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ABSTRACT 

It is shown that each Banach space with property 
(kNUC) has the Banach-Saks property. As a consequence 
of this result it is noticed that there exists a Banach space 
which is (NUQ but not {kNUC). Criteria for property 
{kNUC) in Orlicz function spaces and Orlicz sequence 
spaces are given. In Orlicz function spaces property 
(kNUC) coincide with uniform convexity. In a contrast to 
this result, in Orlicz sequence spaces property {kNUC) is 
essentially weaker than uniform convexity and it is 
equivalent to reflexivity. 

1. INTRODUCTION 

Let {X, II • II) be a real Banach space, and let X* be the 
dual space of X. Let B{X) {S{X)) be a closed unit ball (a 
unit sphere) of X. 

In 1937, J. A. Clarkson [4] introduced the concept of 
uniform convexity. 

A Banach space X is called uniformly convex (write 
(UC)) (see [4], [5], [6], [14] and [20]) if for each e > 0 
there is ¿ > 0 such that for x, y e S{X) the inequality 
||x-_y|| > g implies 

1 
{x + y) <l-ô. 

Let /c > 2 be an integer. Recall that a Banach space X is 
said to be fully /c-rotund {{kR) for short) if for every se­
quence {xj Œ B{X), \\x,^^ + ••• + xj\ -^kñs fz,, ^2, ..., 
/î̂  —> GO implies that {x,J is a Cauchy sequence (see [7]). 

It is well known that {UR) => {kR) => {{k + l)R) and 
{kR) space is reflexive and rotund. 

The next notion is a generalization of the nearly uni­
form convexity [{NUC) for short) introduced by Huff (see 
[9]). For an integer k>2, a. Banach space X is said to be 
compactly fully k-rotund {CkR) if for every sequence 
{xj c:5(X), ||x,,-Fx„^+----Hx„J|-^/cas^i,/Î2, . . . , % ^ 
00 implies that {x„} is a relatively compact sequence 
(see [13]). 

If ^ > 2 is an integer, a Banach space X is said to 
be {kNUC) if for any e > 0 there exists ô > 0 such 
that for every sequence {xj cz B{X) with sep(x„) := 

x,̂  - xj\:n^m} >e there are^j ^2, ...,n^eA^for = inf{ 

which + ^.,+ + x„ <l-ô (see [12]). 

1991 Mathematics Subjects Classification: 46E30, 46E40, 46B2(). 

A Banach space X is said to have the weak Banach-
Saks property if every weakly null sequence {xj in the 
unit ball B{X) of Z admits a subsequence {zj such that 

fl 
the sequence of the arithmetic means \-{Zi+ Z2 + -" + z,) 

[n 
is convergent in X. 

Denote by JV" and 31 the sets of natural and real 
numbers, respectively. Let (G, E, ji) be a measure space 
with a finite measure /i. Denote by LP the set of all JJ.-
equivalence classes of real valued measurable functions 
defined on G. Let /^ stand for the space of all real se­
quences. 

A map O: !R—> [0, 00) is said to be an Orlicz function 
if Í) is vanishing at 0, even, convex and not identically 
equal to 0. An Orlicz function is called an N-function at 
00 (resp. at 0) if 
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lim = GO resp. lim = 0 
•00 U »-̂ o u 

By the Orlicz function space L^ we mean for all u, V e [0, UQ] satisfying \u — v\> e max {u, v] 

L(^= <XEL^ : I^(cx) = $(cx(0) di^i, < oo for some c> 0 
We say an Orlicz function 3> is strictly convex if for 

any u ^ v and a e (0, 1) we have 

Analogously, we define the Orlicz sequence space by the 
formula 

l^, = Ixel^ : Iq>(cx) = Y, ^{cx(i)) < cx) for some c>0>. 

<D(aw + (1 - (x)v) < a^(u) + (1 - a)(I)(i;). 

For the above informations and more details on Orlicz 
functions and Orlicz spaces we refer to [2], [11], [16] or 
[17]. 

L(j, and /̂ ^ are equipped with the so called Luxemburg 
norm 2. RESULTS 

Ixll = i n f < e > 0 : / , j , ( - | < 1 

or with equivalent one 

ll̂ llo = inf - (1 + I^ikx)) 
k>o k 

called the Orlicz or the Amemiya norm. It is well known 
that if <i> is an //-function, then for every xi^O there exists 
k > 0 such that 

||x||o = ^ ( l + 4 ( / c x ) ) . 

To simplify notations, we put L^ = (L^, \\-\\X l,^ = (4p, ||• ||o), 
L?, = (L^, IMIo) and/« = (Cl|-|lo)-

For every Orlicz function $ we define its complement­
ary function ^ : 31—> [0, oo) by the formula 

¥ ( Î ; ) = sup {u\v\ - a>(w)} 

for every v E IL 

We say an Orlicz function <i> satisfies the A2-condition 
{Ô2-condition) if there exist constants k > 2 and UQ> 0 
such that O(wo) > 0 and 

cD(2w) < k^iu) 

for every \u\> UQ (for every \u\< uy), respectively. 

_ We say an Orlicz function í) satisfies the V2-condition 
(á2-condition) if its complementary function ^* satisfies 
the A2-condition ((52-condition), respectively. 

An Orlicz function í) is said to be uniformly convex on 
[0, MQ], if for any e > 0, there exists ô > 0 such that 

Theorem 1. Let X be a Banach space. If there exists 
0 G (0, 1) such that for every weakly null sequence 
{x,J c: B(X), there exist n^, n2, ..., n,^e Nfor some k e N 

for which 

x„ + x„ + • • • + x„ 
n 1 « 2 ' I A: < 1 

then X has the weak Banach-Saks property. 

Proof. For every weakly null sequence {xj a B(X), 
there exist n\^\ n^'\ ..., n[^^ e N such that 

< I 

For the weakly null sequence {x^J„>,/i), there exist also 
nf, nf, ...,nf EN such that 

(2) , (2) , . . . , U2) 

< 1 

In such a way, we can get a system {x;̂ '|, x;̂ '̂ , ..., x^^^]Ji j of 
subsequences of {x,J such that 

< 1 - 0 

for each / e N. 

Put};, 
r(') _L. r̂ O _i. . . . _L r^') 

-̂ ^̂  ^^— ^- Then {v,} is a weakly null 

sequence in B(X). In the same way as above, we can get a 
system [y^l^^, jj^^, ..., ^^%^ of subsequences of {y,^} such 
that 

y(') + y(') + . . . 4- y(') 
^ m i -^m2 -^w¿- < 1 - (? 
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for each / e N. Hence, for each m,, ..., m.eN 

Jmi) . xi:;" + ---+K, 
.(mi) U'WA) + • • • + X •('"A) 

kil - 6) k{l - 6) 
<i~e. 

I.e., 

1 
l ie*+•••+<•* + + x;;'"' + •••+x;"'*->ii<(i - 0 ) 1 

Let e > 0 be given. There exists / e JVsuch that (1 -6)' 
< £. Repeating the above procedure / times, we have 

k'-' 

Y^{^^+^^ + ...+4^) 
j=i 

< (1 - ey < 8. 

By Theorem 2 in [18], we get that Z has the weak Banach-
Saks property. D 

Corollary. If a Banach space X is (kNUC) for some 
k>2, then it has the Banach-Saks property. 

Proof Notice that X with property (kNUC) is reflexive 
and that X has the Banach-Saks property if and only if X is 
reflexive and it has the weak Banach-Saks property. So, 
by Theorem 1, the corollary follows. D 

Assume the contrary, i.e. there is an interval [a, b] 
such that right-hand derivative p of $ is constant on 
[a, b]. Take G^ c: G such that 0 < p(G\G^) < p(G) and 
choose c > 0 and G' czG\G^ satisfying 

¥(/7(a))MG^) + Y(p(c))MG0 = l. 

Divide G^ into two subsets G\ and G^ such that G° = 
= Gi U G2 with p(G\) = piGl). Suppose that the sequence 
of sets (G'r ' , G ^ ^ ..., G'^f\) is already defined. Every 
set G-~^ we divide into two subsets G'^.j, Gj¡ such that 
G r ' = G ,̂_, U G ,̂ and MG^,_,) = Mi^.) a =1 ,2 , . . . ,2" - ' ) . 
In such a way, we obtain a system of partitions (G", 
G ,̂ ..., G y of GO such that 

M G ; 0 = 2-'Vi(G0) ( / = 1 , 2 , . . . ,2 '0. 

Denote 

k= l+(^ 
a + 

fi(G') + (I>(c)/i(GO 

and put 

-̂ n = ^ («%£,,,, + ^ Z E 2 , „ ) ' 

Remark. There is a Banach space X which is (NUC) 
but it is not (kNUQ for any k>2,ke M 

Proof Kutzarova [12] has shown that if for some k>2, 
ke HXis (kNUC) then X is (NUC). It is well known 
that the Baernstein space B is (NUC) (see [1] and [20]) 
and it has not the Banach-Saks property (see [20]). So by 
Corollary, we know that the Baernstein space is not 
(kNUC) for any k>2,ke!M This means that property 
(kNUC) is essentially stronger than property (NUC). D 

Theorem 2. Let ^ be a Orlicz function. L^^ (or L̂ j,) is 
(kNUC) if and only if<í> is a strictly convex Orlicz func­
tion satisfying the A^-condition and ^ is uniformly con­
vex outside a neighbourhood of zero. 

Proof The sufficiency follows from the fact that L^¡, 
(or L%) is (UC) under the assumption that (!) is a strictly 
convex Orlicz function satisfying the A2-condition and $ 
is uniformly convex outside a neighbourhood of zero. 
We only need to prove the necessity of the theorem. 

where £ , „ = U G'^*-P ^2,,, = U G'i, (n = 1, 2, . . .) . 
k=l k=l 

Since I^[p(kx,)) = 1, we have 

\K\\o = -{l+I^(kx,))=l ( n = l , 2 , . . . ) . 

By the reflexivity of L%, we can assume that there exists 
X e B(L%) such that x^^ - ^^ x. 

Since V = p 
a + b 

XGO + CXG' 1 defines a functional 

which supports x^^ (n = 1,2, ...), so x e S(L%). But 

.. b-a ii(G^) _ , / 2 
\^n ^n, n — vj/-

(n, m = 1,2, ..., n ^ m). 

This contradicts the Kadec-Klee property. 

Obviously, every Banach space X with property (kNUQ 
has the Kadec-Klee property. 

In the case of L̂ jj, the proof of the necessity of strict 
convexity of cp for the Kadec-Klee property we can find 
in [19]. Next, we will show that $ must be strictly con­
vex in the case when L[j, has the Kadec-Klee property. 

The necessity of the uniform convexity of <!> outside a 
neighbourhood of zero and of the A2-condition is proved 
in [2], Theorem 3.15. D 

Theorem 3. The Orlicz sequence space 4„ is (kNUC) if 
and only if^ satisfies both the Ô2-condition and the Ô2-con-
dition, i.e. /(„ is reflexive. 
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Proof. We need only to prove the sufficiency of the­
orem. Suppose that the implication is not true. Let an 
arbitrary e > 0 and any (x^) a B{1^) with sep(ji,,) > £ be 
given. By $ G Ô2, there exists è = ¿(s) > O such that 

MuJ'^^^-r^]:n^m'>>ô. 

Next, we will show that for any j e N there exists rij e N 
such that 

By Í) G Ô2, there exists 6 > 0 such 

(3) I4(^ + j ) -4WI < 
0 ¿ 

whenever I^(x) < 1, 4 (y ) < 6 (see [2], [10]). 

Take n^ < n2< -" < ^k-x^ ^v ^2' •••' %-i ^ ^- Notice 
that 

(1) i (̂• .̂,(o)> -̂

Otherwise, there exists JQ E N such that 

Z^M)< 
for any j e N. 

Definingx„ = (x^/l), x,X2), ..., x^^Jol 0' 0' • • 0 ^ r n e_N, 
we easily get that there exists a subsequence {x,^J of {xj 
such that 

U'^^^'^\< 

for any / ^ j . Hence 

+ /. 

Ij'^^^^^^\ = L 

I -'' \ 
X M)-x„/¿))e/ 

^=./0+l 

X;(X„,(^)-X„,(Â:))^,\ 

X(x„,.(^)-x„/fc))e 
</«, 

/ 

+ ̂  I ^ M ) ) + ̂  Z ^ M ) ) = /<, 
A- = / o + l /C = . / • ( ) + 1 

+i £ ^M))+^ z <i>M))<^+^+^=^<5<á. 
' k=ia\\ 3 6 6 3 

This contradiction shows that (1) holds. 

Since (I) satisfies the ¿2-condition, there is 0 < 0 < 1 
such that 

(2) ( D ( - j < ( l - 0 ) ^ (VO</ .<cIr ' ( l ) ) 

(see [2], [3] and [8]). 

-y., + - ^ n 2 + - - ' + - ^ n . , i < 1 

and /(i)(x,̂ .) < 1 for / = 1, 2, . . . , / : - 1 . There exists7*0 ^ Â  
such that 

(4) X $(^ . (0+^J ' )+-+^. . - , (0 \ < 
' = y o + i 

and 

X <i'K(o)<T o- = i,2, . . . , ^ - 1 ) . 

By (1), there exists n^ e iV such that 

b 
(5) Z <I>MO) > 

'•=70+1 

So, in virtue of (2), (3), (4) and (5), we get 

/ = 7 o + l \ '^ / / ^ y = i / = i 

+ - ^ Z ^[^,M + ̂  = T Z Z ̂ k,(o) -

0 « , , 0 ( 5 0 ¿ 0(5 , 0(5 

' - J o + 1 

This completes the proof. D 

Theorem 4. For any N-function (í> at 0 the Orlicz se­
quence spaces 1% is (kNUQ if and only ifQ> satisfies both 
the (^-condition and the Ô2-condition, i.e. /[¡̂  is reflexive. 
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Proof. We only need to prove the sufficiency. Let an 
8 > 0 and any (xj cz B(l%) with sep(x,̂ ) > e be given. By 
Í) G ¿2, there exists ô > 0 such that 

inf ^ / . J Í ^ ^ ^ l : n ^ m ^ > ¿ . 

By the arguments as the Theorem 3, we have that for any 
j eN there exists rij e N such that 

(6) X(D(x„/0)>:r-

Take /:„ > 1 such that 

whenever 0 < u < (£> ^(ko). By O 6 ¿2. there exists 6 > 0 
such that 

&I¿ Ô 
\I^(x + y)- 4(x)| < ^ ^ ^_, • -• 

if /^(x) < k, and 4(j) < 0 (see [2] and [10]). 

Notice that4 ' ^--1+^--2+•••+^n.-, < 00 and I^(xJ < 

< 00 for /= 1, 2,.. . , /: - 1. So, there exists JQ G A/̂  such that 

'•=70+1 

and 

Since 0 satisfies the (32-condition, the number 

kQ = sup{fc,̂  : n = 1, 2, ...} 

X ^M))<:7 (7=1,2, . . . ,^-1) . 
/=;o+i -^ 

By (6), there exists n¡^E N such that 

is finite (see [2]). Fix n^<n2< ••• <ni^_^,n^,n2, ...,n¡^_ie N. 
For any ri/^ G Â , put 

i^=n^n,' ^^=n^«,' ' ' = n T ^ n̂d A 
^o^' + l 

By 3) e ¿j, there exists 0 < 0 < 1 such that 

<E)(1M) < (1 - 0)A<D(M), (0 < M < <I)-'(;to)) 

(see [2], [3] and [8]). Since í> is convex, for any / e [0, X] 
and u e [0, (S>'\kg)], we have 

€>(/«) =<ï)( A - M j < (1 - 0) / ia) j - M ) < 

< 1(1 - 0 ) - <I>(M) < (1 - 0)/(I)(M). 
Á 

Since 
h,. h„ fin 

k ^ - 1 - 1 ^ L k - \ 

/ = 1 / = 1 

(7) m-!^u 

= À, there holds 

k. 

¿"̂  / 
< (1 - 0 ) ^ ^ (D(M) 

Z ^(^.(0) > 
' • =70+1 

Hence 

Ih, 
H 

l+h 
H 

\; 
IK 

Z ^n, 

(•«,„ +•*„.+ ••• +-̂ „._, +-^J 

Ẑ ,-
H 

Jo 

1 + Z ^ 
/ = 1 

/ 

\ ; 

^-(x„,(/)+--+xJ/))l + 

/ 

+ z ^ 
'•=70+1 

\ 
H 

\: 
E", 

fc,(i) + --+x„,(i)) 

/ , 

1 + Z ^ -^-/:„x„,(0+---+-^—Â:„xJO 

V Z :̂ Z/', 
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\ 
H J-f 

\l'' Y.h, 

Ih, 
<-

H 

^ 
1 + Z 

/=1 

/ \ 
^ 1 ^ i , , . / • x \ . , ^ * 

\ / 

%„^„,(0)+-+T^a)(/:„xJ/)) 

/ 

\ 
K 

+ Z ^ h r ^ V J O 
¿0yti 

6(1+4"') 

Ẑ --
H 

Jo 

1 + Z 
/ = 1 

-^^k„^x„^ii))+...+-P^m„x„si)) 
\ ,P" Z/', 

+ (1-0) i I ^(MJO) + ^ ^ f ^ 

^Z]r(i+'^*^M.,))-0T^ Z 't(VJO) + 
/ = i ^ / i / 

¿©H 0/CÍ seid 
6(1+e^) l + e ' . - t l , ^̂ '̂ ^̂ ^̂  6(1+/:^-0 /=jo+l 6(l+)feS"0 

0/:̂ n ¿©M 
l+ / : í -^ - t l , "̂̂ ^̂ ^ 6(l+ife^ ^0 / = / o + l 6(1+K-') 

<k 
@tí¡, s ÔQk'ç, 

- + = k-
ÔSk' 

1+/^-^ 3 6(1 + Z^-^) 6(1 + 4-^) 

This completes the proof. D 
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