NONLINEAR METRIC PROJECTIONS IN TWISTED TWILIGHT

Félix Cabello Sánchez, Jesús M. F. Castillo and Fernando Sánchez
Departamento de Matemáticas, Universidad de Extremadura. Avda. de Elvas, s/n. 060671 Badajoz (Spain).
E-mail: cabello@unex.es; castillo@unex.es; fsanchez@unex.es

Presentado por F. Bombal.
Supported in part by DGICYT project PB 97-0377

Abstract

By definition, quasi-linear maps $F: X \rightarrow \mathbb{R}$ on a quasiBanach K-space X can be approximated by linear maps. We investigate the nature of the method $F \rightarrow m(F)$ that yields the almost optimal approximation, and which we call metric projection. We shall show that the method of concentrators of Kalton and Roberts that works for $\mathcal{L}_{\infty}{ }^{-}$ spaces is quasi-linear and non-linear. We shall also show that there exists a linear metric projection if and only if the Banach envelope of X is an \mathcal{L}_{1}-space.

1. INTRODUCTION

Some quasi-Banach spaces X have the following nice property, for which they are awarded with the term K spaces: whenever E is a quasi-Banach containing a onedimensional subspace \mathbb{R} such that $E / \mathbb{R}=X$ and $t: M \rightarrow X$ is an operator from another quasi-Banach space M then t can be lifted to an operator $T: M \rightarrow E$. Equivalently, every exact sequence $0 \rightarrow \mathbb{R} \rightarrow E \rightarrow X \rightarrow 0$ splits. Equivalently, still, every quasi-linear map $F: X \rightarrow \mathbb{R}$ is at finite distance from some linear map $L: X \rightarrow \mathbb{R}$. The preliminaries section contains precise definitions for these terms. When X is a Banach space then the preceding statements are equivalent to: whenever E is a quasi-Banach space such that $E / \mathbb{R}=X$ then E is itself a Banach space (and thus isomorphic to $\mathbb{R} \oplus X$).

The main examples of K-spaces are: B-convex Banach spaces and quasi-Banach L_{p} spaces, $0<p<1$, proved by Kalton in [17]; and the \mathcal{L}_{∞}-spaces (proved by Kalton and Roberts in [24]). On the opposite side, the main examples of non- K-spaces are the \mathcal{L}_{1}-spaces. The three proofs have different nature. The proof for B-convex Banach spaces consists in directly showing that the so-called twisted sum space E is locally convex. The proof for L_{p} is a cunning computation that shows that given a quasi-linear map F on a finite dimensional $l_{p}(n)$ space the «obvious» linear map $l\left(e_{j}\right)=F\left(e_{j}\right)$ is at finite distance (independent-
ly of n) from F. However, the proof for \mathcal{L}_{∞}-spaces is highly nontrivial.

Kalton and Roberts proved in [24] is that If $F: l_{\infty}(\Omega) \rightarrow$ $\rightarrow \mathbb{R}$ is a quasilinear map then there is a linear functional $L: l_{\infty}(\Omega) \rightarrow \mathbb{R}$ with $|F(x)-L(x)| \leq 100 Q(F)\|x\|$, where $Q(F)$ is the quasilinear constant of F. Let us give a different statement. Recall that a function $f: \mathcal{A} \rightarrow \mathbb{R}$ defined on an algebra of subsets of a set Ω is said to be ε-approximately additive if $f(\varnothing)=0$ and for every pair A, B of disjoint sets one has

$$
|f(A \cup B)-f(A)-f(B)| \leq \varepsilon .
$$

Given a quasi-linear map $F: l_{\infty}(\Omega) \rightarrow \mathbb{R}$, then $f(A)=$ $=F\left(1_{A}\right)$ defines a $Q(F)$-approximately additive function on 2^{Ω}. Additive set-functions are the 0 -approximately additive, and correspond to the linear maps $l_{\infty}(\Omega) \rightarrow \mathbb{R}$. Thus, what is proved in [24] is the existence of a universal constant $K<45$ with the property that iff $: \mathcal{A} \rightarrow \mathbb{R}$ is Δ-approximately additive, there is an additive function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ with $|f(A)-\mu(A)| \leq K \cdot \Delta$. In fact, they observe that it suffices to consider the case of finite algebras. The proof gets the additive map from the existence of a process called «concentrator». One of our purposes is to show that concentrators are actually quasi-linear non-linear maps.

Thus, in the way of understanding the proof, we became interested in the methods $F \rightarrow L(F)$ to obtain, in a K-space, linear maps at «almost optimal» finite distance. That is, the nature of the «almost optimal approximation map» $F \rightarrow L(F)$ such that, for some constant C, $\|F-L(F)\| \leq C \operatorname{dist}\left(F, X^{\prime}\right)$. We shall call to such map a metric projection. Which is the nature of the metric projection? Could it be even linear?

The interest in finding such linear method was fostered by the following attack: Let $f: \mathcal{A} \rightarrow \mathbb{R}$ be a 1 -approximately additive function in a finite algebra \mathcal{A}. Suppose
there exists a linear method $f \rightarrow m(f)$ to define, for some $r<1$, a r-approximately additive map $m(f): \mathcal{A} \rightarrow \mathbb{R}$ such that $|m(f)(A)-f(A)| \leq 1$. If so, we can iterate the method to obtain $m^{2}(f): \mathcal{A} \rightarrow \mathbb{R}$ such that $\mid m^{2}(f)(A)-$ $-m(f)(A) \mid \leq r$ and $m^{2}(f)$ would be r^{2}-approximately additive; and so on. The sequence $\left(m^{2}(f)\right)$ is contained in the compact subset of $\mathbb{R}^{\mathcal{A}}$:

$$
\left\{g:|g(A)| \leq|f(A)|+\left(1-r^{-1}\right)\right\}
$$

Therefore, if \mathcal{U} denotes a free ultrafilter on \mathbb{N} then

$$
L(f)(A)=\lim _{\mathcal{U}_{(n)}} m_{n}(f)(A)
$$

defines a linear map $L(f): \mathcal{A} \rightarrow \mathbb{R}$ which verifies $|f(A)-L(f)(A)| \leq\left(1-r^{-1}\right)$. In the end, we would have obtained a linear metric projection $f \rightarrow L(f)$. Can we do this?

We do not want to spoil the forthcoming surprises, so we shall only say: no.

2. PRELIMINARIES

A quasi-norm on a (real or complex) vector space X is a nonnegative real-valued function $\|\cdot\|$ satisfying
i) $\|x\|=0$ if and only if $x=0$;
ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X$ and $\lambda \in \mathbb{K}$;
iii) $\|x+y\| \leq K(\|x\|+\|y\|)$ for some constant K independent of $x, y \in X$.

A quasi-normed space is a vector space X together with a specified quasi-norm. On such a space one has a (vector) topology defined by the fundamental system of neighborhoods of 0 given by the multiples of the set $\{x \in X:\|x\| \leq 1\}$, called the unit ball of the quasi-norm. A complete quasinormed space is called a quasi-Banach space. In the sequel, the word operator means linear continuous map. The algebraic dual X^{\prime} of X is the space of linear, not necessarily continuous, maps; it shall also be denoted $\mathbf{L}(X, \mathbb{R})$, or simply \mathbf{L}. The subspace of X^{\prime} formed by the linear continuous maps, the topological dual of X, shall be denoted X^{*}. An operator $X \rightarrow Y$ means always a linear continuous map. The space of homogeneous and bounded (i.e., such that the image of the unit ball is a bounded set) maps shall be denoted $\mathbf{B}(X, \mathbb{R})$, or simply \mathbf{B}. The term bounded map shall always mean homogeneous bounded map. Given two homogeneous maps A, B acting between the same spaces, their (eventually infinite) distance is defined as

$$
\|A-B\|=\sup _{\|x\| \leq 1}\|A x-B x\| .
$$

Exact sequences of (quasi) Banach spaces. For general information about exact sequences the reader can consult [15]. Information about categorical constructions in the (quasi) Banach space setting can be found in the
monograph [9]. A diagram $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ of quasi-Banach spaces and operators is said to be an exact sequence if the kernel of each arrow coincides with the image of the preceding. This means, by the open mapping theorem, that Y is (isomorphic to) a closed subspace of X and the corresponding quotient is (isomorphic to) Z. We shall also say that X is a twisted sum of Y and Z or an extension of Y by Z. Two exact sequences $0 \rightarrow Y \rightarrow X \rightarrow$ $\rightarrow Z \rightarrow 0$ and $0 \rightarrow Y \rightarrow X_{1} \rightarrow Z \rightarrow 0$ are said to be equivalent if there is an operator T making the diagram

$$
\begin{gathered}
0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0 \\
\| \quad \downarrow T \quad \text { ॥ } \\
0 \rightarrow Y \rightarrow X_{1} \rightarrow Z \rightarrow 0
\end{gathered}
$$

commutative. The following standard result of algebra (see [15]) and the open mapping theorem imply that T must be an isomorphism.

The 3-lemma. Assume that one has a commutative diagram of vector spaces and linear maps

$$
\begin{aligned}
& 0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0 \\
& \alpha \downarrow \quad \downarrow \beta \quad \downarrow \gamma \\
& 0 \rightarrow Y_{1} \rightarrow X_{1} \rightarrow Z_{1} \rightarrow 0
\end{aligned}
$$

with exact rows. If α and γ are injective (resp. surjective) so is β.

An exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is said to split if it is equivalent to the trivial sequence $0 \rightarrow Y \rightarrow Y \oplus Z$ $\rightarrow Z \rightarrow 0$. This already implies that X is isomorphic to the direct sum $Y \oplus Z$.

Quasi-linear and 0 -linear maps. The by now classical theory of Kalton and Peck [21] describes short exact sequences of quasi-Banach spaces in terms of the socalled quasi-linear maps. A map $F: Z \rightarrow Y$ acting between quasi-normed spaces is said to be quasi-linear if it is homogeneous and satisfies that for some constant K and all points x, y in Z one has

$$
\|F(x+y)-F(x)-F(y)\| \leq K(\|x\|+\|y\|)
$$

The smallest constant satisfying the inequality above is denoted $Q(F)$ and referred to as the quasi-linearity constant of the map F. We shall denote $\mathcal{Q}(X, \mathbb{R})$ the space of all quasi-linear maps $X \rightarrow \mathbb{R}$.

We shall say that a quasi-linear map is trivial when it can be written as the sum of a linear and a bounded map; or else, when it is at finite distance from a linear map. Two quasi-linear maps F and G (defined between the same spaces) are said to be equivalent if $F-G$ is trivial. In this case we shall also say as in [2] that F is a version of G (or vice versa). Quasi-linear maps give rise to twisted sums: given a quasi-linear map $F: Z \rightarrow Y$ then it is possible to construct a twisted sum, which we shall denote by
$Y \oplus_{F} Z$, endowing the product space $Y \times Z$ with the quasinorm

$$
\|(y, z)\|=\|y-F(z)\|+\|z\| .
$$

Clearly, the map $Y \rightarrow Y \oplus_{F} Z$ sending of y to $(y, 0)$ is an into isometry, and so Y can be thought as a subspace of $Y \oplus_{F} Z$; moreover, the corresponding quotient is isometric to Z. Conversely, an exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ comes defined by a quasi-linear map: pick a bounded selection B for the quotient map q (which exists by the open mapping theorem) and then a linear selection L; the difference $B-L$ is quasi-linear and takes values in Y since $q(B-L)=0$. The two processes are one inverse of the other and, moreover, one has the following fundamental result of [21].

Proposition 2.1. Two exact sequences $0 \rightarrow Y \rightarrow$ $Y \oplus_{F} Z \rightarrow Z \rightarrow 0$ and $0 \rightarrow Y \rightarrow Y \oplus_{G} Z \rightarrow Z \rightarrow 0$ are equivalent if and only F and G are equivalent. Therefore, an exact sequence $0 \rightarrow Y \rightarrow Y \oplus_{F} Z \rightarrow Z \rightarrow 0$ is equivalent to the trivial exact sequence $0 \rightarrow Y \rightarrow Y \oplus Z \rightarrow Z \rightarrow 0$ if and only F is trivial (i.e., F is at finite distance from some linear map).

The quasi-Banach space $Y \oplus_{F} Z$ constructed via a quasilinear map F need not be locally convex, even when Y and Z are. A result of Dierolf [11] asserts that there exists a nonlocally convex twisted sum of Y and Z if and only if there exists a nonlocally convex twisted sum of \mathbb{R} and Z. Hence, a Banach space is a K-space when every twisted sum with \mathbb{R} is locally convex. It is however possible to obtain a simple characterization of when a given twisted sum of Y and Z is locally convex: the key is to give the characterization in terms of the quasi-linear map F and not in terms of the factor spaces.

Definition. A quasi-linear map $F: Z \rightarrow Y$ acting between quasi-normed spaces is said to be 0-linear if there is a constant K such that whenever $\left\{x_{i}\right\}$ is a finite set of elements of Z then

$$
\left\|F\left(\sum_{i=1}^{i=n} x_{i}\right)-\sum_{i=1}^{n} F\left(x_{i}\right)\right\| \leq K \sum_{i=1}^{n}\left\|x_{i}\right\| .
$$

The smallest constant satisfying the inequality above is denoted $Z(F)$ and referred to as the 0 -linearity constant of the map F. The space of all 0 -linear maps $X \rightarrow \mathbb{R}$ shall be denoted $Z(X, \mathbb{R})$. One has (see $[2,7,9]$).

Proposition 2.2. A twisted sum of Banach spaces $Y \oplus_{F} Z$ is locally convex (being thus isomorphic to a Banach space) if and only if F is 0-linear.

It is clear that 0 -linear maps are quasi-linear. It is not true, however, that quasi-linear maps are 0-linear. Ribe [29] provided the simplest example of a quasi-linear not 0 -linear map $R: l_{1} \rightarrow \mathbb{R}$ given by

$$
R(x)=\sum_{i} x_{i} \log \left|x_{i}\right|-\sum_{i} x_{i} \log \left|\sum x_{i}\right|
$$

(observe that the map is only defined on finitely supported sequences; however there exist extension theorems for quasi and 0-linear maps (see [21])). The quasi-linearity can be seen in [22] (actually $Q(R)=2$) while the fact that R is not 0 -linear is very simple to check: $R\left(e_{n}\right)=0$ for all n while $R\left(\sum_{i=1}^{i=N} e_{i}\right)=-N \log N$; since $\sum_{i=1}^{i=N}\left\|e_{i}\right\|=N$, the estimate in the definition of 0 -linear map is impossible.

It is moreover clear that a quasi-linear map F such that $\|F-L\| \leq K$ for some linear map K necessarily is 0 -linear and $Z(F) \leq 2 K$. Hence $Z(F) \leq \operatorname{dist}(F, \mathbf{L})$. In particular, Ribe's map R cannot be approximated by linear maps. As for the converse, one can see that using the Hahn-Banach theorem. Proposition 2.2 can be reformulated in terms of approximation by linear maps as follows (we shall give a direct proof for this result later):

Proposition 2.3. A quasi-linear map $X \rightarrow \mathbb{R}$ is 0 -linear if and only if it is at finite distance from a linear map.

In this way we obtain that a Banach space X is a K space if and only if every quasi-linear map $X \rightarrow \mathbb{R}$ is 0 -linear.

The pull-back square. Let $A: U \rightarrow Z$ and $B: V \rightarrow Z$ be two arrows in a given category \mathbf{C}. The pull-back of $\{A, B\}$ is an object Ξ in \mathbf{C} and two arrows $u: \Xi \rightarrow U$ and $v: \Xi \rightarrow V$ such that $A u=B v$; and such that given another object Γ in \mathbf{C} for which there exist arrows $\alpha: \Gamma \rightarrow U$ and $\beta: \Gamma \rightarrow V$ verifying $A \alpha=B \beta$ then there exists a unique arrow $\gamma: \Gamma \rightarrow \Xi$ such that $\beta=v \gamma$ and $\alpha=u \gamma$. If one prefers the categorical language, the pull-back makes commutative the diagram

$$
\begin{aligned}
& U \\
& u \uparrow Z \\
& u \uparrow \\
& \Xi \uparrow_{B}
\end{aligned}
$$

and is universal with respect to this property.
In the category of quasi-Banach spaces and operators, as well as in the subcategory of Banach spaces pull-backs exist. If $A: U \rightarrow Z$ and $B: V \rightarrow Z$ are two operators, the pull-back of $\{A, B\}$ is the space $\Xi=\{(u, u): A u=B v\}$ endowed with the induced product topology together with the restrictions of the canonical projections of $U \oplus V$ onto, respectively, U and V. If $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is an exact sequence with quotient map q and $T: M \rightarrow Z$ is a surjective operator and Ξ denotes the pull-back of the couple $\{q, T\}$ then the diagram

$$
\begin{array}{r}
0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0 \\
\text { I } \rightarrow \uparrow \uparrow \uparrow T \\
0 \rightarrow Y \rightarrow \Xi \rightarrow M \rightarrow 0
\end{array}
$$

is commutative with exact rows and columns.

3. LINEAR METRIC PROJECTIONS ON BANACH SPACES

As we have already seen, 0-linear maps on Banach spaces can be approximated by linear maps; thus, one has the decomposition

$$
Z(X, \mathbb{R})=\mathbf{B}(X, \mathbb{R})+\mathbf{L}(X, \mathbb{R})
$$

On a quasi-Banach K-space one even has

$$
\mathcal{Q}(X, \mathbb{R})=\mathbf{B}(X, \mathbb{R})+\mathbf{L}(X, \mathbb{R})
$$

Given a quasi-linear map F, let $D(F)=\operatorname{dist}(F, \mathbf{L}(X, \mathbb{R}))$. Our main concern now is the nature of the map $F \rightarrow m(F)$ that associates to F an «almost optimal» selection, i.e. $m(F)$ is a linear map such that $\|F-m(F)\| \leq C D(F)$ (with C a prescribed finite constant). We have already seen that $Z(\cdot) \leq 2 D(\cdot)$, hence it will be enough to study methods m such that $\|F-m(F)\| \leq C Z(F)$.

Our questions now are:
Question 1. Do there exist Banach K-spaces in which the metric projection

$$
m: \mathcal{Q}(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathbb{R})
$$

is linear?
Question 2. Do there exist quasi-Banach K-spaces in which the metric projection

$$
m: \mathcal{Q}(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathbb{R})
$$

is linear?
Observe that the hypothesis of being a K-space is necessary. Without it we can only ask:

Question 3. Do there exist Banach spaces in which the metric projection

$$
m: \mathcal{Z}(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathbb{R})
$$

is linear?
We begin answering questions 1 and 3 .
Proposition 3.1. The metric projection $m: Z(X, \mathbb{R})$ $\rightarrow \mathbf{L}(X, \mathbb{R})$ is linear if and only if X is an \mathcal{L}_{1}-space.

Proof. Let us consider first the case of a quasi-linear map $F: l_{1}^{n} \rightarrow \mathbb{R}$. Obviously $D(F)$ is finite and F is 0 linear. If $\left(e_{k}\right)$ is the unit vector basis of l_{1}^{n}, we can define a linear map by $l\left(e_{k}\right)=F\left(e_{k}\right)$ (and linearly on the rest). We then have that for $x=\sum_{k} x_{k} e_{k}$ in l_{1}^{n}

$$
\begin{aligned}
\left|F\left(\sum_{k} x_{k} e_{k}\right)-l\left(\sum_{k} x_{k} e_{k}\right)\right| & \leq\left|F\left(\sum_{k} x_{k} e_{k}\right)-\sum_{k} x_{k} F\left(e_{k}\right)\right| \leq \\
. & \leq Z(F)\left\|\sum_{k} x_{k} e_{k}\right\|=Z(F)\|x\|
\end{aligned}
$$

and thus $\|F-l\| \leq Z(F)$. The correspondence $F \rightarrow m(F)=$ $=l$ is clearly linear.

We pass to an infinite dimensional \mathcal{L}_{1}-space X; let F : $X \rightarrow \mathbb{R}$ be a 0 -linear map. Assume that $X=\cup X_{\alpha}$ where X_{α} is λ-isomorphic to l_{1}^{α} and X_{α} is λ-complemented in X. For each α, the map $F_{\alpha}=F_{\mid X_{\alpha}}: X \rightarrow \mathbb{R}$ admits a linear map l_{α} : $X_{\alpha} \rightarrow \mathbb{R}$ such that $\left\|F_{\alpha}-l_{\alpha}\right\| \leq \lambda Z(F)$. Let L_{α} be an extension of l_{α} to the whole X obtained by setting $L_{\alpha}(y)=0$ when y does not belong to X_{α}. Since for every x and eventually all α one has $\left|L_{\alpha}(x)\right| \leq\|F(x)\|+\lambda Z(F)$ it makes sense to define a linear map $L: X \rightarrow \mathbb{R}$ by

$$
L(x)=\lim _{U_{(\alpha)}} L_{\alpha}(x)
$$

where U is a free ultrafilter on index set (α) refining the Fréchet filter with respect to the natural ordering defined by the net $\left(X_{\alpha}\right)$. The application L is well defined and linear. One moreover has $\|F-L\| \leq \lambda Z(F)$ as follows from the following inequality choosing the index α carefully after ε :
$|L(x)-F(x)| \leq\left|L(x)-L_{\alpha}(x)\right|+\left|L_{\alpha}(x)-F(x)\right| \leq \varepsilon+\lambda Z(F)$.
Finally, the procedure $F \rightarrow m(F)=L$ is linear.
We pass to the converse implication. Let X be a Banach space and assume the existence of a linear map m : $Z(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathbb{R})$ such that $\|F-m(F)\| \leq C \cdot D(F)$.

Applying a uniform boundedness principle of Kalton [17] (the reader shall find a careful description of such principles in [3], there exists a constant C such that for every 0-linear map $D(F) \leq C Z(F)$.

Let now V be an ultrasummand; i.e., a Banach space complemented in its bidual. Let $G: X \rightarrow V$ be an arbitrary 0 -linear map. We define a map $L: X \rightarrow V^{* *}$ by

$$
\left\langle L(x), v^{*}\right\rangle=\left\langle m\left(v^{*} \circ G\right), x\right\rangle,
$$

which is linear since m is linear, and well defined since $L(x)$ is continuous:

$$
\begin{gathered}
\| L(x)=\sup \left\{\left\langle L(x), v^{*}\right\rangle:\left\|v^{*}\right\| \leq 1\right\}= \\
=\sup \left\{\left\langle m\left(v^{*} \circ G\right), x\right\rangle:\left\|v^{*}\right\| \leq 1\right\}= \\
=\sup \left\{\left\langle m\left(v^{*} \circ G\right)-v^{* \circ} \circ, x\right\rangle+\left\langle v^{* \circ} G, x\right\rangle:\left\|v^{*}\right\| \leq 1\right\} \leq \\
\leq \sup \left\{C D\left(v^{*} \circ G\right)\|x\|+\left\|v^{*}\right\|\|G(x)\|:\left\|v^{*}\right\| \leq 1\right\} \leq \\
\leq \sup \left\{C^{\prime} Z\left(v^{*} \circ G\right)\|x\|+\left\|v^{*}\right\|\|G(x)\|:\left\|v^{*}\right\| \leq 1\right\} \leq \\
\leq \sup \left\{C^{\prime}\left\|v^{*}\right\| Z(G)\|x\|+\left\|v^{*}\right\|\|G(x)\|:\left\|v^{*}\right\| \leq 1\right\} \leq \\
\leq C^{\prime} Z(G)\|x\|+\|G(x)\| .
\end{gathered}
$$

Since

$$
\begin{aligned}
\left|\left\langle G(x)-L(x), v^{*}\right\rangle\right| & =\left|\left\langle G(x), v^{*}\right\rangle-\left\langle m\left(v^{*} \circ G\right), x\right\rangle\right|= \\
& =\left|v^{*} \circ G(x)-m\left(v^{*} \circ G\right)(x)\right| \leq \\
& \leq 2 C Z\left(v^{*} \circ G\right)\|x\| \leq \\
& \leq 2 C\left\|v^{*}\right\| Z(G)\|x\|
\end{aligned}
$$

we get

$$
\begin{aligned}
\|G-L\| & =\sup _{\|x\| \leq 1}\|G(x)-L(x)\|= \\
& =\sup _{\|x\| \leq 1} \sup _{\left\|v^{*}\right\| \leq 1}\left|\left\langle G(x), v^{*}\right\rangle-\left\langle L(x), v^{*}\right\rangle\right| \leq \\
& \leq 2 \cdot C \cdot Z(G) .
\end{aligned}
$$

To conclude we shall prove a result asserting that in the situation just described the space X has to be an \mathcal{L}_{1} space. The if part is a result of Lindenstrauss [27] (although our proof shall be «considerably simpler») while, although the result is essentially known, we have no explicit reference for the only if part.

Proposition 3.2. A Banach space Q is an \mathcal{L}_{1}-space if and only if for every ultrasummand Y every exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Q \rightarrow 0$ splits.

Proof. Assume that every exact sequence $0 \rightarrow Y \rightarrow$ $\rightarrow W \rightarrow Q \rightarrow 0$ splits when Y is complemented in its bidual. We shall prove that Q^{*} is injective. For this, consider a exact sequence $0 \rightarrow Q^{*} \rightarrow X \rightarrow Z \rightarrow 0$. One has

$$
\begin{gathered}
0 \rightarrow Z^{*} \rightarrow X^{*} \rightarrow Q^{* *} \rightarrow 0 \\
\text { ॥ }_{\uparrow}^{\uparrow} \rightarrow \stackrel{\uparrow}{\uparrow} \rightarrow Z^{*} \rightarrow P \rightarrow Q^{+} \rightarrow 0
\end{gathered}
$$

where P is the pull-back of the quotient map $X^{*} \rightarrow Q^{* *}$ and $Q \rightarrow Q^{* *}$ is the canonical inclusion. Observe the diagram

where the second row is the bitraspose of the first row, and the second and third rows form the adjoint of the previous pull-back diagram. The third and fourth rows form a pull-back diagram with respect to the quotient $\operatorname{map} P^{*} \rightarrow Z^{* *}$ and the canonical inclusion $Z \rightarrow Z^{* *}$.

The third row splits since it is transpose of the sequence $0 \rightarrow Z^{*} \rightarrow P \rightarrow Q \rightarrow 0$, which splits since Z^{*} is complemented in its bidual; thus, the fourth rows splits. But the first and fourth sequences are equivalent: since $P B$ is the pull-back space of $P^{*} \rightarrow Z^{* *}$ and $Z \rightarrow Z^{* *}$, and
we have arrows $X \rightarrow Z$ (quotient map in the first line) and $X \rightarrow P^{*}$ (vertical central line downwards) making a commutative square with the two previous arrows, there must exist an arrow $\alpha: X \rightarrow P B$ making the two triangles commutative. That makes the restriction $\alpha \mid Q^{*}=i d$, and means that the upper and lower sequences are equivalent.

Now a proof for Lindenstrauss statement. Let Z be an \mathcal{L}_{1}-space and let $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ be an exact sequence in which Y is an ultrasummand. Consider the commutative diagram:

$$
\begin{array}{llll}
0 \rightarrow Y & \rightarrow X & \rightarrow Z & \rightarrow 0 \\
\downarrow & \downarrow & & \downarrow \\
& \rightarrow Y^{* *} & \rightarrow X^{* *} & \rightarrow Z^{* *} \rightarrow 0
\end{array}
$$

Since Z^{*} is an injective space the dual sequence $0 \rightarrow$ $\rightarrow Z^{*} \rightarrow X^{*} \rightarrow Y^{*} \rightarrow 0$ splits, and so does the bidual sequence; hence, $Y^{* *}$ is complemented in $X^{* *}$, since Y is complemented in $Y^{* *}$, it turns out that Y must be complemented in X and the original sequence splits.

From all this we conclude:

Corollary 3.3. Let X be a Banach space. It does not exist a linear metric projection

$$
\mathcal{Q}(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathcal{R})
$$

Proof. Since, that would imply a linear metric projection $Z(X, \mathbb{R}) \rightarrow \mathbf{L}(X, \mathbb{R})$ and, as we have seen, then X would be an \mathcal{L}_{1}-space. But \mathcal{L}_{1}-spaces are not K-spaces, and thus they admit quasi-linear maps that cannot be approximated by linear maps, which makes the existence of any selection method impossible.

4. LINEAR METRIC PROJECTIONS ON QUASI-BANACH SPACES

Quasi-Banach spaces, however, conceal some surprises worth being uncovered. Let thus X be a quasi-Banach K-space. Assume moreover that it has trivial dual; i.e., $X^{*}=0$ (here is where we need to have X not locally convex). The spaces $L_{p}(0,1)$ with $0<p<1$ provide good examples of this situation.

Since X is a K-space, $\mathrm{Q}(X, \mathbb{R})=\mathbf{B}(X, \mathbb{R})+\mathbf{L}(X, \mathbb{R})$. Since X has trivial dual then $\mathbf{B}(X, \mathbb{R}) \cap \mathbf{L}(X, \mathbb{R})=\{0\}$ (no map $X \rightarrow \mathbb{R}$ can be simultaneously linear and continuous). Therefore $\mathcal{Q}(X, \mathbb{R})=\mathbf{B}(X, \mathbb{R}) \times \mathbf{L}(X, \mathbb{R})$. Let us show now that the canonical projection onto $\mathbf{L}(X, \mathbb{R})$ is, in addition to linear, a metric projection.

To this end, let us recall that given a quasi-Banach space X one can consider two semi-metrics (they are not Hausdorff) on $Q(X, \mathbb{R}): Q(\cdot)$ and $d(\cdot)=\operatorname{dist}(\cdot, \mathbf{L})$. Let us observe that they are equivalent: the uniform bounded-
ness principle mentioned earlier shows that the two induced norms are equivalent on $\mathcal{Q}(X, \mathbb{R}) / \mathbf{L}$; now, \mathbf{L} is the kernel of the two seminorms, and thus they are also equivalent.

In the present situation $Q(X, \mathbb{R})=\mathbf{B}(X, \mathbb{R}) \times \mathbf{L}(X, \mathbb{R})$ they adopt the form $Q(b, l)=Q(b)$; and $d(b, l)=\operatorname{dist}(b, \mathbf{L})$. The application

$$
n(b, l)=\|b\|
$$

defines a complete (since the space $\mathbf{B}(X, \mathbb{R})$ is complete in this norm) seminorm on $Q(X, \mathbb{R})$; since $n \geq d$, it turns out to be also equivalent to $d(\cdot)$ and $Q(\cdot)$. But the canonical projection

$$
m(b, l)=l
$$

is a metric projection for n; i.e., that $n(F-m(F)) \leq C$ $Q(F)$:

$$
n(b+l-m(b, l))=\|b\| .
$$

5. LINEAR METRIC PROJECTIONS FOR GERLINEAR MAPS

As we have already seen, given an arbitrary Banach space, no linear method $F \rightarrow m(F)$ is able to assign to each quasi-linear map F a linear map $m(F)$ at a prefixed distance C. Could such linear method be obtained if one restricts the attention to smaller subclasses of quasi-linear maps? For instance, for 0-linear maps such linear method exists in \mathcal{L}_{1}-spaces.

Until now we have only considered two classes: the class Q of quasi-linear maps and the class Z, of 0 -linear maps. There exist other interesting classes worth consideration. One of them was isolated by Lima and Yost in [25]: the class \mathcal{P} of pseudo-linear maps, that is, quasilinear maps Ω satisfying

$$
\|\Omega(x+y)-\Omega(x)-\Omega(y)\| \leq\|x\|+\|y\|-\|x+y\| .
$$

The appendix 1.9 in [9] contains a rather complete survey about these maps. Another class introduced and studied in [5] (see also [14]) is formed by the Ger-linear maps. A quasi-linear map $F: X \rightarrow Y$ is said to be Gerlinear if

$$
\|F(x+y)-F(x)-F(y)\| \leq C\|x+y\|
$$

for some constant $C>0$ and all $x, y \in X$. The infimum of those constants C verifying the previous inequality is called the Ger-linearity constant of G and denoted $G(F)$. The space of all Ger-linear maps $X \rightarrow Y$ shall be denoted $G(X, Y)$. A simple induction argument shows that a Gerlinear map is 0 -linear and $\mathrm{Z}(\cdot) \leq G(\cdot)$.

The interesting feature of Ger-linear maps is their connection with classical problems about the existence of Lipschitz projections on Banach spaces. More precisely (see [5])

Proposition 5.1. Are exact sequence of Banach spaces $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ is defined by a Ger-linear map $G: Z \rightarrow Y$ if and only if there exists a Lipschitz projection from X onto Y. Moreover, that happens if and only if the metric projection $\rho: Y \oplus_{G} Z \rightarrow Y$ given by $\rho(y, z)=$ $=y-G(z)$ is Lipschitz.

It is still an open problem to know if there exist nontrivial pseudo-linear maps. However, nontrivial Ger-linear maps do exist: it is not hard to verify that the Aha-roni-Lindenstrauss (nontrivial) sequence $0 \rightarrow C[0,1] \rightarrow$ $\rightarrow D \rightarrow c_{0} \rightarrow 0$ (see [1]) comes defined by a Ger-linear map. The interesting point for us now is that, as it was shown in [5], Ger-linear or pseudo-linear maps from a Banach space into an ultrasummand are trivial. We show now that the metric projection for Ger-linear maps is linear.

As proposition 5.1 suggests, and almost proves, and contrarily to intuition, not all trivial maps are Ger-linear maps. Indeed, if a Ger-linear map G is trivial then not only it can be decomposed $G=B+L$ as a sum of a bounded homogeneous plus a linear map; in this case the bounded map has to be Lipschitz (to make Lipschitz the map ρ).

So, when all Ger-linear maps are trivial we shall write $G=\mathbf{B}_{1}+\mathbf{L}$ to indicate that the bounded map is Lipschitz. The example of the Aharoni-Lindenstrauss construction shows that the hypothesis « Y is an ultrasummand» in the next proposition is not superfluous.

Proposition 5.2. Let X be a quasi-Banach space and let Y be a quasi-Banach ultrasummand. Then all Gerlinear maps $X \rightarrow Y$ are trivial and, moreover, there exist a linear metric projection

$$
m: G(X, Y) \rightarrow \mathbf{L}(X, Y)
$$

(of course, the same linear method would work for pseudo-linear maps).

Proof. Let μ be a Banach limit (i.e., an invariant mean) in the commutative group $(X,+)$ and let $\pi: Y^{* *} \rightarrow Y$ be a projection. We define

$$
m(G)(x)=\pi\left(\text { weak }^{*}-\lim _{\mu(y)} G(x+y)-G(y)\right)
$$

Observing that the definition of Ger-linear map could have also been (how could G recognize who is x, who is y and who is $x+y$?)

$$
\|G(x+y)-G(x)-G(y)\| \leq C\|x\|
$$

it follows that $\|G(x+y)-G(y)\| \leq C\|x\|+\|G(x)\|$, and thus $\{G(x+y)-G(y)\}_{y \in X}$ lies in a weak*-compact set and using a Banach limit makes sense. Since

$$
\begin{gathered}
m(G)(x+z)=\text { weak }^{*}-\lim _{\mu(y)} G(x+z+y)-G(y)= \\
=\text { weak }^{*}-\lim _{\mu(y)} G(x+z+y)- \\
\quad-G(z+y)+G(z+y)-G(y)= \\
=\text { weak }^{*}-\lim _{\mu(z+y)} G(x+z+y)-G(z+y)+ \\
+ \text { weak }^{*}-\lim _{\mu(y)} G(z+y)-G(y)=m(G)(x)+m(G)(z)
\end{gathered}
$$

we have the linearity of $m(G)$. Moreover, for every $\varepsilon>0$ one can choose y^{*} so that

$$
\begin{aligned}
\|m(G)(x)-G(x)\| & \leq\left|y^{*}(m(G)(x)-G(x))\right|+\varepsilon \leq \\
& \left.\leq 2 \varepsilon+\mid y^{*}(G(x+y)-G(y))-G(x)\right) \mid \leq \\
& \leq 2 \varepsilon+\|G(x+y)-G(y)-G(x)\| \leq \\
& \leq 2 \varepsilon+C\|x\| .
\end{aligned}
$$

We now show that m is a linear metric projection. There is little doubt that it is linear. To show that it is a metric projection let us show that $G(\cdot)$ is proportional to $\operatorname{dist}(\cdot, \mathbf{L}(X, Y))$. We shall shorten for the rest of this proof $\mathbf{L}(X, Y)$ to simply \mathbf{L}.

Proposition 5.3. Let Y and Z be two Banach spaces. Assume that all Ger-linear maps $Z \rightarrow Y$ are trivial. Then there is a constant ρ such that for every Ger-linear map $F: Z \rightarrow Y$, one has $\operatorname{dist}(F, \mathbf{L}) \leq \rho G(F)$.

Proof. Consider the following two norms on $\mathbf{B}_{1}+\mathbf{L} / \mathbf{L}$. The first one is the quotient metric $D(\cdot)=\operatorname{dist}(\cdot, \mathbf{L})$, and the other is $G(\cdot)$. One has

Lemma 5.4. $\left(\mathbf{B}_{1}+\mathbf{L} / \mathbf{L}, D\right)$ is a Banach space.
Proof. Easy, since $\mathbf{B}_{1}+\mathbf{L} / \mathbf{L}=\mathbf{B}_{1}+\mathbf{L} / \mathbf{L}=\mathbf{B}_{1} / \mathbf{B}_{1} \cap \mathbf{L}$ and $\left(\mathbf{B}_{1}, d\right)$ is complete.

Lemma 5.5. $(G(Z, Y) / L, G)$ is a Banach space.
Proof. Let $\left(\left[G_{n}\right]\right)$ be a G-Cauchy sequence. Fix a normalized Hamel basis $\left(e_{\gamma}\right)_{\gamma}$ for Z and observe that if H : $Z \rightarrow Y$ is a Ger-linear map then there exists a unique representative F of $[H]$ vanishing on all the elements of the basis; take

$$
F\left(\Sigma_{\gamma} \lambda_{\gamma} e_{\gamma}\right)=H\left(\Sigma_{\gamma} \lambda_{\gamma} e_{\gamma}\right)-\Sigma_{\gamma} \lambda_{\gamma} H\left(e_{\gamma}\right) .
$$

From now on, F_{n} shall be the representative of $\left[H_{n}\right]$ vanishing on the basis. The sequence $\left(F_{n}\right)$ is pointwise convergent because if $z=\Sigma \lambda_{\gamma} e_{\gamma}$ then

$$
\left\|\left(F_{n}-F_{m}\right)(z)\right\| \leq Z\left(F_{n}-F_{m}\right) \Sigma\left|\lambda_{\gamma}\right| \leq G\left(F_{n}-F_{m}\right) \Sigma\left|\lambda_{\gamma}\right| .
$$

Let F be its pointwise limit,

$$
F(z)=\lim F_{n}(z)
$$

We show that $[F]$ is the G-limit of $\left(\left[F_{n}\right]\right)=\left(\left[H_{n}\right]\right)$. Let $\left(z_{j}\right)$ be a finite set of points such that $\Sigma_{i} z_{i}=0$, and let $\varepsilon>0$. Choose indices $n(j)$ so that $\mathrm{y}\left\|\left(F-F_{n(j)}\right)\left(z_{j}\right)\right\|<2^{-j} \varepsilon$. One has:

$$
\begin{gathered}
\left.\left\|\Sigma_{j}\left(F-F_{n}\right)\left(z_{j}\right)\right\| \leq \| \Sigma_{j}\left(F-F_{n(j)}\right)\left(z_{j}\right)+F_{n(j)}\right)\left(z_{j}\right)-F_{n}\left(z_{j}\right) \| \leq \\
\leq \Sigma_{j}\left\|\left(F-F_{n(j)}\right)\left(z_{j}\right)\right\|+G\left(F_{n(j)}-F_{n}\right) \Sigma_{j}\left\|z_{j}\right\| \leq \\
\leq \varepsilon+G\left(F_{n(j)}-F_{n}\right) \Sigma_{j}\left\|z_{j}\right\|
\end{gathered}
$$

which is everything one needs since the sequence ($\left[F_{n}\right]$) was G-Cauchy. From that it also follows that F is Gerlinear since $G(F) \leq G\left(F-F_{n}\right)+G\left(F_{n}\right)$.

End of the proof. Since $G(\cdot) \leq \mathrm{D}(\cdot)$ on $G=\mathrm{B}_{1}+\mathbf{L}$ then, the norms G and D are comparable on $G / \mathbf{L}=\mathbf{B}_{1}+$ $+\mathbf{L} / \mathbf{L}$. The open mapping theorem ensures that G and D are equivalent.

6. SUB-LINEAR METHODS FOR 0-LINEAR MAPS

What has happened recently raises again the doubt: what occurs with 0-linear maps that no linear method is available? The answer could be that Ger-linear maps seem to be nicely coupled with Banach limits, while the class of 0-linear maps (whose definition involves many decompositions into a finite number of points) does not seem to be suitable to match with a single linear method. As a further evidence it is the fact that 0 -linear maps $X \rightarrow$ Y are not automatically trivial when Y is an ultrasummand (even reflexive! recall the existence ofnontrivial sequences, say, $0 \rightarrow l_{2} \rightarrow l_{\infty} \rightarrow l_{\infty} / l_{2} \rightarrow 0$). Following this line, we show now that there is a method $F \rightarrow m(F)$ for obtaining almost optimal linear maps which can be decomposed in only two methods, one of them linear and the other sub-linear. This will show that 0-linear maps, if not as polite as Ger-linear maps, are definitely not totally disastrous.

Proposition 6.1. Let X be a quasi-Banach space. There is a metric projection $m: Z(X, \mathbb{R}) \rightarrow \mathbf{L}$ that can be decomposed as

$$
m=\lambda m_{1}
$$

where m_{1} is sub-linear and λ is linear.
Proof. It is not hard to see that the preceding method (using an invariant mean to get a linear map) not only works whit Ger-linear maps; it actually works with sublinear maps S such that $S(\lambda x)=\lambda S(x)$ for positive λ (that we shall call +-homogeneous). Let $\mathcal{S}(X, \mathbb{R})$ be the class of all sublinear +-homogeneous functions $X \rightarrow \mathbb{R}$. If
$S \in \mathcal{S}(X, \mathbb{R})$ then $|S(x+y)-S(y)| \leq \max \{|S(x)|,|S(-x)|\}$ and the method

$$
\lambda(S)(x)=\lim _{\mu(y)} S(x+y)-S(y)
$$

still provides a linear map.
Now, let F be a 0 -linear map with constant $Z(F)$; then if we define

$$
m_{1}(F)(x)=\inf \left\{\sum_{i=1}^{n} F\left(x_{i}\right)+Z(F) \sum_{i=1}^{n}\left\|x_{i}\right\|: x=\sum_{i=1}^{n} x_{i}\right\}
$$

what we get is a sub-linear and +-homogeneous map $m_{1}(F)$ satisfying $\left\|F-m_{1}(F)\right\| \leq Z(F)$. To prove this last assertion, note that $m_{1}(x) \leq F(x)+Z(F)\|x\|$ while for no matter which decomposition $x=\sum x_{i}$ we have, by the definition of 0-linear map $F(x) \leq \sum F\left(x_{i}\right)+Z(F)\|x\|$.

So, the composition method

Sub-linear and positively homogeneous
yields a «sub-linear» metric projection.
Let us show now that, against what we could guess, this situation is perfectly reasonable.

7. THE METRIC PROJECTION IS A QUASI-LINEAR MAP

We only have to enlarge our working category. Let Met be the category of vector spaces endowed with a metric, and linear lipschitz maps as arrows. Our key examples are $(\mathbf{L}, d),(\mathbf{B}+\mathbf{L}, d)$ and $((\mathbf{B}+\mathbf{L}) / \mathbf{L}, D)=((\mathbf{B}+\mathbf{L}) / \mathbf{L}$, $Z(\cdot))$, where $d(A, B)=\|A-B\|$ and $D(\cdot)=\operatorname{dist}(\cdot, \mathbf{L})$ is the induced metric.

Let $q: \mathbf{B}+\mathbf{L} \rightarrow(\mathbf{B}+\mathbf{L}) / \mathbf{L}$ be the quotient map, and let $s:(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow \mathbf{B}+\mathbf{L}$ be a linear selection for q. We define the map $G:(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow \mathbf{L}$ by means of

$$
G(x+\mathbf{L})=x-m(x)-s(x+\mathbf{L})
$$

Lemma 7.1. The map $G:[(\mathbf{B}+\mathbf{L}) / \mathbf{L}, D] \rightarrow[\mathbf{L}, d]$ is quasi-linear.

Proof. Keep in mind that m_{1} satisfies $m_{1}(b+l)=$ $m_{1}(b)+l$, while λ is linear. This makes G well defined
since $x-s(x+\mathbf{L}) \in \mathbf{L}$ and $m(x) \in \mathbf{L}$; and, moreover, if $x-y=l \in \mathbf{L}$ then

$$
\begin{aligned}
G(x+L) & =x-m(x)-s(x+L)= \\
& =y+l-m(y+l)-s(y+L)= \\
& =y+l-m(y)-l-s(y+L)= \\
& =G(y+L) .
\end{aligned}
$$

The quasi-linearity of G means that:

$$
\begin{gathered}
\operatorname{dist}(G(x+y+L), G(x+L)+G(y+L))= \\
=\|x+y-m(x+y)-x+m(x)-y+m(y)\| \leq \\
\leq 2(1+\varepsilon)(\|x+L\|+\|y+L\|) .
\end{gathered}
$$

One should not be surprised. After all, the map G has been constructed in the standard way for a quasi-linear map:

$$
G(x+L)=\underbrace{x-m(x)}_{\begin{array}{c}
\text { bounded selection } \\
\text { for } q
\end{array}}-\underbrace{s(x+L)}_{\begin{array}{c}
\text { linear selection } \\
\text { for } q
\end{array}}
$$

and since the two selections are defined $(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow$ $\mathbf{B}+\mathbf{L}$ and the kernel of q is precisely \mathbf{L} it is not strange to get:

Lemma 7.2. The quasi-linear map G defines, in the category Met, the exact sequence

$$
0 \rightarrow \mathbf{L} \rightarrow \mathbf{B}+\mathbf{L} \rightarrow(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow 0
$$

Proof. To check that, we construct the exact sequence

$$
0 \rightarrow \mathbf{L} \rightarrow \mathbf{L} \oplus_{G}(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow 0
$$

in the standard way: the metric in the twisted sum space is

$$
\begin{aligned}
& \rho\left((y, z),\left(y^{\prime}, z^{\prime}\right)\right)=\mid y-y^{\prime}, z-z^{\prime} \|_{G}= \\
& \quad=\left\|y-y^{\prime}-G\left(z-z^{\prime}\right)\right\|+\left\|z-z^{\prime}\right\|
\end{aligned}
$$

and show that the two sequences are equivalent: the map $T(x)=(x-s q(x), q(x))$ is obviously linear, makes the diagram
commutative and is lipschitz:

$$
\begin{gathered}
\rho((x-s q(x), q(x)),(y-s q(y), q(y)))= \\
=\|(x-s q(x)-y+s q(y), q(x)-q(y) \|= \\
=\|(x-y-s q(x-y), q(x-y) \|= \\
=\|x-y-s q(x-y)-G q(x-y)\|+\|q(x-y)\|= \\
=\|x-y-m(q(x-y))-(x-y)\|+\|q(x-y)\| \leq \\
\leq 3\|x-y\| .
\end{gathered}
$$

We are ready for a nice result. It is only a little of glittering make-up to write the algebraic dual X^{\prime} instead of $\mathbf{L}(X, \mathbb{R})$ and the topological dual X^{*} instead of $\mathbf{B}(X, \mathbb{R}) \cap \mathbf{L}(X, \mathbb{R})$, and $\mathbf{B} / \mathbf{B} \cap \mathbf{L}$ instead of $(\mathbf{B}+\mathbf{L}) / \mathbf{L}$.

Proposition 7.3. Let X be a Banach space. The following are equivalent:
i) There exists a linear metric projection $m: Z(X$, $\mathbb{R}) \rightarrow X^{\prime}$
ii) $\mathcal{Z}(X, \mathbb{R})=X^{\prime} \oplus \mathbf{B}(X, \mathbb{R}) / X^{*}$.
iii) X^{\prime} is complemented in $Z(X, \mathbb{R})$.

Proof. As for the proof, just observe that if m were linear, G would be trivial and the sequence

$$
0 \rightarrow X^{\prime} \rightarrow Z(X, \mathbb{R}) \rightarrow \mathbf{B} / X^{*} \rightarrow 0
$$

would split. And conversely, if this sequence splits then X^{\prime} is complemented in $Z(X, \mathbb{R})$; equivalently, there exists a linear metric projection $m: Z(X, \mathbb{R}) \rightarrow X^{\prime}$.

And also:
Proposition 7.4. Let X be a quasi-Banach K-space. The following are equivalent:
i) There exists a linear metric projection $m: Q(X, \mathbb{R})$ $\rightarrow X^{\prime}$.
ii) $\mathcal{Q}(X, \mathbb{R})=X^{\prime} \oplus \mathbf{B}(X, \mathbb{R}) / X^{*}$.
iii) X^{\prime} is complemented in $\mathcal{Q}(X, \mathbb{R})$.

We have seen so far two instances of this situation: the conditions in proposition 7.3 are equivalent to the fact that X is an \mathcal{L}_{1}-space; on the other hand, we know that conditions in proposition 7.4 hold when X is a K-space with trivial dual. Let us give a unifying theorem.

Recall that the Banach envelope of a quasi-Banach space $\operatorname{co}(X)$ is defined as the closure in $X^{* *}$ of the canonical image of $X \rightarrow X^{* *}$ under the map $\delta(x)\left(x^{*}\right)=$ $=x^{*}(x)$. It has the universal property that every operator $\tau: X \rightarrow \mathbb{R}$ admits an extension $T: \operatorname{co}(X) \rightarrow \mathbb{R}$ such that $T \delta=\tau$. In this way we arrive to the central result of the paper.

Theorem 7.5. Let X be a quasi-Banach space. Then there exist a linear metric projection $m: Z(X, \mathbb{R}) \rightarrow$ $\mathbf{L}(X, \mathbb{R})$ if and only if $\operatorname{co}(X)$ is an \mathcal{L}_{1}-space.

Proof. The proof requires the duality techniques developed in [2] for Banach spaces and extended in [5] to quasi-normed groups. Precisely, that given a 0 -additive $\operatorname{map} f: G \rightarrow \mathbb{R}$ on a quasi-normed group there exists a 0 -linear map $F: \operatorname{co}(G) \rightarrow \mathbb{R}$ such that $F \delta$ is a version of f.

Now, if here exists a linear metric selection $m: Z(X, \mathbb{R})$ $\rightarrow \mathbf{L}(X, \mathbb{R})$ then the same proof of proposition 3.1 shows that every 0-linear map $X \rightarrow V$, where V is an ultrasummand, is trivial. By the result mentioned above, every 0 -linear map $\operatorname{co}(X) \rightarrow V$ is trivial, and thus, by the characterization 3.2, $\operatorname{co}(X)$ is an \mathcal{L}_{1}-space.

Conversely, assume that $\operatorname{co}(X)$ is an \mathcal{L}_{1}-space. The existence of a linear metric selection $m: Z(X, \mathbb{R}) \rightarrow$ $\mathbf{L}(X, \mathbb{R})$ is equivalent to the splitting of the exact sequence

$$
0 \rightarrow X^{\prime} \rightarrow Z(X, \mathbb{R}) \rightarrow(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow 0
$$

hence, equivalent to the existence of a linear Lipschitz selection $s:(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow Z$. Since $(\mathbf{B}+\mathbf{L}) / \mathbf{L}=\mathbf{B} / \mathbf{B} \cap \mathbf{L}$, we are asking about the existence of a linear Lipschitz selection $\mathbf{B} / X^{*} \rightarrow \mathbf{B}+\mathbf{L}$. But since $X^{*}=\operatorname{co}(X)^{*}$ and $\operatorname{co}(X)$ is an \mathcal{L}_{1}-space, X^{*} is injective. So, the sequence $0 \rightarrow X^{*} \rightarrow \mathbf{B} \rightarrow \mathbf{B} / X^{*} \rightarrow 0$ splits. A look at the commutative diagram
should convince us that when the lower sequence splits so does the upper sequence.

This result includes the previous cases: if X is itself a Banach space then $X=\operatorname{co}(X)$. If X is a quasi-Banach with trivial dual then $\operatorname{co}(X)=0$, which is certainly an \mathcal{L}_{1}-space.

Things could be pushed further making homogeneity disappear and moving to quasi-Banach groups. The reader is referred to [5] for an introduction, reference and full development of the theory of quasi-additive maps on controlled semigroups. With essentially (except for a tricky point of the theory of groups: that 0 -additive maps are not automatically close to an additive map) the same proof as before one gets.

Proposition 7.6. Let (G, ρ) be a quasi-normed group such that every 0 -additive map $(G, \rho) \rightarrow \mathbb{R}$ is asymptotically additive. The following are equivalent:
a) There exist an additive metric projection $Z \rightarrow L$.
b) $\operatorname{co}(G)$ is an \mathcal{L}_{1}-space.

8. THE UNIVERSAL $\operatorname{coz}(X)$ SPACE

The Banach envelope $\operatorname{co}(X)$ of a quasi-Banach space is an universal object characterized by the following property: every operator $T: X \rightarrow Y$ into a Banach space factorizes through the operator $X \rightarrow \operatorname{co}(X)$. Does there exists a similar object for 0-linear maps? The answer is yes and this new object provides a deep insight into the problem of finding a linear metric projection.

Proposition 8.1. There exists a Banach space $\operatorname{coz}(X)$ and a 0 -linear map $\delta: X \rightarrow \operatorname{coz}(X)$ with the property that for every 0-linear map $F: X \rightarrow \mathbb{R}$ there exists a linear continuous map $\pi_{F}: \operatorname{coz}(X) \rightarrow \mathbb{R}$ such that $\pi_{F} \delta=F$.

Proof. Let $\operatorname{coz}(X)=[Z(X, \mathbb{R}), Z(\cdot)]^{*}$. The space $[Z,(X, \mathbb{R}), Z(\cdot)]$ is a semi-normed space (see [4] for a related construction yielding a semi-Banach space) space. The operator $\delta: X \rightarrow \operatorname{coz}(X)$ is «essentially» obviously defined by $\delta(x)(F)=F(x)$. The reader may observe that $\delta(x) \in Z(X, \mathbb{R})^{\prime}$ and might not be continuous. It is not difficult to define a linear map $L: X \rightarrow Z(X, \mathbb{R})^{\prime}$ such that, for every $x \in X, \delta(x)-L(x) \in[Z(X, \mathbb{R}), Z(\cdot)]^{*}$: just consider a Hamel basis $\left(x_{\gamma}\right)$ of norm one vectors of X and define $L\left(x_{\gamma}\right)=\delta\left(x_{\gamma}\right)$. It is clear now that

$$
\left|F\left(\sum \lambda_{\gamma} x_{\gamma}\right)-\sum \lambda_{\gamma} F\left(x_{\gamma}\right)\right| \leq Z(F) \sum\left|\lambda_{\gamma}\right|
$$

and thus $\|\delta(x)-L(x)\| \leq \sum\left|\lambda_{\gamma}\right|$. The presence of L does not modifies the 0 -linear character of δ, which should be self-evident. Finally, if $F: X \rightarrow \mathbb{R}$ is a 0 -linear map then since $[Z(X, \mathbb{R}), Z(\cdot)]^{*}$ is a vector subspace of $\mathbb{R}^{z(X, \mathbb{R})}$, then π_{F} is the restriction to $[Z(X, \mathbb{R}), Z(\cdot)]^{*}$ of the projection onto the F-coordinate. The linearity and continuity of such map are obvious.

What is interesting for us now is the following property:

Proposition 8.2. There exists a linear metric selection $m: Z(X, \mathbb{R}) \rightarrow X^{\prime}$ if and only if δ can be approximated by a linear map.

Proof. It $S: X \rightarrow \operatorname{coz}(X)$ is a linear map such that $\|\delta-S\| \leq M<+\infty$ then $\pi_{F} L: X \rightarrow \mathbb{R}$ is a linear map such that $\left\|F-\pi_{F} S\right\| \leq\left\|\pi_{F}\right\| M Z(F)$, as we show now:

$$
\begin{aligned}
\left|F x-\pi_{F} S x\right| & =\left|\delta_{x}(F)-\pi_{F} S(x)\right|= \\
& =\left|\pi_{F}\left(\delta_{x}-S\right)\right| \leq \\
& \leq\left\|\pi_{F}\right\|\|\delta-S\|\|x\| .
\end{aligned}
$$

On the other hand, there is little doubt that the process $F \rightarrow \pi_{F} L$ is linear.

Conversely, if there exists a linear metric selection $F \rightarrow m(F)$ then, as we have already seen, $\operatorname{co}(X)$ is an \mathcal{L}_{1}-space, in which case every 0 -linear map $\operatorname{co}(X) \rightarrow V$ taking values in an ultrasummand is trivial (reasoning as in 3.1). By the duality results cited at the beginning of the proof of theorem 7.5, every 0-linear map from X into an ultrasummand is trivial. Since $\operatorname{coz}(X)$ is a dual space, it is complemented in its bidual, hence it is an ultrasummand and thus δ is trivial.

9. APPENDIX: A TWIST OF THE SCREW

In the previous sections we have worked with the sequence

$$
0 \rightarrow \mathbf{L} \rightarrow \mathbf{B}+\mathbf{L} \rightarrow(\mathbf{B}+\mathbf{L}) / \mathbf{L} \rightarrow 0
$$

of metric spaces under the metric $\|\cdot\|$. We could have also considered the same sequence under the semi-metric $Q(\cdot)$; it is not Hausdorff because the linear maps form the closure of 0 . To be a K-space means that the norms induced on $(\mathbf{B}+\mathbf{L}) / \mathbf{L}$ by $\|\cdot\|$ and $Q(\cdot)$ coincide. Let us consider now the situation on finite dimensional spaces to recover the meaning of the Kalton-Roberts theorem and to put in perspective the results proved in the paper.

Let Ω be a finite set. Let $l_{\infty}(\mathcal{P}(\Omega))$ be the space of all (all = bounded) maps $\mathcal{P}(\Omega) \rightarrow \mathbb{R}$. The subspace of all additive maps is precisely $l_{1}(\Omega)$, and the embedding is

$$
\begin{aligned}
l_{1}(\Omega) & \rightarrow l_{\infty}(\mathcal{P}(\Omega)) \\
\mu & \rightarrow \bar{\mu}: \bar{\mu}(A)=\sum_{i \in A} \mu(i) .
\end{aligned}
$$

Thus, one has the exact sequence (of vector spaces)

$$
0 \rightarrow l_{1}(\Omega) \rightarrow l_{\infty}(\mathcal{P}(\Omega)) \rightarrow l_{\infty}(\mathcal{P}(\Omega)) / l_{1}(\Omega) \rightarrow 0
$$

Consider now the sequence in the semi-norm

$$
Q(\mu)=\sup \{|\mu(A \cup B)-\mu(A)-\mu(B)|: A, B \text { disjoint }\} .
$$

One has only an exact sequence of semi-Banach spaces since $l_{1}(\Omega)=\{0\}^{Q(\cdot)}$; however, the quotient $l_{\infty}(\mathcal{P}(\Omega)) / l_{1}(\Omega)$ is a certain finite-dimensional Banach space.

However, if the sequence is considered in the usual $\|\cdot\|_{\infty}$ norm, the embedding of $l_{1}(\Omega)$ into $l_{\infty}(\mathcal{P}(\Omega))$ is nothing different from a Rademacher-like embedding of $l_{1}(n)$ into $l_{\infty}\left(2^{n}\right)$ (in fact, if $|\Omega|=n$ then $\left.|\mathcal{P}(\Omega)|=2^{n}\right)$. This embedding is not so accurate as to be isometric since one can only obtain $2^{-1}\|\mu\|_{1} \leq\|\bar{\mu}\| \leq\|\mu\|_{1}$. In this way, the sequence is just the exact sequence of Banach spaces

$$
0 \rightarrow l_{1}(n) \rightarrow l_{\infty}\left(2^{n}\right) \rightarrow l_{\infty}\left(2^{n}\right) / l_{1}(n) \rightarrow 0
$$

for which one is perfectly able to prove two things: that it splits (like all sequences with finite dimensional spaces do), and that it does with projections having norms tending to infinity (since l_{1} is not complemented in an \mathcal{L}_{∞}-space).

In this context, the Kalton-Roberts theorem says that the Banach spaces $\left(l_{\infty}\left(2^{n}\right) / l_{1}(n),\|\cdot\|_{\infty}\right)$ and $\left.\left(l_{\infty}\left(2^{\prime \prime}\right)\right) / l_{1}(n), Q(\cdot)\right)$ are 90 -isomorphic independently on n. While our theorem about the nonexistence of a linear metric projection method «essentially» means that l_{1} is not complemented in $l_{x}\left(2^{\mathbb{N}}\right)$.

REFERENCES

1. Aharoni, I \& Lindenstrauss, J. (1978). Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84, 281-283.
2. Cabello Sánchez, F. \& Castillo, J. M. F. (2000) Duality and twisted sums of Banach spaces, J. Funct. Anal. 175, 1-16.
3. Cabello Sánchez, F. \& Castillo, J. M. F. Uniform boundedness and twisted sums of Banach spaces, preprint.
4. Cabello Sánchez, F. \& Castillo, J. M. F. The long homology sequence for quasi-Banach spaces, with applications, Positivity (to appear).
5. Cabello Sánchez, F. \& Castillo, J. M. F. Banach space techniques underpinning a theory for nearly additive maps, Dissertationes Math. (to appear).
6. Cabello Sánchez, F. \& Castillo, J. M. F. (1999). Natural transformations for the functor Ext; I. The locally bounded case, preprint.
7. Castillo, J. M. F. (1997). Snarked sums of Banach spaces, Extracta Math. 12, 117-128.
8. Castillo, J. M. F. On the «three-space» problem for locally quasi-convex groups, Archiv Math. (to appear).
9. Castillo, J. M. F. \& González, M. (1997). Three-space problems in Banach space theory. Lecture Notes in Mathematics 1667, Springer.
10. Castillo, J. M. F., González, M., Plichko, A. M. \& Yost, D. Twisted properties of Banach spaces, Math. Scand. (to appear).
11. Dierolf, S. (1973) Über Vererbbarkeitseigenschaften in topologischen Vektorrdumen, Dissertation Ludwig-Maximilians Universitat, Munich.
12. Domanski, P. (1987). Extensions and liftings of linear operators, Adam Mickiewicz University, Poznan.
13. Enflo, P., Lindenstrauss, J. \& Pisier, G. (1975). On the «three-space» problem for Hilbert spaces, Math. Scand. 36, 199-210.
14. Ger, R. (1992). The singular case in the stability of behaviour of linear mappings; In: Selected topics in Functional Equations and Iteration Theory, Proceedings of the Aus-
tralian-Polish seminar, Graz, 1991, Grazer Math. Ber. 316, 59-70.
15. Hilton, P. J. \& Stammbach, U. (1970). A course in homological algebra. Graduate Texts in Mathematics 4, Springer.
16. Johnson, W. B. (1997). Extensions of c_{0}, Positivity, 1, 55-74.
17. Kalton, N. J. (1978). The three-space problem for locally bounded F-spaces, Compo. Math. 37, 243-276.
18. Kalton, N. J. (1981). Convexity, type and the three-space problem, Studia Math. 61, 247-287.
19. Kalton, N. J. (1984). Localy complemented subspaces and \mathcal{L}_{p}-spaces for $0<p<1$, Math. Nachr. 115, 71-97.
20. Kalton, N. J. \& Peck, N. T. (1979). Quotients of $L_{p}(0,1)$ for $0 \leq p<1$, Studia Math. 64, 65-75.
21. Kalton, N. J. \& Peck, N. T. (1979). Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255, 1-30.
22. Kalton, N. J., Peck, N. T. \& Roberts, J. (1984). An Fspace sampler, London Math. Soc. Lecture Note Series 89, Cambridge Univ. Press.
23. Kalton, N. J. \& Pelczynski, A. (1997). Kernels of surjections from \mathcal{L}_{1}-spaces with applications to Sidon sets, Math. Ann. 309, 135-158.
24. Kalton, N. J. \& Roberts, J. W. (1983). Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 278, 803-816.
25. Lima, A. \& Yost, D. (1988). Absolutely Chebyshev subspaces; in Workshop/Miniconference on Functional Analysis/Optimization, Canberra.
26. Lindenstrauss, J. (1964). On non-linear projections on Banach spaces, Michigan Math. J. 11, 268-287.
27. Lindenstrauss, J. (1964). On a certain subspace of l_{1}, Bull. Polish Acad. Sci. 12, 539-542.
28. Lindenstrauss, J. \& Tzafriri, L. (1977). Classical Banach Spaces I, Sequence spaces, Springer.
29. Ribe, M. (1979). Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 237, 351-355.
30. Vogt, D. (1978). On the functors $E x t^{1}(E, F)$ for Fréchet spaces, Studia Math 85, 163-197.
