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ABSTRACT

By definition, quasi-linear maps F: X — R on a quasi-
Banach K-space X can be approximated by linear maps.
We investigate the nature of the method F — m(F’) that
yields the almost optimal approximation, and which we
call metric projection. We shall show that the method of
concentrators of Kalton and Roberts that works for £_-
spaces is quasi-linear and non-linear. We shall also show
that there exists a linear metric projection if and only if
the Banach envelope of X is an L,-space.

1. INTRODUCTION

Some quasi-Banach spaces X have the following nice
property, for which they are awarded with the term K-
spaces: whenever E is a quasi-Banach containing a one-
dimensional subspace R such that E/R=Xandt: M — X
is an operator from another quasi-Banach space M then ¢
can be lifted to an operator 7: M — E. Equivalently,
every exact sequence 0 — R — E — X — 0 splits. Equiv-
alently, still, every quasi-linear map F: X — R is at finite
distance from some linear map L: X — R. The prelimina-
ries section contains precise definitions for these terms.
When X is a Banach space then the preceding statements
are equivalent to: whenever E is a quasi-Banach space
such that E/R = X then E is itself a Banach space (and
thus isomorphic to R®X).

The main examples of K-spaces are: B-convex Banach
spaces and quasi-Banach L, spaces, 0 <p < 1, proved by
Kalton in [17]; and the L -spaces (proved by Kalton and
Roberts in [24]). On the opposite side, the main examples
of non-K-spaces are the L,-spaces. The three proofs have
different nature. The proof for B-convex Banach spaces
consists in directly showing that the so-called rwisted
sum space E is locally convex. The proof for L, is a cun-
ning computation that shows that given a quasi-linear
map F on a finite dimensional /() space the «obvious»
linear map [(e;) = F(e)) is at finite distance (independent-

ly of n) from F. However, the proof for £_-spaces is
highly nontrivial.

Kalton and Roberts proved in [24] is that If F : [ () —
— R is a quasilinear map then there is a linear func-
tional L : 1_(Q) — R with |F (x) — L(x)| < 100 Q(F) ||x||,
where Q(F) is the quasilinear constant of F. Let us give a
different statement. Recall that a function f: A — R de-
fined on an algebra of subsets of a set Q is said to be
e-approximately additive if f() = 0 and for every pair
A, B of disjoint sets one has

| f(A U B) - f(A) — f(B)| < e.

Given a quasi-linear map F: [_(Q) — R, then f(A) =
= F(1,) defines a Q(F)-approximately additive function
on 2. Additive set-functions are the O-approximately ad-
ditive, and correspond to the linear maps /. () — R.
Thus, what is proved in [24] is the existence of a univer-
sal constant K < 45 with the property that if f: A— R is
A-approximately additive, there is an additive function
w: A— Rwith |f(A) — w(A)| £ K - A. In fact, they ob-
serve that it suffices to consider the case of finite alge-
bras. The proof gets the additive map from the existence
of a process called «concentrator». One of our purposes
is to show that concentrators are actually quasi-linear
non-linear maps.

Thus, in the way of understanding the proof, we be-
came interested in the methods F — L(F) to obtain, in
a K-space, linear maps at «almost optimal» finite dis-
tance. That is, the nature of the «almost optimal approxi-
mation map» F — L(F') such that, for some constant C,
|F — L(F)|| £ Cdist(F, X"). We shall call to such map a
metric projection. Which is the nature of the metric pro-
jection? Could it be even linear?

The interest in finding such linear method was fostered
by the following attack: Let f: /A — R be a l-approxi-
mately additive function in a finite algebra “A. Suppose
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there exists a linear method f— m(f) to define, for some
r < 1, a r-approximately additive map m(f) : A — R
such that |m(f)(A) — f(A)]| £ 1. If so, we can iterate the
method to obtain m*(f) : A — R such that |m*(f)(A) -
- m(f)(A)| < rand m*(f) would be r-approximately ad-
ditive; and so on. The sequence (mz( f)) is contained in
the compact subset of R*:

{g: g IfA)]+ 1 -rh).

Therefore, if U denotes a free ultrafilter on N then

L(f) (A) = lim'll(n) ’nn(f)(A)

defines a linear map L(f) : A — R which verifies
|f(A) = L(f)(A)]| < (1 - ¥'). In the end, we would have ob-
tained a linear metric projection f—> L(f). Can we do this?

We do not want to spoil the forthcoming surprises, so
we shall only say: no.

2. PRELIMINARIES

A quasi-norm on a (real or complex) vector space X is
a nonnegative real-valued function ||-|| satisfying

i) ||x|| = 0 if and only if x = 0;
ii) || Ax|| = || ||x]|| for all x € X and 1 € K;

iii) ||x + y|| £ K(||x]] + ||y|]) for some constant K inde-
pendent of x, y € X.

A quasi-normed space is a vector space X together with a
specified quasi-norm. On such a space one has a (vector)
topology defined by the fundamental system of neighbor-
hoods of 0 given by the multiples of the set {xe X ||x||< 1},
called the unit ball of the quasi-norm. A complete quasi-
normed space is called a quasi-Banach space. In the se-
quel, the word operator means linear continuous map.
The algebraic dual X’ of X is the space of linear, not
necessarily continuous, maps; it shall also be denoted
L(X, R), or simply L. The subspace of X’ formed by the
linear continuous maps, the topological dual of X, shall
be denoted X*. An operator X — ¥ means always a linear
continuous map. The space of homogeneous and
bounded (i.e., such that the image of the unit ball is a
bounded set) maps shall be denoted B(X, R), or simply B.
The term bounded map shall always mean homogeneous
bounded map. Given two homogeneous maps A, B acting
between the same spaces, their (eventually infinite) dis-
tance is defined as

A - Bl = SUPy <t lAx — Bx||.

Exact sequences of (quasi) Banach spaces. For gen-
eral information about exact sequences the reader can
consult [15]. Information about categorical constructions
in the (quasi) Banach space setting can be found in the

monograph [9]. A diagram 0 - Y — X — Z — 0 of
quasi-Banach spaces and operators is said to be an exact
sequence if the kernel of each arrow coincides with the
image of the preceding. This means, by the open map-
ping theorem, that Y is (isomorphic to) a closed subspace
of X and the corresponding quotient is (isomorphic to) Z.
We shall also say that X is a twisted sum of Y and Z or an
extension of Y by Z. Two exact sequences 0 — Y — X —
—>Z-—->0and 0 > Y — X, = Z — 0 are said to be
equivalent if there is an operator 7 making the diagram

0->Y—> X —>Z—->0
Il T
0—=>Y—>X —>2Z—>0

commutative. The following standard result of algebra
(see [15]) and the open mapping theorem imply that T
must be an isomorphism.

The 3-lemma. Assume that one has a commutative dia-
gram of vector spaces and linear maps

0—->Y—>X—>27Z—-0
al Uy

0—=Y —X —>72 —>0

with exact rows. If o.and y are injective (resp. surjective)
so is f.

An exact sequence 0 — Y — X — Z — 0 is said to split
if it is equivalent to the trivial sequence 0 =Y —>Y®Z
— Z — 0. This already implies that X is isomorphic to
the direct sum Y® Z

Quasi-linear and 0-linear maps. The by now classi-
cal theory of Kalton and Peck [21] describes short exact
sequences of quasi-Banach spaces in terms of the so-
called quasi-linear maps. A map F: Z — Y acting be-
tween quasi-normed spaces is said to be quasi-linear if it
is homogeneous and satisfies that for some constant K
and all points x, y in Z one has

IF(x +y) = F) = F(n |l < K([x][ + [y ID-

The smallest constant satisfying the inequality above is
denoted Q(F) and referred to as the quasi-linearity con-
stant of the map F. We shall denote Q (X, R) the space of
all quasi-linear maps X — R.

We shall say that a quasi-linear map is trivial when it
can be written as the sum of a linear and a bounded map;
or else, when it is at finite distance from a linear map.
Two quasi-linear maps F and G (defined between the
same spaces) are said to be equivalent if -G is trivial. In
this case we shall also say as in [2] that F is a version of
G (or vice versa). Quasi-linear maps give rise to twisted
sums: given a quasi-linear map F: Z—> Y then it is poss-
ible to construct a twisted sum, which we shall denote by
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Y® . Z, endowing the product space Y x Z with the quasi-
norm

1 Dl =11y = F@Il + ]l

Clearly, the map ¥ — Y ®Z sending of y to (y, 0) is
an into isometry, and so Y can be thought as a subspace of
Y ®,Z; moreover, the corresponding quotient is isometric
to Z. Conversely, an exact sequence 0 > Y —>X—>Z—0
comes defined by a quasi-linear map: pick a bounded se-
lection B for the quotient map g (which exists by the
open mapping theorem) and then a linear selection L; the
difference B — L is quasi-linear and takes values in Y since
q(B — L) = 0. The two processes are one inverse of the
other and, moreover, one has the following fundamental
result of [21].

Proposition 2.1. Two exact sequences 0 — Y —
Y®Z—->Z—>0and 0 —>Y—>YPD;,Z—>Z—0are
equivalent if and only F and G are equivalent. Therefore,
an exact sequence 0 =Y —>Y® . Z—>Z—> 0 is equivalent
to the trivial exact sequence 0 >Y —=>YDZ—>Z—>0if
and only F is trivial (i.e., F is at finite distance from some
linear map).

The quasi-Banach space Y @ Z constructed via a quasi-
linear map F need not be locally convex, even when Y
and Z are. A result of Dierolf [11] asserts that there exists
a nonlocally convex twisted sum of Y and Z if and only if
there exists a nonlocally convex twisted sum of R and Z.
Hence, a Banach space is a K-space when every twisted
sum with R is locally convex. It is however possible to
obtain a simple characterization of when a given twisted
sum of Y and Z is locally convex: the key is to give the
characterization in terms of the quasi-linear map F and
not in terms of the factor spaces.

Definition. A quasi-linear map F: Z — Y acting be-
tween quasi-normed spaces is said to be O-linear if there
is a constant K such that whenever {x;} is a finite set of
elements of Z then

HF(ZEI; xi) -2 F(x,-)ll <KX Il

The smallest constant satisfying the inequality above
is denoted Z(F') and referred to as the O-linearity constant
of the map F. The space of all O-linear maps X — R shall
be denoted Z(X, R). One has (see [2, 7, 9]).

Proposition 2.2. A twisted sum of Banach spaces
Y® . Zis locally convex (being thus isomorphic to a Ba-
nach space) if and only if F is O-linear.

It is clear that O-linear maps are quasi-linear. It is not
true, however, that quasi-linear maps are 0-linear. Ribe
[29] provided the simplest example of a quasi-linear not
0-linear map R : [, — R given by

R(x) = X, x; log |x;| = Z,x, log [ x|

(observe that the map is only defined on finitely supported
sequences; however there exist extension theorems for
quasi and O-linear maps (see [21])). The quasi-linearity
can be seen in [22] (actually Q(R) = 2) while the fact that
R is not O-linear is very simple to check: R(e,) = 0 for all
n while R(X!=) ¢,) = =N log N; since 2= ||e,]| = N, the
estimate in the definition of O-linear map is impossible.

It is moreover clear that a quasi-linear map F such that
[|FF — L|| £ K for some linear map K necessarily is O-lin-
ear and Z(F) < 2K. Hence Z(F) < dist (F, L). In particu-
lar, Ribe’s map R cannot be approximated by linear
maps. As for the converse, one can see that using the
Hahn-Banach theorem. Proposition 2.2 can be refor-
mulated in terms of approximation by linear maps as fol-
lows (we shall give a direct proof for this result later):

Proposition 2.3. A quasi-linear map X — R is 0-lin-
ear if and only if it is at finite distance from a linear map.

In this way we obtain that a Banach space X is a K-
space if and only if every quasi-linear map X — R is
0O-linear.

The pull-back square. Let A: U—>Zand B: V—>Z
be two arrows in a given category C. The pull-back of
{A, B} is an object Z in C and two arrows u: = — U and
v: 2 —> Vsuch that Au = Bv; and such that given another
object I' in C for which there exist arrows o: I' — U and
p: I’ — V verifying Aa = Bf then there exists a unique
arrow y: I’ — = such that § = vy and o« = uy. If one
prefers the categorical language, the pull-back makes
commutative the diagram

U-2s 7
HT TB

= - \%
and is universal with respect to this property.

In the category of quasi-Banach spaces and operators,
as well as in the subcategory of Banach spaces pull-backs
exist. If A: U—>Z and B: V — Z are two operators, the
pull-back of {A, B} is the space Z ={(u, u): Au = Bv}
endowed with the induced product topology together
with the restrictions of the canonical projections of
U @® V onto, respectively, Uand V.If 0 > Y —>X—>Z—0
is an exact sequence with quotient map gand T: M — Z
is a surjective operator and = denotes the pull-back of the
couple {g, T} then the diagram

0>Y—>X—>Z7Z —0
I 1 Tr

0>Y—>E—->M —0

is commutative with exact rows and columns.
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3. LINEAR METRIC PROJECTIONS
ON BANACH SPACES

As we have already seen, O-linear maps on Banach
spaces can be approximated by linear maps; thus, one has
the decomposition

z(X, R) =BX, R) + LIX, R)

On a quasi-Banach K-space one even has

QX R)

Given a quasi-linear map F, let D(F) = dist (F, L(X, R)).
Our main concern now is the nature of the map F — m(F’)
that associates to F' an «almost optimal» selection, i.e.
m(F) is a linear map such that ||F — m(F)|| £ C D(F)
(with C a prescribed finite constant). We have already
seen that Z(-) < 2D(-), hence it will be enough to study
methods m such that ||F — m(F)|| £ C Z(F).

=B, R) + L(X, R).

Our questions now are:

Question 1. Do there exist Banach K-spaces in which
the metric projection

m: 92X, R) — LX, R)
is linear?

Question 2. Do there exist quasi-Banach K-spaces in
which the metric projection

m: 9X, R) = L, R)
is linear?

Observe that the hypothesis of being a K-space is
necessary. Without it we can only ask:

Question 3. Do there exist Banach spaces in which
the metric projection

m: Z(X, R) — LX, R)
is linear?
We begin answering questions 1 and 3.

Proposition 3.1. The metric projection m : Z(X, R)
— L(X, R) is linear if and only if X is an L,-space.

Proof. Let us consider first the case of a quasi-linear
map F : [] — R. Obviously D(F) is finite and F is 0-
linear. If (e,) is the unit vector basis of /], we can define a
linear map by /(e,) = F (e,) (and linearly on the rest). We
then have that for x = >, x.¢, in I}

|F(Zixe) — L(Zxe) < [F(Xxe) — ZoxFe)] <

. SZF) “zkxkeku =Z(F) ||x]|

and thus ||F — I|| £ Z(F). The correspondence F — m(F) =
= [ is clearly linear.

We pass to an infinite dimensional £ -space X; let F :
X — R be a 0-linear map. Assume that X = U X, where X,
is A-isomorphic to [§ and X, is A-complemented in X. For
each o, the map F, = Fy : X — R admits a linear map [, :
X, — R such that HF -y N < AZ(F). Let L, be an exten—
sion of [, to the whole X obtained by setting L, (y) =
when y does not belong to X,. Since for every x and
eventually all « one has |L(x)| < [|[F(x)|| + 4 Z(F) it
makes sense to define a linear map L : X — R by

L(x) = limg,, L,(x)

where ‘U is a free ultrafilter on index set (o) refining the
Fréchet filter with respect to the natural ordering defined
by the net (X,). The application L is well defined and
linear. One moreover has ||F — L|| £ AZ(F) as follows
from the following inequality choosing the index « care-
fully after &:

[L(x) — F(x)| < |L(x) = L,0)| + [L,(x) - F(x)| < e+ A Z(F).

Finally, the procedure F — m(F) = L is linear.

We pass to the converse implication. Let X be a Ba-
nach space and assume the existence of a linear map m :
z(X, Ry = L(X, R) such that ||F - m(F)|| < C - D(F).

Applying a uniform boundedness principle of Kalton
[17] (the reader shall find a careful description of such
principles in [3], there exists a constant C such that for
every O-linear map D(F) < C Z(F).

Let now V be an ultrasummand; i.e., a Banach space
complemented in its bidual. Let G : X — V be an arbitrary
0O-linear map. We define a map L : X — V** by

CL(x), v*) = {m(v*e G), x),

which is linear since m is linear, and well defined since
L(x) is continuous:

IL(x) = sup {<L(x), v¥>: ||v¥]| < 1} =
=sup {{m(v*e G), x): ||[v*¥|| < 1} =
=sup {{m(v¥e G)—v¥o G, x) + {v*o G,x): |lv¥||S 1} <
Ssup {C D@*e G)|Ix|l + [[o*[ |G| - [Jo*]| < 1} <
< sup {CZ(w* o G) |lx|l + [lv¥| 1G] = llo*]] < 1} <
<sup {C'{[v¥| Z(G) [lx]] + ([0 1GOOI [lo*]| < 1} <
S CZ@G) x|l + 1G]
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Since

KG) = L(x), v¥)| = [KG(x), v¥) = {m(v¥e G), x)| =
=[v¥o G(x) — m(v*o G)(x)| <
<2C Z(v# o G)|x]|| £

< 2C||v*1 Z(G) ||x]]
we get

G- L| = SUPjy<t IG(x) = L(x)|| =

= SUP < 1 SUPyp <1 | <G(X), 0F) = (L(x), v¥)| <
<2-C-ZG).

To conclude we shall prove a result asserting that in
the situation just described the space X has to be an L,-
space. The if part is a result of Lindenstrauss [27] (al-
though our proof shall be «considerably simpler») while,
although the result is essentially known, we have no ex-
plicit reference for the only if part.

Proposition 3.2. A Banach space Q is an L,-space if
and only if for every ultrasummand Y every exact se-
quence 0 — Y — X — O — 0 splits.

Proof. Assume that every exact sequence 0 — Y —
— W — O — 0 splits when Y is complemented in its
bidual. We shall prove that @* is injective. For this, con-
sider a exact sequence 0 — @* — X — Z — 0. One has

O — Z:{: N X:{: N Q:{::!: N 0

w1 T

02~ P —> Q0 —0

where P is the pull-back of the quotient map X* — Q**
and Q — Q** is the canonical inclusion. Observe the
diagram

0— 0¥ > X — Z —0
l | l

00— Q:k*:k — Xk 5 ZEE 5 ()
! il Il

0— QFf — P* =>Z%¥* =0
I T 1

0— Q* - PB—> Z —0

where the second row is the bitraspose of the first row,
and the second and third rows form the adjoint of the
previous pull-back diagram. The third and fourth rows
form a pull-back diagram with respect to the quotient
map P* — Z** and the canonical inclusion Z — Z**

The third row splits since it is transpose of the se-
quence 0 — Z* — P — Q — 0, which splits since Z* is
complemented in its bidual; thus, the fourth rows splits.
But the first and fourth sequences are equivalent: since
PB is the pull-back space of P* — Z**and Z — Z**, and

we have arrows X — Z (quotient map in the first line) and
X — P* (vertical central line downwards) making a com-
mutative square with the two previous arrows, there must
exist an arrow o : X —> PB making the two triangles com-
mutative. That makes the restriction «|Q* = id, and
means that the upper and lower sequences are equivalent.

Now a proof for Lindenstrauss statement. Let Z be an
L, -space and let 0 = Y — X — Z — 0 be an exact se-
quence in which Y is an ultrasummand. Consider the
commutative diagram:

00— Y — X —» Z —0

! l !

0 — V¥ — X#*F — Z%% —

Since Z* is an injective space the dual sequence 0 —
— 7% — X* — Y* — ( splits, and so does the bidual
sequence; hence, Y**is complemented in X**, since Y is
complemented in Y**, it turns out that ¥ must be comple-
mented in X and the original sequence splits. |

From all this we conclude:

Corollary 3.3. Let X be a Banach space. It does not
exist a linear metric projection

92X, R) = L&, R).

Proof. Since, that would imply a linear metric projec-
tion Z(X, R) — L(X, R) and, as we have seen, then X
would be an L,-space. But L,-spaces are not K-spaces,
and thus they admit quasi-linear maps that cannot be ap-
proximated by linear maps, which makes the existence of
any selection method impossible. m

4. LINEAR METRIC PROJECTIONS
ON QUASI-BANACH SPACES

Quasi-Banach spaces, however, conceal some sur-
prises worth being uncovered. Let thus X be a quasi-Ba-
nach K-space. Assume moreover that it has trivial dual;
i.e., X* = 0 (here is where we need to have X not locally
convex). The spaces L (0, 1) with 0 <p < 1 provide good
examples of this situation.

Since X is a K-space, Q(X, R) = B(X, R) + L(X, R).
Since X has trivial dual then B(X, R) N L(X, R) = {0} (no
map X — R can be simultaneously linear and continu-
ous). Therefore Q(X, R) = B(X, R) x L(X, R). Let us
show now that the canonical projection onto L(X, R) is,
in addition to linear, a metric projection.

To this end, let us recall that given a quasi-Banach
space X one can consider two semi-metrics (they are not
Hausdorff) on 9(X, R): O(-) and d(-) = dist (-, L). Let us
observe that they are equivalent: the uniform bounded-
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ness principle mentioned earlier shows that the two in-
duced norms are equivalent on Q(X, R)/L; now, L is the
kernel of the two seminorms, and thus they are also
equivalent.

In the present situation Q(X, R) = B(X, R) x L(X, R)
they adopt the form Q(b, 1) = Q(b); and d(b, 1) = dist (b, ).
The application

n(b, 1) = bl

defines a complete (since the space B(X, R) is complete
in this norm) seminorm on Q(X, R); since n > d, it turns
out to be also equivalent to d(-) and Q(-). But the canoni-
cal projection

m(b, 1) =1

is a metric projection for n; i.e., that n(F — m(F)) < C

O(F):
n(b +1-mb, 1)) =b]|. |

5. LINEAR METRIC PROJECTIONS FOR GER-
LINEAR MAPS

As we have already seen, given an arbitrary Banach
space, no linear method F — m(F) is able to assign to
each quasi-linear map F a linear map m(F) at a prefixed
distance C. Could such linear method be obtained if one
restricts the attention to smaller subclasses of quasi-lin-
ear maps? For instance, for O-linear maps such linear
method exists in L,-spaces.

Until now we have only considered two classes: the
class Q of quasi-linear maps and the class Z, of 0-linear
maps. There exist other interesting classes worth con-
sideration. One of them was isolated by Lima and Yost in
[25]: the class P of pseudo-linear maps, that is, quasi-
linear maps € satisfying

1Qx + y) = Q) = QI < lxll + NIyl = llx + pll.

The appendix 1.9 in [9] contains a rather complete sur-
vey about these maps. Another class introduced and
studied in [5] (see also [14]) is formed by the Ger-linear
maps. A quasi-linear map F : X — Y is said to be Ger-
linear if

|F(x +y) = F(x) = F() || < Cllx + yl|

for some constant C > 0 and all x, y € X. The infimum of
those constants C verifying the previous inequality is
called the Ger-linearity constant of G and denoted G(F').
The space of all Ger-linear maps X — Y shall be denoted
G(X, Y). A simple induction argument shows that a Ger-
linear map is O-linear and Z(-) < G(-).

The interesting feature of Ger-linear maps is their con-
nection with classical problems about the existence of
Lipschitz projections on Banach spaces. More precisely
(see [5])

Proposition 5.1. Are exact sequence of Banach
spaces 0 =Y — X — Z — 0 is defined by a Ger-linear
map G : Z— Y if and only if there exists a Lipschitz pro-
Jjection from X onto Y. Moreover, that happens if and only
if the metric projection p: Y® ;Z—> Y given by p(y, z) =
=y — G(z) is Lipschitz.

It is still an open problem to know if there exist non-
trivial pseudo-linear maps. However, nontrivial Ger-lin-
ear maps do exist: it is not hard to verify that the Aha-
roni-Lindenstrauss (nontrivial) sequence 0 — C[0, 1] —
— D — ¢, — 0 (see [1]) comes defined by a Ger-linear
map. The interesting point for us now is that, as it was
shown in [5], Ger-linear or pseudo-linear maps from a
Banach space into an ultrasummand are trivial. We show
now that the metric projection for Ger-linear maps is lin-
ear.

As proposition 5.1 suggests, and almost proves, and
contrarily to intuition, not all trivial maps are Ger-linear
maps. Indeed, if a Ger-linear map G is trivial then not
only it can be decomposed G = B + L as a sum of a
bounded homogeneous plus a linear map; in this case the
bounded map has to be Lipschitz (to make Lipschitz the

map p).

So, when all Ger-linear maps are trivial we shall write
G = B, + L to indicate that the bounded map is Lipschitz.
The example of the Aharoni-Lindenstrauss construction
shows that the hypothesis «Y is an ultrasummand>» in the
next proposition is not superfluous.

Proposition 5.2. Let X be a quasi-Banach space and
let Y be a quasi-Banach ultrasummand. Then all Ger-
linear maps X — Y are trivial and, moreover, there exist
a linear metric projection

m: GX,Y)=>LX Y)

(of course, the same linear method would work for
pseudo-linear maps).

Proof. Let ;i be a Banach limit (i.e., an invariant mean)

in the commutative group (X, +) and let 7: Y** — Y be a
projection. We define

m(G)(x) = n(weak*-lim, , G(x + y) = G(y)).
Observing that the definition of Ger-linear map could
have also been (how could G recognize who is x, who is y

and who is x + y?)

IG(x + y) = Gx) = G < Cllx]|
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it follows that ||G(x + y) — G(»)|| £ C||x|| + [| G(x)|], and
thus {G(x + y) — G(y)},.y lies in a weak*-compact set
and using a Banach limit makes sense. Since

m(G)(x + z) = weak*-lim,, G(x + z + y) = G(y) =
= weak*-lim,, G(x + z + y) —
-Gz+y)+Gz+y) -Gy =

= weak*-lim,., , G(x +z+y) = G(z + y) +

+ weak*-lim ., G(z + y) = G(y) = m(G)(x) + m(G)(z)
we have the linearity of m(G). Moreover, for every ¢ > 0
one can choose y* so that

Im(G)(x) = G| < [y*H(m(G)x) = G))| + & <

<2+ yHGx +y) - G(y)) - GW))| <
<2+ |G +y) - G(y) - GW <
< 2¢ + Cllx]l.

We now show that m is a linear metric projection. There
is little doubt that it is linear. To show that it is a met-
ric projection let us show that G(:) is proportional to
dist(-, L(X, Y)). We shall shorten for the rest of this proof
L(X, Y) to simply L.

Proposition 5.3. Ler Y and Z be two Banach spaces.
Assume that all Ger-linear maps Z —> Y are trivial. Then
there is a constant p such that for every Ger-linear map
F:Z—Y, one has dist(F, L) < p G(F).

Proof. Consider the following two norms on B, + L/L.
The first one is the quotient metric D(-) = dist(-, L), and
the other is G(-). One has O

Lemma 54. (B, +L/L, D) is a Banach space.

Proof. Easy, since B, + L/L =B, + L/L =B,/B, N L
and (B,, d) is complete.

Lemma 5.5. (G(Z, Y)/L, G) is a Banach space.

Proof. Let (IG,]) be a G-Cauchy sequence. Fix a nor-
malized Hamel basis (e,), for Z and observe that if H:
Z —> Y is a Ger-linear map then there exists a unique rep-
resentative F of [H] vanishing on all the elements of the
basis; take

F (2,‘,/1.)‘6_),) =H(EZ Le) - Z),/”L},H(e.l,).

From now on, F, shall be the representative of [H]
vanishing on the basis. The sequence (F,) is pointwise
convergent because if z = £/ e, then

I(F, = F)@N < Z(F, - F )[4 < G(F, - F,)Z[4].

m

Let F be its pointwise limit,
F(z) =lim F (2).
We show that [F'] is the G-limit of ([F,]) = ([H,]). Let

(z;) be a finite set of points such that Z ;z;=0,and let > 0.
Choose indices n(j) so thaty |[(F - F,, j)) (z)|l<2 “e. One

has:
”Zj(F_ Fn)(Zj)” < HE(F z(j))(»)"'Fn(J))(Zj)_Fn(Zj)” <
< ZjH(F n(,))(Z)H + G(F, n(j) Fn)zj”Zj” <
Se+ G(Fn(j) - Fn)Zj“Zj”

which is everything one needs since the sequence ([F,])
was G-Cauchy. From that it also follows that F is Ger-
linear since G(F') £ G(F — F,) + G(F)). a

End of the proof. Since G(- ) <D()on G=B, +L
then, the norms G and D are comparable on G/L = B, +
+ L/L. The open mapping theorem ensures that G and D
are equivalent. g

6. SUB-LINEAR METHODS FOR 0-LINEAR
MAPS

What has happened recently raises again the doubt:
what occurs with O-linear maps that no linear method is
available? The answer could be that Ger-linear maps
seem to be nicely coupled with Banach limits, while the
class of O-linear maps (whose definition involves many
decompositions into a finite number of points) does not
seem to be suitable to match with a single linear method.
As a further evidence it is the fact that O-linear maps X —
Y are not automatically trivial when Y is an ultrasum-
mand (even reflexive! recall the existence ofnontrivial
sequences, say, 0 — [, = [, — [ /I, — 0). Following
this line, we show now that there is a method F — m(F)
for obtaining almost optimal linear maps which can be
decomposed in only two methods, one of them linear and
the other sub-linear. This will show that O-linear maps, if
not as polite as Ger-linear maps, are definitely not totally
disastrous.

Proposition 6.1. Let X be a quasi-Banach space.
There is a metric projection m : Z(X, R) — L that can be
decomposed as

m= /A m,
where m, is sub-linear and /. is linear.

Proof. 1t is not hard to see that the preceding method
(using an invariant mean to get a linear map) not only
works whit Ger-linear maps; it actually works with sub-
linear maps S such that S(Ax) = 4 S(x) for positive 4 (that
we shall call +-homogeneous). Let SIX, R) be the class
of all sublinear +-homogeneous functions X — R. If
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S € SIX, R) then |S(x + y) — S(y)| < max{|S(x)|, |S(-x)}
and the method

AS)(x) =lim, ., S(x +y) = S(y)

u(y)

still provides a linear map.

Now, let F' be a O-linear map with constant Z(F); then
if we define

iy (F) () = inf{i Fe) + ZF) Y Ill v = Y. x,}

i=1 i=1 i=1

what we get is a sub-linear and +-homogeneous map
m,(F) satisfying ||F — m,(F)|| £ Z(F). To prove this last
assertion, note that m,(x) < F(x) + Z(F) ||x|| while for no
matter which decomposition x = > x; we have, by the
definition of O-linear map F(x) < X F(x,) + Z(F) || x||.

So, the composition method

Z—>L

o

Sub-linear and
positively homogeneous

yields a «sub-linear» metric projection.

Let us show now that, against what we could guess,
this situation is perfectly reasonable.

7. THE METRIC PROJECTION
IS A QUASI-LINEAR MAP

We only have to enlarge our working category. Let Met
be the category of vector spaces endowed with a metric,
and linear lipschitz maps as arrows. Our key examples
are (L, d), B + L, d) and (B + L)/L, D) = (B + L)/L,
Z(-)), where d(A, B) = ||A — B|| and D(-) = dist(-, L) is the
induced metric.

Letg: B + L — (B + L)/L be the quotient map, and let
s: (B + L)L — B + L be a linear selection for ¢g. We
define the map G : (B + L)/ — L by means of

Gx+L)=x-mx) - s(x + L).

Lemma 7.1. The map G : [(B+ L)/L, D] —[L,d] is
quasi-linear.

Proof. Keep in mind that m, satisfies m(b + |) =
m(b) + I, while 4 is linear. This makes G well defined

since x — s(x + L) € L and m(x) € L; and, moreover, if
x—y=1€eL then

Gx+Ly=x-mkx)-s(x+ L) =
=v+l-m(y+1)-s(y+1L)=
=yv+l-my)-l-s(y+L)=
=G(y + L).

The quasi-linearity of G means that:
distf(G(x +y + L), G(x + L) + G(y + L)) =
=llx+y-—mx+y) —x+mkx)—y+my| <
<21 + o) (|lx + L|| + ||y + LI]). O

One should not be surprised. After all, the map G has
been constructed in the standard way for a quasi-linear map:

Gx+Ly=x—-mx)—s(x+ L)
- 0

bounded selection linear selection
for ¢ for ¢

and since the two selections are defined (B + L)/L. —
B + L and the kernel of ¢ is precisely L it is not strange to
get:

Lemma 7.2. The quasi-linear map G defines, in the
category Met, the exact sequence

0—-L—=B+L—->B+L)/L—0.
Proof. To check that, we construct the exact sequence
0—-L—-Le,B+L/L—>B+L/L—>0
in the standard way: the metric in the twisted sum space is
(3,2, (Y, D)) =ly-v.z-Zlls =
=lly -y -Ge=-l+lz-:

and show that the two sequences are equivalent: the map
T(x) = (x — 5 g(x), g(x)) is obviously linear, makes the
diagram

0—>L— B+ L — (B+L)/L—0
Il 17 I
0—>L—=>L®,B+L/L—B+L/L—>0

commutative and is lipschitz:

ol(x = s g0, g0, (v = s g(V). g()) =
=[x =5 g(x) =y + 5 q(»), qx) — gV =
=[x =y =sqx =y, qgx =yl =
=[x =y =-s5sqx =y =-Gqlx =yl +llgk -l =
= |lx =y = m(glx = y)) = (x = N + [[glx = n <
<3x =yl |
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We are ready for a nice result. It is only a little
of glittering make-up to write the algebraic dual X’ in-
stead of L(X, R) and the topological dual X* instead of
B(X, R) N L(X, R), and B/B N L instead of (B + L)/L.

Proposition 7.3. Let X be a Banach space. The fol-
lowing are equivalent:

i) There exists a linear metric projection m : Z(X,
R) — X’

i) z(X, R) = X' ®B(X, R)y/X*,
iii) X' is complemented in Z(X, R).

Proof. As for the proof, just observe that if m were
linear, G would be trivial and the sequence

0—-X —-zZX R)—=B/X*—>0

would split. And conversely, if this sequence splits then
X' is complemented in Z(X, R); equivalently, there exists
a linear metric projection m : Z(X, R) — X'. i

And also:

Proposition 7.4. Let X be a quasi-Banach K-space.
The following are equivalent:

i) There exists a linear metric projection m : Q(X, R)
— X"

ii) 2(X, R) = X' ®@B(X, R)/X*
iii) X' is complemented in Q(X, R).

We have seen so far two instances of this situation: the
conditions in proposition 7.3 are equivalent to the fact
that X is an £,-space; on the other hand, we know that
conditions in proposition 7.4 hold when X is a K-space
with trivial dual. Let us give a unifying theorem.

Recall that the Banach envelope of a quasi-Banach
space co(X) is defined as the closure in X** of the ca-
nonical image of X — X** under the map J(x)(x*) =
= x*(x). It has the universal property that every operator
7: X — R admits an extension T co(X) — R such that
T6 = 7. In this way we arrive to the central result of the

paper.

Theorem 7.5. Let X be a quasi-Banach space. Then
there exist a linear metric projection m : Z(X, R) —
L(X, R) if and only if co(X) is an L,-space.

Proof. The proof requires the duality techniques de-
veloped in [2] for Banach spaces and extended in [5] to
quasi-normed groups. Precisely, that given a 0-additive
map f: G — R on a quasi-normed group there exists a
0-linear map F: co(G) — R such that F¢ is a version of f.

Now, if here exists a linear metric selection m : Z(X, R)
— L(X, R) then the same proof of proposition 3.1 shows
that every O-linear map X — V, where V is an ultrasum-
mand, is trivial. By the result mentioned above, every
0-linear map co(X) — V is trivial, and thus, by the char-
acterization 3.2, co(X) is an L,-space.

Conversely, assume that co(X) is an L,-space. The
existence of a linear metric selection m : Z(X, R) —
L(X, R) is equivalent to the splitting of the exact sequence

0—->X —->zX, R)— B+ L)L —0;

hence, equivalent to the existence of a linear Lipschitz
selection s: (B + L)/L — Z. Since (B+ L)/L=B/BNL,
we are asking about the existence of a linear Lipschitz
selection B/X* — B + L. But since X* = co(X)* and
co(X) is an L,-space, X* is injective. So, the sequence
0—X* — B — B/X* — 0 splits. A look at the com-
mutative diagram

0—-X —-B+L—>B+L/L—0

7 7 I
0—>X*—> B — B/IX* —0

should convince us that when the lower sequence splits
so does the upper sequence. |

This result includes the previous cases: if X is itself a
Banach space then X = co(X). If X is a quasi-Banach with
trivial dual then co(X) = 0, which is certainly an £,-space.

Things could be pushed further making homogeneity
disappear and moving to quasi-Banach groups. The reader
is referred to [5] for an introduction, reference and full
development of the theory of quasi-additive maps on
controlled semigroups. With essentially (except for a
tricky point of the theory of groups: that 0-additive maps
are not automatically close to an additive map) the same
proof as before one gets.

Proposition 7.6. Let (G, p) be a quasi-normed group
such that every 0-additive map (G, p) — R is asymptoti-
cally additive. The following are equivalent:

a) There exist an additive metric projection Z —> L.

b) co(G) is an L,-space.

8. THE UNIVERSAL coz(X) SPACE

The Banach envelope co(X) of a quasi-Banach space
is an universal object characterized by the following
property: every operator 7: X — Y into a Banach space
factorizes through the operator X — co(X). Does there
exists a similar object for O-linear maps? The answer is
yes and this new object provides a deep insight into the
problem of finding a linear metric projection.
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Proposition 8.1. There exists a Banach space coz(X)
and a O-linear map 6 : X — coz(X) with the property that
for every O-linear map F: X — R there exists a linear
continuous map n: coz(X) — R such that n.0 = F.

Proof. Let coz(X) = [Z(X, R), Z(-)]*. The space
[Z, (X, R), Z(-)] is a semi-normed space (see [4] for a
related construction yielding a semi-Banach space) space.
The operator 9: X — coz(X) is «essentially» obviously
defined by d(x)(F) = F(x). The reader may observe that
0(x) € Z(X, R)" and might not be continuous. It is not
difficult to define a linear map L: X — Z(X, R)’ such
that, for every x € X, d(x) — L(x) € [Z(X, R), Z(-)]* : just
consider a Hamel basis (x,) of norm one vectors of X and
define L(x,) = d(x,). It is clear now that

IF(X 2,x) = 4, F(x)| < Z(F) 212,

and thus ||5(x) = L(x)|| < X |4,|. The presence of L does
not modifies the O-linear character of ¢, which should be
self-evident. Finally, if F: X — R is a O-linear map then
since [Z(X, R), Z(-)]* is a vector subspace of R** ™ then
7. is the restriction to [Z(X, R), Z(-)]* of the projection
onto the F-coordinate. The linearity and continuity of
such map are obvious. |

What is interesting for us now is the following prop-
erty:

Proposition 8.2. There exists a linear metric selec-
tion m : Z(X, Ry — X' if and only if § can be approxi-
mated by a linear map.

Proof. 1t §: X — coz(X) is a linear map such that
[|6 = S||<M < +co then n,.L: X — Ris alinear map such
that ||F — n,.S|| £ ||n,|| MZ(F), as we show now:

|Fx = m:8x| = [0,(F) — m.S(x)| =
= |15, - )| <
< el 116 = Il

On the other hand, there is little doubt that the process
F—> m.L is linear.

Conversely, if there exists a linear metric selection
F — m(F) then, as we have already seen, co(X) is an
L,-space, in which case every 0-linear map co(X) — V
taking values in an ultrasummand is trivial (reasoning as
in 3.1). By the duality results cited at the beginning of the
proof of theorem 7.5, every O-linear map from X into an
ultrasummand is trivial. Since coz(X) is a dual space, it is
complemented in its bidual, hence it is an ultrasummand
and thus ¢ is trivial. O

9. APPENDIX: A TWIST OF THE SCREW

In the previous sections we have worked with the se-
quence

0—-L—-B+L—->@B+L)/L—0

of metric spaces under the metric ||-||. We could have
also considered the same sequence under the semi-metric
Q(-); it is not Hausdorff because the linear maps form the
closure of 0. To be a K-space means that the norms in-
duced on (B + L)/L by ||-|| and Q(-) coincide. Let us con-
sider now the situation on finite dimensional spaces to
recover the meaning of the Kalton-Roberts theorem and
to put in perspective the results proved in the paper.

Let Q be a finite set. Let [, (P(Q)) be the space of all
(all = bounded) maps P(Q2) — R. The subspace of all
additive maps is precisely /,(Q2), and the embedding is

1(Q) — [ (P(Q)

ko= A) =2, 1)

Thus, one has the exact sequence (of vector spaces)
0—1,(Q) =L (PQ)— 1L (PQ)/1,(Q2)—0
Consider now the sequence in the semi-norm
O(w) = sup {|(A U B) - p(A) - u(B)| : A, B disjoint}.

One has only an exact sequence of semi-Banach
spaces since [,(Q) = {0}9"; however, the quotient
L (P()/1,(Q) is a certain finite-dimensional Banach
space.

However, if the sequence is considered in the usual
[I]l.. norm, the embedding of /,(Q) into [, (P(L)) is no-
thing different from a Rademacher-like embedding of
[,(n)into I (2") (in fact, if | Q| = n then | P(Q)| = 2"). This
embedding is not so accurate as to be isometric since one
can only obtain 27" || ||, < ||&|l £ ||ul],- In this way, the
sequence is just the exact sequence of Banach spaces

0—1,(n) = 1,(2") = 1,(2"/1,(n) =0

for which one is perfectly able to prove two things: that it
splits (like all sequences with finite dimensional spaces
do), and that it does with projections having norms tending
to infinity (since /, is not complemented in an £_ -space).

In this context, the Kalton-Roberts theorem says that the
Banach spaces (1, (2")/1,(n), ||-|.) and (1, (2")/{,(n), Q(-))
are 90-isomorphic independently on n. While our the-
orem about the nonexistence of a linear metric projection
method «essentially» means that /, is not complemented
inl, (2").
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