-back square. Let $A: U \to Z$ and $B: V \to Z$ be two arrows in a given category **C**. The *pull-back* of $\{A, B\}$ is an object Ξ in **C** and two arrows $u: \Xi \to U$ and $v: \Xi \to V$ such that Au = Bv; and such that given another object Γ in **C** for which there exist arrows $\alpha: \Gamma \to U$ and $\beta: \Gamma \to V$ verifying $A\alpha = B\beta$ then there exists a unique arrow $\gamma: \Gamma \to \Xi$ such that $\beta = v\gamma$ and $\alpha = u\gamma$. If one prefers the categorical language, the pull-back makes commutative the diagram

$$\begin{array}{c} U \xrightarrow{A} & Z \\ \uparrow & \uparrow^B \\ \Xi \xrightarrow{v} & V \end{array}$$

and is universal with respect to this property.

и

In the category of quasi-Banach spaces and operators, as well as in the subcategory of Banach spaces pull-backs exist. If $A: U \rightarrow Z$ and $B: V \rightarrow Z$ are two operators, the pull-back of $\{A, B\}$ is the space $\Xi = \{(u, u): Au = Bv\}$ endowed with the induced product topology together with the restrictions of the canonical projections of $U \oplus V$ onto, respectively, U and V. If $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is an exact sequence with quotient map q and $T: M \rightarrow Z$ is a surjective operator and Ξ denotes the pull-back of the couple $\{q, T\}$ then the diagram

$$\begin{array}{cccc} 0 \to Y \to X \to Z \to 0 \\ & \parallel & \uparrow & \uparrow^{T} \\ 0 \to Y \to \Xi \to M \to 0 \end{array}$$

is commutative with exact rows and columns.

3. LINEAR METRIC PROJECTIONS ON BANACH SPACES

As we have already seen, 0-linear maps on Banach spaces can be approximated by linear maps; thus, one has the decomposition

 $Z(X, \mathbb{R}) = \mathbf{B}(X, \mathbb{R}) + \mathbf{L}(X, \mathbb{R})$

On a quasi-Banach K-space one even has

$$\mathcal{Q}(X, \mathbb{R}) = \mathbf{B}(X, \mathbb{R}) + \mathbf{L}(X, \mathbb{R}).$$

Given a quasi-linear map *F*, let $D(F) = \text{dist}(F, \mathbf{L}(X, \mathbb{R}))$. Our main concern now is the nature of the map $F \to m(F)$ that associates to *F* an «almost optimal» selection, i.e. m(F) is a linear map such that $||F - m(F)|| \le C D(F)$ (with *C* a prescribed finite constant). We have already seen that $Z(\cdot) \le 2D(\cdot)$, hence it will be enough to study methods *m* such that $||F - m(F)|| \le C Z(F)$.

Our questions now are:

Question 1. Do there exist Banach K-spaces in which the metric projection

$$m: \mathcal{Q}(X, \mathbb{R}) \to \mathbf{L}(X, \mathbb{R})$$

is linear?

Question 2. Do there exist quasi-Banach K-spaces in which the metric projection

$$m: \mathcal{Q}(X, \mathbb{R}) \to \mathbf{L}(X, \mathbb{R})$$

is linear?

Observe that the hypothesis of being a *K*-space is necessary. Without it we can only ask:

Question 3. Do there exist Banach spaces in which the metric projection

$$m: \mathcal{Z}(X, \mathbb{R}) \to \mathbf{L}(X, \mathbb{R})$$

is linear?

We begin answering questions 1 and 3.

Proposition 3.1. The metric projection $m : \mathbb{Z}(X, \mathbb{R}) \to \mathbf{L}(X, \mathbb{R})$ is linear if and only if X is an \mathcal{L}_1 -space.

Proof. Let us consider first the case of a quasi-linear map $F : l_1^n \to \mathbb{R}$. Obviously D(F) is finite and F is 0-linear. If (e_k) is the unit vector basis of l_1^n , we can define a linear map by $l(e_k) = F(e_k)$ (and linearly on the rest). We then have that for $x = \sum_k x_k e_k$ in l_1^n

$$|F(\sum_{k} x_{k}e_{k}) - l(\sum_{k} x_{k}e_{k})| \leq |F(\sum_{k} x_{k}e_{k}) - \sum_{k} x_{k}F(e_{k})| \leq |S(F)| |\sum_{k} x_{k}e_{k}|| = Z(F) ||x||$$

and thus $||F - l|| \le Z(F)$. The correspondence $F \to m(F) = l$ is clearly linear.

We pass to an infinite dimensional \mathcal{L}_1 -space X; let F: $X \to \mathbb{R}$ be a 0-linear map. Assume that $X = \bigcup X_{\alpha}$ where X_{α} is λ -isomorphic to l_1^{α} and X_{α} is λ -complemented in X. For each α , the map $F_{\alpha} = F_{|X_{\alpha}}: X \to \mathbb{R}$ admits a linear map $l_{\alpha}:$ $X_{\alpha} \to \mathbb{R}$ such that $||F_{\alpha} - l_{\alpha}|| \le \lambda Z(F)$. Let L_{α} be an extension of l_{α} to the whole X obtained by setting $L_{\alpha}(y) = 0$ when y does not belong to X_{α} . Since for every x and eventually all α one has $|L_{\alpha}(x)| \le ||F(x)|| + \lambda Z(F)$ it makes sense to define a linear map $L: X \to \mathbb{R}$ by

$$L(x) = \lim_{\mathcal{U}(\alpha)} L_{\alpha}(x)$$

where \mathcal{U} is a free ultrafilter on index set (α) refining the Fréchet filter with respect to the natural ordering defined by the net (X_{α}). The application *L* is well defined and linear. One moreover has $||F - L|| \leq \lambda Z(F)$ as follows from the following inequality choosing the index α carefully after ε :

$$|L(x) - F(x)| \le |L(x) - L_{\alpha}(x)| + |L_{\alpha}(x) - F(x)| \le \varepsilon + \lambda Z(F).$$

Finally, the procedure $F \rightarrow m(F) = L$ is linear.

We pass to the converse implication. Let *X* be a Banach space and assume the existence of a linear map *m* : $\mathbb{Z}(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathbb{R})$ such that $||F - m(F)|| \leq C \cdot D(F)$.

Applying a uniform boundedness principle of Kalton [17] (the reader shall find a careful description of such principles in [3], there exists a constant *C* such that for every 0-linear map $D(F) \leq C Z(F)$.

Let now V be an ultrasummand; i.e., a Banach space complemented in its bidual. Let $G: X \rightarrow V$ be an arbitrary 0-linear map. We define a map $L: X \rightarrow V^{**}$ by

$$\langle L(x), v^* \rangle = \langle m(v^* \circ G), x \rangle,$$

which is linear since m is linear, and well defined since L(x) is continuous:

$$\begin{aligned} \|L(x) &= \sup \left\{ \langle L(x), v^* \rangle : \|v^*\| \le 1 \right\} = \\ &= \sup \left\{ \langle m(v^* \circ G), x \rangle : \|v^*\| \le 1 \right\} = \\ &= \sup \left\{ \langle m(v^* \circ G) - v^* \circ G, x \rangle + \langle v^* \circ G, x \rangle : \|v^*\| \le 1 \right\} \le \\ &\le \sup \left\{ C \ D(v^* \circ G) \|x\| + \|v^*\| \ \|G(x)\| : \|v^*\| \le 1 \right\} \le \\ &\le \sup \left\{ C'Z(v^* \circ G) \|x\| + \|v^*\| \ \|G(x)\| : \|v^*\| \le 1 \right\} \le \\ &\le \sup \left\{ C'\|v^*\| Z(G) \|x\| + \|v^*\| \ \|G(x)\| : \|v^*\| \le 1 \right\} \le \\ &\le C'Z(G) \|x\| + \|G(x)\|. \end{aligned}$$

Since

$$\begin{aligned} |\langle G(x) - L(x), v^* \rangle| &= |\langle G(x), v^* \rangle - \langle m(v^* \circ G), x \rangle| = \\ &= |v^* \circ G(x) - m(v^* \circ G)(x)| \le \\ &\le 2C Z(v^* \circ G) ||x|| \le \\ &\le 2C ||v^*||Z(G)||x|| \end{aligned}$$

we get

$$||G - L|| = \sup_{||x|| \le 1} ||G(x) - L(x)|| =$$

= $\sup_{||x|| \le 1} \sup_{||v^*|| \le 1} |\langle G(x), v^* \rangle - \langle L(x), v^* \rangle| \le$
 $\le 2 \cdot C \cdot Z(G).$

To conclude we shall prove a result asserting that in the situation just described the space *X* has to be an \mathcal{L}_1 space. The if part is a result of Lindenstrauss [27] (although our proof shall be «considerably simpler») while, although the result is essentially known, we have no explicit reference for the only if part.

Proposition 3.2. A Banach space Q is an \mathcal{L}_1 -space if and only if for every ultrasummand Y every exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Q \rightarrow 0$ splits.

Proof. Assume that every exact sequence $0 \rightarrow Y \rightarrow W \rightarrow Q \rightarrow 0$ splits when *Y* is complemented in its bidual. We shall prove that Q^* is injective. For this, consider a exact sequence $0 \rightarrow Q^* \rightarrow X \rightarrow Z \rightarrow 0$. One has

$$\begin{array}{cccc} 0 \rightarrow Z^* \rightarrow X^* \rightarrow Q^{**} \rightarrow 0 \\ & & || & \uparrow & \uparrow \\ 0 \rightarrow Z^* \rightarrow P \rightarrow & Q \rightarrow 0 \end{array}$$

where *P* is the pull-back of the quotient map $X^* \rightarrow Q^{**}$ and $Q \rightarrow Q^{**}$ is the canonical inclusion. Observe the diagram

where the second row is the bitraspose of the first row, and the second and third rows form the adjoint of the previous pull-back diagram. The third and fourth rows form a pull-back diagram with respect to the quotient map $P^* \rightarrow Z^{**}$ and the canonical inclusion $Z \rightarrow Z^{**}$.

The third row splits since it is transpose of the sequence $0 \rightarrow Z^* \rightarrow P \rightarrow Q \rightarrow 0$, which splits since Z^* is complemented in its bidual; thus, the fourth rows splits. But the first and fourth sequences are equivalent: since *PB* is the pull-back space of $P^* \rightarrow Z^{**}$ and $Z \rightarrow Z^{**}$, and we have arrows $X \rightarrow Z$ (quotient map in the first line) and $X \rightarrow P^*$ (vertical central line downwards) making a commutative square with the two previous arrows, there must exist an arrow $\alpha: X \rightarrow PB$ making the two triangles commutative. That makes the restriction $\alpha|Q^* = id$, and means that the upper and lower sequences are equivalent.

Now a proof for Lindenstrauss statement. Let *Z* be an \mathcal{L}_1 -space and let $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ be an exact sequence in which *Y* is an ultrasummand. Consider the commutative diagram:

Since Z^* is an injective space the dual sequence $0 \rightarrow Z^* \rightarrow X^* \rightarrow Y^* \rightarrow 0$ splits, and so does the bidual sequence; hence, Y^{**} is complemented in X^{**} , since *Y* is complemented in Y^{**} , it turns out that *Y* must be complemented in *X* and the original sequence splits. \Box

From all this we conclude:

Corollary 3.3. Let X be a Banach space. It does not exist a linear metric projection

$$Q(X, \mathbb{R}) \to \mathbf{L}(X, \mathcal{R}).$$

Proof. Since, that would imply a linear metric projection $\mathcal{Z}(X, \mathbb{R}) \to \mathbf{L}(X, \mathbb{R})$ and, as we have seen, then *X* would be an \mathcal{L}_1 -space. But \mathcal{L}_1 -spaces are not *K*-spaces, and thus they admit quasi-linear maps that cannot be approximated by linear maps, which makes the existence of any selection method impossible. \Box

4. LINEAR METRIC PROJECTIONS ON QUASI-BANACH SPACES

Quasi-Banach spaces, however, conceal some surprises worth being uncovered. Let thus *X* be a quasi-Banach *K*-space. Assume moreover that it has trivial dual; i.e., $X^* = 0$ (here is where we need to have *X* not locally convex). The spaces $L_p(0, 1)$ with 0 provide good examples of this situation.

Since *X* is a *K*-space, $Q(X, \mathbb{R}) = \mathbf{B}(X, \mathbb{R}) + \mathbf{L}(X, \mathbb{R})$. Since *X* has trivial dual then $\mathbf{B}(X, \mathbb{R}) \cap \mathbf{L}(X, \mathbb{R}) = \{0\}$ (no map $X \to \mathbb{R}$ can be simultaneously linear and continuous). Therefore $Q(X, \mathbb{R}) = \mathbf{B}(X, \mathbb{R}) \times \mathbf{L}(X, \mathbb{R})$. Let us show now that the canonical projection onto $\mathbf{L}(X, \mathbb{R})$ is, in addition to linear, a metric projection.

To this end, let us recall that given a quasi-Banach space *X* one can consider two semi-metrics (they are not Hausdorff) on $Q(X, \mathbb{R})$: $Q(\cdot)$ and $d(\cdot) = \text{dist}(\cdot, \mathbf{L})$. Let us observe that they are equivalent: the uniform bounded-

ness principle mentioned earlier shows that the two induced norms are equivalent on $Q(X, \mathbb{R})/L$; now, L is the kernel of the two seminorms, and thus they are also equivalent.

In the present situation $Q(X, \mathbb{R}) = \mathbf{B}(X, \mathbb{R}) \times \mathbf{L}(X, \mathbb{R})$ they adopt the form Q(b, l) = Q(b); and $d(b, l) = \text{dist}(b, \mathbf{L})$. The application

$$n(b, l) = \|b\|$$

defines a complete (since the space $\mathbf{B}(X, \mathbb{R})$ is complete in this norm) seminorm on $Q(X, \mathbb{R})$; since $n \ge d$, it turns out to be also equivalent to $d(\cdot)$ and $Q(\cdot)$. But the canonical projection

$$m(b, l) = l$$

is a metric projection for *n*; i.e., that $n(F - m(F)) \leq C$ Q(F):

$$n(b + l - m(b, l)) = ||b||.$$

5. LINEAR METRIC PROJECTIONS FOR GER-LINEAR MAPS

As we have already seen, given an arbitrary Banach space, no *linear* method $F \rightarrow m(F)$ is able to assign to each quasi-linear map F a linear map m(F) at a prefixed distance C. Could such linear method be obtained if one restricts the attention to smaller subclasses of quasi-linear maps? For instance, for 0-linear maps such linear method exists in \mathcal{L}_1 -spaces.

Until now we have only considered two classes: the class Q of quasi-linear maps and the class Z, of 0-linear maps. There exist other interesting classes worth consideration. One of them was isolated by Lima and Yost in [25]: the class P of pseudo-linear maps, that is, quasi-linear maps Ω satisfying

$$\|\Omega(x + y) - \Omega(x) - \Omega(y)\| \le \|x\| + \|y\| - \|x + y\|.$$

The appendix 1.9 in [9] contains a rather complete survey about these maps. Another class introduced and studied in [5] (see also [14]) is formed by the Ger-linear maps. A quasi-linear map $F : X \to Y$ is said to be Ger-linear if

$$||F(x + y) - F(x) - F(y)|| \le C ||x + y||$$

for some constant C > 0 and all $x, y \in X$. The infimum of those constants C verifying the previous inequality is called the Ger-linearity constant of G and denoted G(F). The space of all Ger-linear maps $X \rightarrow Y$ shall be denoted G(X, Y). A simple induction argument shows that a Ger-linear map is 0-linear and $Z(\cdot) \leq G(\cdot)$.

The interesting feature of Ger-linear maps is their connection with classical problems about the existence of Lipschitz projections on Banach spaces. More precisely (see [5])

Proposition 5.1. Are exact sequence of Banach spaces $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is defined by a Ger-linear map $G: Z \rightarrow Y$ if and only if there exists a Lipschitz projection from X onto Y. Moreover, that happens if and only if the metric projection $\rho: Y \bigoplus_G Z \rightarrow Y$ given by $\rho(y, z) =$ = y - G(z) is Lipschitz.

It is still an open problem to know if there exist nontrivial pseudo-linear maps. However, nontrivial Ger-linear maps do exist: it is not hard to verify that the Aharoni-Lindenstrauss (nontrivial) sequence $0 \rightarrow C[0, 1] \rightarrow$ $\rightarrow D \rightarrow c_0 \rightarrow 0$ (see [1]) comes defined by a Ger-linear map. The interesting point for us now is that, as it was shown in [5], Ger-linear or pseudo-linear maps from a Banach space into an ultrasummand are trivial. We show now that the metric projection for Ger-linear maps is linear.

As proposition 5.1 suggests, and almost proves, and contrarily to intuition, not all trivial maps are Ger-linear maps. Indeed, if a Ger-linear map G is trivial then not only it can be decomposed G = B + L as a sum of a bounded homogeneous plus a linear map; in this case the bounded map has to be Lipschitz (to make Lipschitz the map ρ).

So, when all Ger-linear maps are trivial we shall write $G = \mathbf{B}_1 + \mathbf{L}$ to indicate that the bounded map is Lipschitz. The example of the Aharoni-Lindenstrauss construction shows that the hypothesis «*Y* is an ultrasummand» in the next proposition is not superfluous.

Proposition 5.2. Let X be a quasi-Banach space and let Y be a quasi-Banach ultrasummand. Then all Gerlinear maps $X \rightarrow Y$ are trivial and, moreover, there exist a linear metric projection

$$m: \mathcal{G}(X, Y) \to \mathbf{L}(X, Y)$$

(of course, the same linear method would work for pseudo-linear maps).

Proof. Let μ be a Banach limit (i.e., an invariant mean) in the commutative group (*X*, +) and let $\pi: Y^{**} \to Y$ be a projection. We define

$$m(G)(x) = \pi \left(\text{weak*-lim}_{\mu(y)} G(x+y) - G(y) \right).$$

Observing that the definition of Ger-linear map could have also been (how could *G* recognize who is *x*, who is *y* and who is x + y?)

$$|G(x + y) - G(x) - G(y)|| \le C ||x||$$

it follows that $||G(x + y) - G(y)|| \le C||x|| + ||G(x)||$, and thus $\{G(x + y) - G(y)\}_{y \in X}$ lies in a weak*-compact set and using a Banach limit makes sense. Since

$$m(G)(x + z) = \text{weak}^*-\lim_{\mu(y)} G(x + z + y) - G(y) =$$

= weak^*-lim_{\mu(y)} G(x + z + y) -
- G(z + y) + G(z + y) - G(y) =
= weak^*-lim_{\mu(z+y)} G(x + z + y) - G(z + y) +
+ weak^*-lim_{\mu(y)} G(z + y) - G(y) = m(G)(x) + m(G)(z)

we have the linearity of m(G). Moreover, for every $\varepsilon > 0$ one can choose y^* so that

$$||m(G)(x) - G(x)|| \le |y^*(m(G)(x) - G(x))| + \varepsilon \le$$

$$\le 2\varepsilon + |y^*(G(x + y) - G(y)) - G(x))| \le$$

$$\le 2\varepsilon + ||G(x + y) - G(y) - G(x)|| \le$$

$$\le 2\varepsilon + C||x||.$$

We now show that *m* is a linear metric projection. There is little doubt that it is linear. To show that it is a metric projection let us show that $G(\cdot)$ is proportional to dist $(\cdot, \mathbf{L}(X, Y))$. We shall shorten for the rest of this proof $\mathbf{L}(X, Y)$ to simply \mathbf{L} .

Proposition 5.3. Let Y and Z be two Banach spaces. Assume that all Ger-linear maps $Z \rightarrow Y$ are trivial. Then there is a constant ρ such that for every Ger-linear map $F: Z \rightarrow Y$, one has dist $(F, \mathbf{L}) \leq \rho \ G(F)$.

Proof. Consider the following two norms on $\mathbf{B}_1 + \mathbf{L}/\mathbf{L}$. The first one is the quotient metric $D(\cdot) = \text{dist}(\cdot, \mathbf{L})$, and the other is $G(\cdot)$. One has

Lemma 5.4. $(\mathbf{B}_1 + \mathbf{L}/\mathbf{L}, D)$ is a Banach space.

Proof. Easy, since $\mathbf{B}_1 + \mathbf{L}/\mathbf{L} = \mathbf{B}_1 + \mathbf{L}/\mathbf{L} = \mathbf{B}_1/\mathbf{B}_1 \cap \mathbf{L}$ and (\mathbf{B}_1, d) is complete.

Lemma 5.5. (G(Z, Y)/L, G) is a Banach space.

Proof. Let $([G_n])$ be a *G*-Cauchy sequence. Fix a normalized Hamel basis $(e_{\gamma})_{\gamma}$ for *Z* and observe that if *H*: $Z \rightarrow Y$ is a Ger-linear map then there exists a unique representative *F* of [H] vanishing on all the elements of the basis; take

$$F(\Sigma_{\gamma}\lambda_{\gamma}e_{\gamma}) = H(\Sigma_{\gamma}\lambda_{\gamma}e_{\gamma}) - \Sigma_{\gamma}\lambda_{\gamma}H(e_{\gamma}).$$

From now on, F_n shall be the representative of $[H_n]$ vanishing on the basis. The sequence (F_n) is pointwise convergent because if $z = \Sigma \lambda_{\gamma} e_{\gamma}$ then

$$\left\| (F_n - F_m)(z) \right\| \le Z(F_n - F_m) \sum |\lambda_{\gamma}| \le G(F_n - F_m) \sum |\lambda_{\gamma}|.$$

Let *F* be its pointwise limit,

$$F(z) = \lim F_n(z)$$

We show that [F] is the *G*-limit of $([F_n]) = ([H_n])$. Let (z_j) be a finite set of points such that $\sum_i z_i = 0$, and let $\varepsilon > 0$. Choose indices n(j) so that $y ||(F - F_{n(j)})(z_j)|| < 2^{-j}\varepsilon$. One has:

$$\begin{split} \|\Sigma_{j}(F - F_{n})(z_{j})\| &\leq \|\Sigma_{j}(F - F_{n(j)})(z_{j}) + F_{n(j)})(z_{j}) - F_{n}(z_{j})\| \leq \\ &\leq \Sigma_{j} \|(F - F_{n(j)})(z_{j})\| + G(F_{n(j)} - F_{n})\Sigma_{j} \|z_{j}\| \leq \\ &\leq \varepsilon + G(F_{n(j)} - F_{n})\Sigma_{j} \|z_{j}\| \end{split}$$

which is everything one needs since the sequence $([F_n])$ was *G*-Cauchy. From that it also follows that *F* is Gerlinear since $G(F) \leq G(F - F_n) + G(F_n)$.

End of the proof. Since $G(\cdot) \leq D(\cdot)$ on $G = B_1 + L$ then, the norms *G* and *D* are comparable on $G/L = B_1 + L/L$. The open mapping theorem ensures that *G* and *D* are equivalent.

6. SUB-LINEAR METHODS FOR 0-LINEAR MAPS

What has happened recently raises again the doubt: what occurs with 0-linear maps that no linear method is available? The answer could be that Ger-linear maps seem to be nicely coupled with Banach limits, while the class of 0-linear maps (whose definition involves many decompositions into a finite number of points) does not seem to be suitable to match with a *single* linear method. As a further evidence it is the fact that 0-linear maps $X \rightarrow$ Y are not automatically trivial when Y is an ultrasummand (even reflexive! recall the existence of nontrivial sequences, say, $0 \rightarrow l_2 \rightarrow l_{\infty} \rightarrow l_{\infty}/l_2 \rightarrow 0$). Following this line, we show now that there is a method $F \rightarrow m(F)$ for obtaining almost optimal linear maps which can be decomposed in only two methods, one of them linear and the other sub-linear. This will show that 0-linear maps, if not as polite as Ger-linear maps, are definitely not totally disastrous.

Proposition 6.1. Let X be a quasi-Banach space. There is a metric projection $m : \mathbb{Z}(X, \mathbb{R}) \to \mathbf{L}$ that can be decomposed as

$$m = \lambda m_1$$

where m_1 is sub-linear and λ is linear.

Proof. It is not hard to see that the preceding method (using an invariant mean to get a linear map) not only works whit Ger-linear maps; it actually works with sublinear maps *S* such that $S(\lambda x) = \lambda S(x)$ for positive λ (that we shall call +-homogeneous). Let $S(X, \mathbb{R})$ be the class of all sublinear +-homogeneous functions $X \to \mathbb{R}$. If $S \in \mathcal{S}(X, \mathbb{R})$ then $|S(x + y) - S(y)| \le \max\{|S(x)|, |S(-x)|\}$ and the method

$$\lambda(S)(x) = \lim_{\mu(y)} S(x + y) - S(y)$$

still provides a linear map.

Now, let *F* be a 0-linear map with constant Z(F); then if we define

$$m_1(F)(x) = \inf\left\{\sum_{i=1}^n F(x_i) + Z(F) \sum_{i=1}^n ||x_i|| : x = \sum_{i=1}^n x_i\right\}$$

what we get is a sub-linear and +-homogeneous map $m_1(F)$ satisfying $||F - m_1(F)|| \le Z(F)$. To prove this last assertion, note that $m_1(x) \le F(x) + Z(F) ||x||$ while for no matter which decomposition $x = \sum x_i$ we have, by the definition of 0-linear map $F(x) \le \sum F(x_i) + Z(F) ||x||$.

So, the composition method

yields a «sub-linear» metric projection.

Let us show now that, against what we could guess, this situation is perfectly reasonable.

7. THE METRIC PROJECTION IS A QUASI-LINEAR MAP

We only have to enlarge our working category. Let **Met** be the category of vector spaces endowed with a metric, and linear lipschitz maps as arrows. Our key examples are (\mathbf{L}, d) , $(\mathbf{B} + \mathbf{L}, d)$ and $((\mathbf{B} + \mathbf{L})/\mathbf{L}, D) = ((\mathbf{B} + \mathbf{L})/\mathbf{L}, Z(\cdot))$, where d(A, B) = ||A - B|| and $D(\cdot) = dist(\cdot, \mathbf{L})$ is the induced metric.

Let $q: \mathbf{B} + \mathbf{L} \rightarrow (\mathbf{B} + \mathbf{L})/\mathbf{L}$ be the quotient map, and let $s: (\mathbf{B} + \mathbf{L})/\mathbf{L} \rightarrow \mathbf{B} + \mathbf{L}$ be a linear selection for q. We define the map $G: (\mathbf{B} + \mathbf{L})/\mathbf{L} \rightarrow \mathbf{L}$ by means of

$$G(x + \mathbf{L}) = x - m(x) - s(x + \mathbf{L}).$$

Lemma 7.1. The map $G : [(\mathbf{B} + \mathbf{L})/\mathbf{L}, D] \rightarrow [\mathbf{L}, d]$ is quasi-linear.

Proof. Keep in mind that m_1 satisfies $m_1(b + l) = m_1(b) + l$, while λ is linear. This makes G well defined

since $x - s(x + L) \in L$ and $m(x) \in L$; and, moreover, if $x - y = l \in L$ then

$$G(x + L) = x - m(x) - s(x + L) =$$

= y + l - m(y + l) - s(y + L) =
= y + l - m(y) - l - s(y + L) =
= G(y + L).

The quasi-linearity of *G* means that:

$$dist(G(x + y + L), G(x + L) + G(y + L)) =$$

= $||x + y - m(x + y) - x + m(x) - y + m(y)|| \le$
 $\le 2(1 + \varepsilon)(||x + L|| + ||y + L||).$

One should not be surprised. After all, the map G has been constructed in the standard way for a quasi-linear map:

$$G(x + L) = \underbrace{x - m(x)}_{\text{bounded selection}} - \underbrace{s(x + L)}_{\text{linear selection}}$$

and since the two selections are defined $(\mathbf{B} + \mathbf{L})/\mathbf{L} \rightarrow \mathbf{B} + \mathbf{L}$ and the kernel of *q* is precisely **L** it is not strange to get:

Lemma 7.2. The quasi-linear map G defines, in the category **Met**, the exact sequence

$$0 \rightarrow \mathbf{L} \rightarrow \mathbf{B} + \mathbf{L} \rightarrow (\mathbf{B} + \mathbf{L})/\mathbf{L} \rightarrow 0.$$

Proof. To check that, we construct the exact sequence

$$0 \to \mathbf{L} \to \mathbf{L} \oplus_G (\mathbf{B} + \mathbf{L})/\mathbf{L} \to (\mathbf{B} + \mathbf{L})/\mathbf{L} \to 0$$

in the standard way: the metric in the twisted sum space is

$$\rho((y, z), (y', z')) = |y - y', z - z'||_G =$$

= $||y - y' - G(z - z')|| + ||z - z'||;$

and show that the two sequences are equivalent: the map T(x) = (x - s q(x), q(x)) is obviously linear, makes the diagram

$$\begin{array}{cccc} 0 \rightarrow L \rightarrow & B+L & \rightarrow (B+L)/L \rightarrow 0 \\ & \parallel & \downarrow^T & \parallel \\ 0 \rightarrow L \rightarrow L \otimes_C (B+L)/L \rightarrow (B+L)/L \rightarrow 0 \end{array}$$

commutative and is lipschitz:

$$\rho((x - s q(x), q(x)), (y - s q(y), q(y))) =$$

$$= ||(x - s q(x) - y + s q(y), q(x) - q(y)|| =$$

$$= ||(x - y - s q(x - y), q(x - y)|| =$$

$$= ||x - y - s q(x - y) - G q(x - y)|| + ||q(x - y)|| =$$

$$= ||x - y - m(q(x - y)) - (x - y)|| + ||q(x - y)|| \le$$

$$\leq 3 ||x - y||.$$

Proposition 7.3. Let X be a Banach space. The following are equivalent:

- *i)* There exists a linear metric projection $m : \mathbb{Z}(X, \mathbb{R}) \to X'$
- *ii*) $Z(X, \mathbb{R}) = X' \oplus \mathbf{B}(X, \mathbb{R})/X^*$.
- iii) X' is complemented in $Z(X, \mathbb{R})$.

Proof. As for the proof, just observe that if m were linear, G would be trivial and the sequence

$$0 \to X' \to Z(X, \mathbb{R}) \to \mathbf{B}/X^* \to 0$$

would split. And conversely, if this sequence splits then X' is complemented in $Z(X, \mathbb{R})$; equivalently, there exists a linear metric projection $m : Z(X, \mathbb{R}) \to X'$. \Box

And also:

Proposition 7.4. Let X be a quasi-Banach K-space. The following are equivalent:

- *i)* There exists a linear metric projection $m : Q(X, \mathbb{R}) \to X'$.
- *ii*) $Q(X, \mathbb{R}) = X' \oplus \mathbf{B}(X, \mathbb{R})/X^*$.
- iii) X' is complemented in $Q(X, \mathbb{R})$.

We have seen so far two instances of this situation: the conditions in proposition 7.3 are equivalent to the fact that X is an \mathcal{L}_1 -space; on the other hand, we know that conditions in proposition 7.4 hold when X is a K-space with trivial dual. Let us give a unifying theorem.

Recall that the Banach envelope of a quasi-Banach space co(X) is defined as the closure in X^{**} of the canonical image of $X \to X^{**}$ under the map $\delta(x)(x^*) = x^*(x)$. It has the universal property that every operator $\tau: X \to \mathbb{R}$ admits an extension $T: co(X) \to \mathbb{R}$ such that $T\delta = \tau$. In this way we arrive to the central result of the paper.

Theorem 7.5. Let X be a quasi-Banach space. Then there exist a linear metric projection $m : \mathbb{Z}(X, \mathbb{R}) \rightarrow \mathbb{L}(X, \mathbb{R})$ if and only if co(X) is an \mathcal{L}_1 -space.

Proof. The proof requires the duality techniques developed in [2] for Banach spaces and extended in [5] to quasi-normed groups. Precisely, that given a 0-additive map $f: G \to \mathbb{R}$ on a quasi-normed group there exists a 0-linear map $F: co(G) \to \mathbb{R}$ such that $F\delta$ is a version of f.

Now, if here exists a linear metric selection $m : \mathbb{Z}(X, \mathbb{R}) \to \mathbb{L}(X, \mathbb{R})$ then the same proof of proposition 3.1 shows that every 0-linear map $X \to V$, where *V* is an ultrasummand, is trivial. By the result mentioned above, every 0-linear map $co(X) \to V$ is trivial, and thus, by the characterization 3.2, co(X) is an \mathcal{L}_1 -space.

Conversely, assume that co(X) is an \mathcal{L}_1 -space. The existence of a linear metric selection $m : \mathbb{Z}(X, \mathbb{R}) \to L(X, \mathbb{R})$ is equivalent to the splitting of the exact sequence

$$0 \to X' \to Z(X, \mathbb{R}) \to (\mathbf{B} + \mathbf{L})/\mathbf{L} \to 0;$$

hence, equivalent to the existence of a linear Lipschitz selection s: $(\mathbf{B} + \mathbf{L})/\mathbf{L} \rightarrow \mathbb{Z}$. Since $(\mathbf{B} + \mathbf{L})/\mathbf{L} = \mathbf{B}/\mathbf{B} \cap \mathbf{L}$, we are asking about the existence of a linear Lipschitz selection $\mathbf{B}/X^* \rightarrow \mathbf{B} + \mathbf{L}$. But since $X^* = co(X)^*$ and co(X) is an \mathcal{L}_1 -space, X^* is injective. So, the sequence $0 \rightarrow X^* \rightarrow \mathbf{B} \rightarrow \mathbf{B}/X^* \rightarrow 0$ splits. A look at the commutative diagram

$$\begin{array}{ccc} 0 \to X' \to B + L \to (B + L)/L \to 0 \\ \uparrow & \uparrow & \parallel \\ 0 \to X^* \to & B & \to & B/X^* & \to 0 \end{array}$$

should convince us that when the lower sequence splits so does the upper sequence. $\hfill \Box$

This result includes the previous cases: if *X* is itself a Banach space then X = co(X). If *X* is a quasi-Banach with trivial dual then co(X) = 0, which is certainly an \mathcal{L}_1 -space.

Things could be pushed further making homogeneity disappear and moving to quasi-Banach groups. The reader is referred to [5] for an introduction, reference and full development of the theory of quasi-additive maps on controlled semigroups. With essentially (except for a tricky point of the theory of groups: that 0-additive maps are not automatically close to an additive map) the same proof as before one gets.

Proposition 7.6. Let (G, ρ) be a quasi-normed group such that every 0-additive map $(G, \rho) \rightarrow \mathbb{R}$ is asymptotically additive. The following are equivalent:

a) There exist an additive metric projection $Z \rightarrow L$.

b) co(G) is an \mathcal{L}_1 -space.

8. THE UNIVERSAL coz(X) SPACE

The Banach envelope co(X) of a quasi-Banach space is an universal object characterized by the following property: every operator $T: X \rightarrow Y$ into a Banach space factorizes through the operator $X \rightarrow co(X)$. Does there exists a similar object for 0-linear maps? The answer is yes and this new object provides a deep insight into the problem of finding a linear metric projection. **Proposition 8.1.** There exists a Banach space coz(X)and a 0-linear map $\delta: X \to coz(X)$ with the property that for every 0-linear map $F: X \to \mathbb{R}$ there exists a linear continuous map $\pi_F: coz(X) \to \mathbb{R}$ such that $\pi_F \delta = F$.

Proof. Let $coz(X) = [\mathbb{Z}(X, \mathbb{R}), Z(\cdot)]^*$. The space $[\mathbb{Z}, (X, \mathbb{R}), Z(\cdot)]$ is a semi-normed space (see [4] for a related construction yielding a semi-Banach space) space. The operator $\delta: X \to coz(X)$ is «essentially» obviously defined by $\delta(x)(F) = F(x)$. The reader may observe that $\delta(x) \in \mathbb{Z}(X, \mathbb{R})'$ and might not be continuous. It is not difficult to define a linear map $L: X \to \mathbb{Z}(X, \mathbb{R})'$ such that, for every $x \in X$, $\delta(x) - L(x) \in [\mathbb{Z}(X, \mathbb{R}), \mathbb{Z}(\cdot)]^*$: just consider a Hamel basis (x_{γ}) of norm one vectors of X and define $L(x_{\gamma}) = \delta(x_{\gamma})$. It is clear now that

$$|F(\sum \lambda_{\gamma} x_{\gamma}) - \sum \lambda_{\gamma} F(x_{\gamma})| \le Z(F) \sum |\lambda_{\gamma}|$$

and thus $||\delta(x) - L(x)|| \leq \sum |\lambda_{\gamma}|$. The presence of *L* does not modifies the 0-linear character of δ , which should be self-evident. Finally, if $F: X \to \mathbb{R}$ is a 0-linear map then since $[\mathcal{Z}(X, \mathbb{R}), Z(\cdot)]^*$ is a vector subspace of $\mathbb{R}^{\mathbb{Z}(X, \mathbb{R})}$, then π_F is the restriction to $[\mathcal{Z}(X, \mathbb{R}), Z(\cdot)]^*$ of the projection onto the *F*-coordinate. The linearity and continuity of such map are obvious.

What is interesting for us now is the following property:

Proposition 8.2. *There exists a linear metric selection* $m : \mathbb{Z}(X, \mathbb{R}) \to X'$ *if and only if* δ *can be approximated by a linear map.*

Proof. It $S: X \to coz(X)$ is a linear map such that $||\delta - S|| \le M < +\infty$ then $\pi_F L: X \to \mathbb{R}$ is a linear map such that $||F - \pi_F S|| \le ||\pi_F|| MZ(F)$, as we show now:

$$|Fx - \pi_F Sx| = |\delta_x(F) - \pi_F S(x)| =$$
$$= |\pi_F(\delta_x - S)| \le$$
$$\le ||\pi_F|| ||\delta - S|| ||x||.$$

On the other hand, there is little doubt that the process $F \rightarrow \pi_F L$ is linear.

Conversely, if there exists a linear metric selection $F \rightarrow m(F)$ then, as we have already seen, co(X) is an \mathcal{L}_1 -space, in which case every 0-linear map $co(X) \rightarrow V$ taking values in an ultrasummand is trivial (reasoning as in 3.1). By the duality results cited at the beginning of the proof of theorem 7.5, every 0-linear map from X into an ultrasummand is trivial. Since coz(X) is a dual space, it is complemented in its bidual, hence it is an ultrasummand and thus δ is trivial.

9. APPENDIX: A TWIST OF THE SCREW

In the previous sections we have worked with the sequence

$$0 \to \mathbf{L} \to \mathbf{B} + \mathbf{L} \to (\mathbf{B} + \mathbf{L})/\mathbf{L} \to 0$$

of metric spaces under the metric $\|\cdot\|$. We could have also considered the same sequence under the semi-metric $Q(\cdot)$; it is not Hausdorff because the linear maps form the closure of 0. To be a *K*-space means that the norms induced on $(\mathbf{B} + \mathbf{L})/\mathbf{L}$ by $\|\cdot\|$ and $Q(\cdot)$ coincide. Let us consider now the situation on finite dimensional spaces to recover the meaning of the Kalton-Roberts theorem and to put in perspective the results proved in the paper.

Let Ω be a finite set. Let $l_{\infty}(\mathcal{P}(\Omega))$ be the space of all (all = bounded) maps $\mathcal{P}(\Omega) \to \mathbb{R}$. The subspace of all additive maps is precisely $l_1(\Omega)$, and the embedding is

$$l_1(\Omega) \to l_{\infty}(\mathcal{P}(\Omega))$$

$$\mu \to \overline{\mu} : \overline{\mu}(A) = \sum_{i \in A} \mu(i).$$

Thus, one has the exact sequence (of vector spaces)

$$0 \to l_1(\Omega) \to l_{\infty}(\mathcal{P}(\Omega)) \to l_{\infty}(\mathcal{P}(\Omega))/l_1(\Omega) \to 0$$

Consider now the sequence in the semi-norm

$$Q(\mu) = \sup \{ |\mu(A \cup B) - \mu(A) - \mu(B)| : A, B \text{ disjoint} \}.$$

One has only an exact sequence of semi-Banach spaces since $l_1(\Omega) = \{0\}^{Q(\cdot)}$; however, the quotient $l_{\infty}(\mathcal{P}(\Omega))/l_1(\Omega)$ is a certain finite-dimensional Banach space.

However, if the sequence is considered in the usual $\|\cdot\|_{\infty}$ norm, the embedding of $l_1(\Omega)$ into $l_{\infty}(\mathcal{P}(\Omega))$ is nothing different from a Rademacher-like embedding of $l_1(n)$ into $l_{\infty}(2^n)$ (in fact, if $|\Omega| = n$ then $|\mathcal{P}(\Omega)| = 2^n$). This embedding is not so accurate as to be isometric since one can only obtain $2^{-1} \|\mu\|_1 \le \|\overline{\mu}\| \le \|\mu\|_1$. In this way, the sequence is just the exact sequence of Banach spaces

$$0 \to l_1(n) \to l_{\infty}(2^n) \to l_{\infty}(2^n) / l_1(n) \to 0$$

for which one is perfectly able to prove two things: that it splits (like all sequences with finite dimensional spaces do), and that it does with projections having norms tending to infinity (since l_1 is not complemented in an \mathcal{L}_{α} -space).

In this context, the Kalton-Roberts theorem says that the Banach spaces $(l_{\infty}(2^n)/l_1(n), \|\cdot\|_{\infty})$ and $(l_{\infty}(2^n))/l_1(n), Q(\cdot))$ are 90-isomorphic independently on *n*. While our theorem about the nonexistence of a linear metric projection method «essentially» means that l_1 is not complemented in $l_{\infty}(2^{\mathbb{N}})$.

REFERENCES

- 1. Aharoni, I & Lindenstrauss, J. (1978). Uniform equivalence between Banach spaces, *Bull. Amer. Math. Soc.* 84, 281-283.
- 2. Cabello Sánchez, F. & Castillo, J. M. F. (2000) Duality and twisted sums of Banach spaces, *J. Funct. Anal.* 175, 1-16.
- **3.** Cabello Sánchez, F. & Castillo, J. M. F. Uniform boundedness and twisted sums of Banach spaces, preprint.
- **4.** Cabello Sánchez, F. & Castillo, J. M. F. The long homology sequence for quasi-Banach spaces, with applications, *Positivity* (to appear).
- 5. Cabello Sánchez, F. & Castillo, J. M. F. Banach space techniques underpinning a theory for nearly additive maps, *Dissertationes Math.* (to appear).
- 6. Cabello Sánchez, F. & Castillo, J. M. F. (1999). *Natural transformations for the functor Ext; I. The locally bounded case*, preprint.
- 7. Castillo, J. M. F. (1997). Snarked sums of Banach spaces, *Extracta Math.* **12**, 117-128.
- 8. Castillo, J. M. F. On the «three-space» problem for locally quasi-convex groups, *Archiv Math.* (to appear).
- **9.** Castillo, J. M. F. & González, M. (1997). Three-space problems in Banach space theory. *Lecture Notes in Mathematics 1667*, Springer.
- Castillo, J. M. F., González, M., Plichko, A. M. & Yost, D. Twisted properties of Banach spaces, *Math. Scand.* (to appear).
- 11. Dierolf, S. (1973) Über Vererbbarkeitseigenschaften in topologischen Vektorrdumen, Dissertation Ludwig-Maximilians Universitat, Munich.
- **12.** Domanski, P. (1987). *Extensions and liftings of linear operators*, Adam Mickiewicz University, Poznan.
- **13.** Enflo, P., Lindenstrauss, J. & Pisier, G. (1975). On the «three-space» problem for Hilbert spaces, *Math. Scand.* **36**, 199-210.
- **14.** Ger, R. (1992). The singular case in the stability of behaviour of linear mappings; In: Selected topics in Functional Equations and Iteration Theory, Proceedings of the Aus-

tralian-Polish seminar, Graz, 1991, Grazer Math. Ber. 316, 59-70.

- **15.** Hilton, P. J. & Stammbach, U. (1970). A course in homological algebra. *Graduate Texts in Mathematics* **4**, Springer.
- **16.** Johnson, W. B. (1997). Extensions of c_0 , Positivity, 1, 55-74.
- 17. Kalton, N. J. (1978). The three-space problem for locally bounded F-spaces, *Compo. Math.* **37**, 243-276.
- **18.** Kalton, N. J. (1981). Convexity, type and the three-space problem, *Studia Math.* **61**, 247-287.
- **19.** Kalton, N. J. (1984). Localy complemented subspaces and \mathcal{L}_p -spaces for 0 ,*Math. Nachr.***115**, 71-97.
- **20.** Kalton, N. J. & Peck, N. T. (1979). Quotients of $L_p(0, 1)$ for $0 \le p < 1$, Studia Math. **64**, 65-75.
- 21. Kalton, N. J. & Peck, N. T. (1979). Twisted sums of sequence spaces and the three space problem, *Trans. Amer. Math. Soc.* 255, 1-30.
- 22. Kalton, N. J., Peck, N. T. & Roberts, J. (1984). An Fspace sampler, *London Math. Soc. Lecture Note Series* 89, Cambridge Univ. Press.
- 23. Kalton, N. J. & Pelczynski, A. (1997). Kernels of surjections from \mathcal{L}_1 -spaces with applications to Sidon sets, *Math. Ann.* 309, 135-158.
- 24. Kalton, N. J. & Roberts, J. W. (1983). Uniformly exhaustive submeasures and nearly additive set functions, *Trans. Amer. Math. Soc.* 278, 803-816.
- 25. Lima, A. & Yost, D. (1988). Absolutely Chebyshev subspaces; in *Workshop/Miniconference on Functional Analysis/Optimization*, Canberra.
- 26. Lindenstrauss, J. (1964). On non-linear projections on Banach spaces, *Michigan Math. J.* 11, 268-287.
- **27.** Lindenstrauss, J. (1964). On a certain subspace of l_1 , *Bull. Polish Acad. Sci.* **12**, 539-542.
- **28.** Lindenstrauss, J. & Tzafriri, L. (1977). *Classical Banach Spaces* I, Sequence spaces, Springer.
- 29. Ribe, M. (1979). Examples for the nonlocally convex three space problem, *Proc. Amer. Math. Soc.* 237, 351-355.
- **30.** Vogt, D. (1978). On the functors *Ext*¹(*E*, *F*) for Fréchet spaces, *Studia Math* **85**, 163-197.