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ABSTRACT 

We present some results concerning the general theo­
ry of poly measures. Among them, we point out an exam­
ple of a polymeasure of bounded semivariation and un­
bounded variation, and two different characterizations of 
uniform poly measures. 

We will say that a sequence (A„) of subsets of K conver­
ges io A cz K, and we will write it A^^ —> A, if x^ (t) -^ 
X^(t) for every teKAf (A J is an increasing (respectively 
decreasing) sequence, we will write this as A^^ / A (res­
pectively An \ A). In the sequel Y will denote a Banach 
space. 

INTRODUCTION 

In this paper we present some results concerning the 
general theory oí polymeasures, set functions defined on 
the product of k algebras which are separately measures. 

The case of bimeasures (k = 2) has been studied by 
different authors since a long time (see specially [12] and 
the bibliography there mentioned). Its natural generaliza­
tion, polymeasures, were introduced by Dobrakov in [7]; 
in a series of papers (see [8] and the bibliography there 
mentioned) he developed a very general theory of inte­
gration for them. Polymeasures have also been used in, 
for example, [2], [3], [9], [10] and [11]. We must men­
tion here that, for several results, the case of yt = 2 is 
essentially simpler than the case of k > 2. 

In the first section we present the definitions and some 
general results. Example 1.4 is interesting because it ex­
hibits a scalar polymeasure of bounded semivariation 
and unbounded variation. 

In the second section we show some results referred to 
uniform polymeasures. We remark that Theorem 2.5 pre­
sents a generalization to this kind of polymeasures of a 
well known theorem of Pettis about measures, and shows 
that the restriction to uniform polymeasures can not be 
dispensed with. 

We present first our notation. Along the paper, k will be a 
fixed natural number. We will call J t̂ (respectively S) to 
an algebra (respectively cr-algebra) defined on a set K. 

1. POLYMEASURES 

Definition 1.1. [7, Definition 1] A function y : J t̂j x 
-' X JAi^-^ Y or y : Ji^ X JẐ ^ -> [0, +oo] is a 

(countably additive) k-polymeasure if it is separately 
(countably) additive. 

Although we present the definition of polymeasures as 
separately finitely additive set functions defined on the 
product of algebras, until now only the case of countably 
additive polymeasures defined on the product of cr-alge-
bras has been studied. For this case we want to mention 
that if S, X ••• X E^ are cr-algebras and /i is a countably 
additive measure defined on Ej ® ••• ® E^, the product 
cr-algebra, then we can obviously define a countably ad­
ditive polymeasure y on E, x ••• x E^ by y(A^, ..., Â )̂ = 
= /.i(A^ x ••• X Ai). The converse is far from true: let us 
call r(E, X • • • X E^) to the ring generated by Ej x • • • x E/̂ . 
Then, given a countably additive polymeasure y defined 
on Ej X ••• X E^, we can always extend it to a finitely 
additive measure /i defined on r(Ej x ••• x E^), but /i 
need not be countably additive, and it can not be exten­
ded in general to E, (x) ••• ® E^ (see [6]). In [4], some 
light is thrown on the question of when a polymeasure 
can be extended to a measure on the product (j-algebra. 

We present now some basic definitions. 

Definition 1.2. [7, Definitions 2 and 3] Given a poly­
measure y : J2l, X • • • X J2l̂  —> Y, its variation 
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is given by 

v(y)(A„ ..., A,) = sup <¡ X ••• Z MM'^ •••. Af)\\ 
n\ iik 

where the supremum is taken over all the finite Si--parti-
tions(^/y;¡^, of A. (I <i<k). 

Likewise we define its supremation 

y : J2tj X ••• X JZI^^ [0, +oo] 

by 

y(A„. . . ,A,) = sup{ | |7(B„. . . ,5 , ) | |} 

where the supremum is taken over all the sets B- e JA-
such that B. cz A. (1 < / < k). 

And we can define also its semivariation 

| |y | | : JZl, x - . - x j 2 l , - > [ 0 , + œ ] 

by 

||y||(Ai, ...,A^) = sup 

where the supremun is taken over all the finite JA¡-
partitions (AJ/)JÍ= J O/A- (1 <i<k), and all the collections 
(^i')j-= 1 contained in the unit ball of the scalar field. 

It is clear that these definitions extend the correspon­
ding notions about measures. As in the case of measures, 
we get that, for every (Aj, ...,AJ)EJÍ^ X • • • X J \ . and for 
every / e {1, ..., k}, 

||y(Aj, ..., A,)|| < y(A„ ..., A,) < ||y||(A„ ..., A,) < 

< r(y)(A„ . . . ,A,). 

IIyII, y, v(y), are separately monotone. 

| | y | | (A„ . . . ,A ,_ j ,0 ,A , , „ . . . ,A , ) = 

= y(A^, . . . ,A._,, 0,A.^,, ...,A^.) = 

= i ; ( y ) (A„ . . . ,A ,_„0 ,A , , „ . . . ,A , ) = O. 

The following proposition can be found in [7, Theo­
rem 3]. 

Proposition 1.3. Let y : J4., x •" x JA,^^ Y be a k-
polymeasure. Then, for every (A,, . ..,A¡) e JA^ x • • • x Ĵ t̂ , 

y(A„. . . ,A, )< | |y | | (A„. . . ,A, )<4^y(^, Ak). 

From here, it can be extended from the case k = 1 the 
fact that, if Z,, ..., E^ are cr-algebras defined on sets 

i^i, ..., Ar^andy : Zj x ••• x E^,-^ Fis acountably additi­
ve polymeasure, then | |y| |(^i, ..., Kj) < -hoo (see [7, 
Theorems 2 and 3]). 

For scalar measures, the variation and semivariation 
coincide, and this fact is used, more or less explicitly, in 
the proof of many results concerning both scalar and vec­
tor valued measures. The following example shows that 
the same equality does not hold for scalar polymeasures, 
and this is in the root of several of the differences that 
appear between the theory of measures and the theory of 
polymeasures. 

Example 1.4. Let Ej = T(M) and S2 be the Borel sets 
of [0, 1], let (rj be the Rademacher functions and let y : 
Sj X 1̂2 -> L^[0, 1] be the countably additive bimeasure 
([7, pg. 489]) given by y(A, B) = P^(XB) where P^ is the 
ortogonal projection on the subspace [(r,Xe^] <=: L^[0, 1]. 

Let x' = y f 1 = ^ 6 L\0, 1]*. Let us define 
n 

y,. :i:,xE^-^U 

(A,B) ->x'oy{A,B) 

It is easy to see that 

neA^ JB 

where A is the Lebesgue measure on [0, 1]. The scalar 
polymeasure ŷ .. is countably additive and, therefore, it 
has bounded semivariation (see the comments preceding 
this example). But we will see now that ü(y)(l\l, [0, 1]) = 
= 4-00. Let us choose {{1}, ..., {p}} as finite partition of 

A^,= {1, ...,/?} c N and, calling ^. = ' ^ ~ "̂  
y 2' 

, let us 

choose {B^j^ ] as finite partition of [0, 1]. Then 

i;(y,.)(N,[0,l])>i;(y,,)(A^„[0,l])> ^ E |y,X{/},5,)l = 

2/' 1 1 ^ ' 1 

/ = l y = i 

(In the previous equalities we use that, for every / < p, 

f« r.dA\ = — 
\jBj I I 2P 

The reason for the variation and the semivariation not 
to coincide is that the scalars a{^ ... af used in the defini­
tion of the latter are not «free enough» to change. This 
justifies the following definition. 
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Definition 1.5. Given a polymeasure 7 : Ĵ t̂  x • • • x J4.̂  
> Y, we define its quasivariation 

llyir : JZl, X .-. X JZl, ̂  [0,+00] 

by 

sup 

||yir(A„...,A,) = 

À-=1 

where the supremun is taken over all the finite Jif parti­
tions (Af) '̂̂  , of A. {I < i < k), and all the collections 
^^j\,---j) contained in the unit ball of the s cedar field. 

It is now easy to see that the quasivariation is also se­
parately monotone and that, for every (Aj, ..., A )̂ e Ji^x 

||y||(A„ ...,A,)<\\y\\\A„ ...,A,) < v{y)(A„ ...,A,). 

It is also easy to check that, for scalar polymeasures, 
the quasivariation and the variation coincide. This quasi­
variation plays a meaningful role in the theory of poly­
measures, as shown in [4] and [6]. 

The space of polymeasures of bounded semivariation 
from J21., X ••• X Jij^ into F is a Banach space with the 
semivariation norm. Clearly, the supremation is an equiva­
lent norm for this space. Also, the space of polymeasures 
of bounded variation is a Banach space with the variation 
norm and the same happens with the quasivariation. 

The following two propositions extend useful well 
known results concerning measures (see, for example, [1, 
Proposition 1.1.4 and 1.1.6]). Their proofs are similar to 
the proofs of the corresponding results for measures. 

Proposition 1.6. Let y : Ji^ x •" x JAj^ ^ Y be a 
k-polymeasure. Let D cz Y^^ be a norming subset. Then, 
for every (A,, ..., A/̂ ) e J4., x ••• x J2t̂ , 

and 

\y\U„ 

MWA, 

A,) = sup{||j*oy||(A„...,A,.); 

l b * | | < l , y * e D } 

Aj.) = sup {v{y* °7)(/4|, 

| | y * | | < l , y * e D } . 

Ad\ 

Proposition 1.7. Let y : Ji^ x 
polymeasure. Then: 

X Jij^ -^ Y be a 

a) v(y) : J^i X • • • X JA/^ —> [0, +00] is a k-polymeasure. 

If y is countably additive, then so is v{y). Conversely, if 
v{y) < +G0 and v{y) is countably additive, then y is coun­
tably additive. 

b) v(y) is the smallest among the positive k-polymea-
sures X which verify 

||7(A„ . . . ,A,) | | <A(A,, . . . ,A,) /or«/ /(Ai, ...,A^e 

c _/i.i X • * • X '-y*-h' 

c) 11711 cmd 11 y 11"̂  are separately subadditive. Besides, if 
y is countably additive then ||y|| and ||y||"^ are sepa­
rately countably subadditive. 

Corollary 1.8. Let y be a k-polymeasure, then | |7|| is 
a k-polymeasure if and only //"Hyll = 1̂ (7). In particular, if 
Î;(}0 is not finite, then | |7|| can not be additive. The same 
can be said about HylT-

It is known that extensions of the important Vitali-
Hahn-Saks-Nikodym Theorem and Nikodym Theorem 
are true for polymeasures ([7]). We mention here that 
this also happens with the Dieudonné-Grothendieck 
Theorem. The proof can be easily adapted from the proof 
of the Dieudonné-Grothendieck Theorem for measures 
(see [5, Corollary 1.3.3]), using the Nikodym Theorem 
for polymeasures when needed. 

Proposition 1.9. {Dieudonné-Grothendieck) Let Y be 
a Banach space and D a Y"^ a norming subset. Let y : 
H^x •" xlLj^-^Ybe an application such that (y^ oy)is a 
bounded polymeasure for every y* e D. Then y is a boun­
ded polymeasure. 

2. UNIFORM POLYMEASURES 

In general, it is not known whether a countably additi­
ve polymeasure has a «control polymeasure» in some 
reasonable sense. There is a special class of polymeasu­
res, the uniform polymeasures, which are «separately 
uniformly countably additive» in a sense which we will 
precise in Definition 2.1. These polymeasures have 
already been considered in [7] and [3]. The main result in 
this section shows that uniform polymeasures can be cha­
racterized as those which are «controlled» by a product 
measure. 

Following the usual notation, we call ca(JA', Y) the set 
of F-valued countably additive measures defined on an 
algebra J4.. 

Definition 2.1. ([7, Definition 1]) A countably additi­
ve polymeasure 

y :JA,x ••• X JZl,-^F 

it is said to be uniform in the i"'-variable if the measures 

{y(A„ ...,A._„ •,A,^„ ...,A,)E 

e caiJlf, F); (A^ .'¡I, A,) e JA, x ^^^ x JA^} 

are uniformly countably additive. 
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A countably additive polymeasure it is said to be uni­
form if it is uniform in every variable. 

A measure p : JA -^ Y is said to be exhaustive (or 
strongly additive) if, for any sequence of disjoint sets 

lim ||MA„)|| = 0. 
n -^ 00 

As follows from [12, Theorem 4.4], every scalar bi-
measure is uniform. This is not true anymore for scalar 
/:-polymeasures, when /: > 2, as an example in [3] shows. 
It is also not true for vector valued bimeasures ([7, 
p. 489]). 

Lemma 2.2. If y is uniform, then y is uniformly sepa­
rately exhaustive, i.e., //(A"),, ci JA¿ is a sequence of dis­
joint sets, then 

lim sup y(Ai, ..., A", ..., A )̂ = 0. 

Proof Without loss of generality, we will suppose 
that / = 1. Let (A"),̂  cz JA^hea. sequence of disjoint sets. If 
y is not uniformly separately exhaustive, then (A',') has a 
subsequence which we will also denote (A'¡) and there 
exist g > 0 and sequences (Aj")„ c: Jl., (A2) ci jzi^, ..., 
(A'l) c: J^^, such that A'" c: A" for each n EN and such 
that 

||y(Ar,A«, . . . ,AlD||[>e 

which is a contradiction with y being uniform. D 

We say that a set function p defined in an algebra JA 
verifies the Fatou property if for every non decreasing 
sequence (A J a j 4 verifying A,̂  / A G Ĵ l̂  we have that 
p(AJ -> p(A). 

Theorem 2.3. Let y : J^l, x • • • x J4.̂  -^ Y be a coun­
tably additive k-polymeasure. Then the following are 
equivalent. 

i) y is uniform. 

ii) y is uniformly separately continuous in 0, i.e., if 
(A"),̂  CI JA¡ verifies that A" \ 0 then we have that 

lim sup | |7 | | (A„. . . ,A;^. . . ,A,) = 0. 
"^^ (A„.i:l,/\,)e-;zi|X-':'.xj^, 

///) y is separately continuous in 0. 

Proof, (i) => (ii): [7, Theorem 2] states that y is al­
ways separately monotone and it verifies separately 
the Fatou property. Let us suppose that / = 1. If y is 
not uniformly countably additive in 0, then there exist 

(A';, ..., A¡),^ CI JZLj X •.. X J2t̂ , and g > 0 such that A'¡ \ 0 
and, for every n e N, 

y(A'lA'¡,...,A¡)>8. 

Let B'l = A¡\A¡^' and let Ĉ ^ = UJl,^ B{ = A'¡\A'¡\ Since 
C,7 /* A'l when m grows to infinite and since y verifies 
separately the Fatou property, we get that, when m grows 
to infinite 

KQ^A^, . . . , A ^ ) / 7 ( A ; A ^ , . . . ,A^)>g. 

So, for /2j = 1, there exists m^ such that 

y(Cr,A^' , . . . , A ^ 0 > 2 • 

Let now ^2 = mj + 1. There exists m2 such that 

7(c:f,A^...,Ar-)>^-

Continuing with this procedure we obtain two intertwi­
ned sequences I = n^ < m^ < n2 < m2... such that, for 
every / e N, 

y(c;:;^A^', . . . , A ^ 0 > ^ 

which contradicts the previous lemma. 

ii) implies iii) is obvious. 

Let us now suppose that y is separately continuous in 
0. If y is not uniform in, for example, the first variable, 
then there exist g > 0, a sequence (A'j)„ cz J -̂i of disjoint 
sets, an increasing sequence of indices {n(m)\^ and a se­
quence (A2, ..., Â O,n ^ - ^ X ••• X -^/t such that, for 
every m e M, 

y{ U A'l A \̂ ..., Â M - X y04p ^^ ••-. ^D 
\ / i = 1 / ,7 = 1 

and from here it follows that 

> g 

yi UA;A'¿^... ,AÍ > g. 

Then, taking A- = U,^=, Af (2 < i < k), we obtain that 
U,f=,„ A'l \ 0 as m grows to infinite, but 

y\ y Ap A2, ..., A/ 1 > g for every m G M, 

a contradiction with the fact that y be separately conti­
nuous in 0. D 
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If A and B are two subsets of a set K, their symmetric 
difference, AAB, is defined by AAB = {A\B) U (B\A). 

Corollary 2.4. [7, Theorem l]Lety : Ji^x "• xAj^-^Y 
be a uniform polymeasure and let (A"')„. c: A • (1 < / < k), 
be sequences such that {A'¡') —^ A- E JA¡. Then 

lim y{A'l\...,A¡^) = yiA,,...,A,). 
ni, ...,nk^ ce 

Proof. Let us observe that 

\\y(A'¡',...,A¡^)-y(A„...,A,)\\< 

<mA'¡', ..., A¡^) - y(AV, ..., A«1V, A,)i| + ••• + 

+ --- + \\y{A'¡\A„...,A,)-yiA„...,A,)\\. 

Now, we observe that y is monotone and subadditive and 
that every positive monotone and subadditive set func­
tion verifies that |v(A) - v(B)\ < 2\V(AAB)\ for every A 
and BinJA ([7, pg. 500]). With this we obtain that 

IIKAr, . . . , A f ) - y ( A „ . . . , A , ) | | < 

<2\\y(AT,...,A¡t-,\A,AA¡ + •• 
+ --. + | |y(A,AA'; ' ,A„... ,A,)| | 

and this converges to 0 because y is uniformly separately 
continuous in 0. D 

The following proposition allows us to characterize 
uniform polymeasures as those which verify certain Pet-
tis-type theorem. 

Theorem 2.5. Let y :T^x ••• xHj^-^Ybe a countably 
additive polymeasure. Then y is uniform if and only if the­
re are k countably additive measures X- : E- —> [0, +oo) 
(1 < / < /c), such that 

lim 
I, X ••• xÂ, (^ , , . . . , / \ , , ) - ^ 0 

7(A„. . . ,A,) = 0 

Proof. Let us first suppose that y is uniform. Then [7, 
Theorem 10] states that there exist k countably additive 
measures A. : S., ̂  [0, +cx)) (1 < z < k), such that y{A^, ..., 
Aj) = 0 when Aj x ••• x /l^(A,, ..., A )̂ = 0. If the result is 
not true, then there exist (A", ..., Â !),̂  c: E, x • • • x Z^ and 
£ > 0 such that 

\\y(K A'l > £. 

Since the sequences (/l-(A"))„ are bounded, we can, taking 
k times subsequences if necessary, consider that, for eve­
ry / e {1, ...,/:} the sequence (/l.(A")),̂  converges. Then 

0 = l i m a , X ••• X X^)(A'¡, ...,A^) = 

= lim A,(A';) ••• Hm X,{A¡) 

and therefore there exists / such that lim„_^^ /̂(A-0 = 0. 
Let us suppose without loss of generality that this hap­
pens for / = 1. We can, passing again to a subsequence if 

necessary, suppose that 1(A") < —• Let 5,̂ ^ = Uf=,„A". 

Then A,(BJ < — j - Since (5,„X„ is not increasing, we 

obtain that 5,„ -> B with À^(B) = 0, which by Corollary 
2.4, implies that, for every (A2, ..., A^j G E2 x ••• x S^, 

7(B,A2, .. . ,A,) = 0. 

So, we get that 

8<\\y(A'l...,A¡)\\<y{A'l...,A¡)< 

<y(\jA'l\A'^,...,A'l)< 

< y(B, Al ..., AD + ? U ^r h^. Â , ..., Â^ 

The first one of these terms is zero and the second one 
converges to zero because ((U;J=„ A'f)\J5) \ 0, which 
leads us to a contradiction. 

Conversely, let us suppose that there exist A- .• Ẑ  —> 
^ [0, +00)(1 < i < k), as in the hypothesis. If y is not 
uniform, then y is not separately continuous in 0. Then, 
there exist (A")„ c: E, such that A" \ 0, and there exists 
(A2, ..., A¡J)̂  CI E2 X • • • X Z^ and s > 0 such that, for every 
neN, 

y(A';, . . . , A D > g . 

In that case, there exist B'¡ cz A'! (I < i < k, n e M) such 
that 

\\y(B'l...,B'l)\\>8, 

but, clearly, B'¡ \ 0 and, therefore, A,(JB¡0 \ 0. Since, for 
every / e {2, . . . , / : } , A-, is bounded, we get that 

lim A, X ••• X A^(5;, . . . , 5 ; ) = 0, 

lim (A, X ... X A )̂(A'l ...,A'D = 0 and, for every neN, a contradiction. D 

Our last proposition gives a sufficient condition for a 
polymeasure to be uniform. 

Proposition 2.6. Let y \ SK^ x •.. x SA^-^ Y be a 
countably additive polymeasure. If y has bounded varia­
tion, then y is uniform. 

Proof If y has bounded variation, then v{y) is a coun­
tably additive polymeasure with values in a Banach spa­
ce (see Proposition 1.7). From [7, Theorem 1] it follows 



460 Ignacio Villanueva Rev.R.AcaclCienc.Exact.Fis.Nat. (Esp), 2000; 94 

that v(y), and therefore y, are separately continuous in 0; 
hence, applying Theorem 2.3, we get that y is uniform. D 

The converse is not true: obviously, every countably 
additive measure is uniform. Also, Example 1.4 provides 
a scalar bimeasure (and thus uniform, see the comments 
following Definition 2.1) of unbounded variation. 
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