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ABSTRACT 

We investigate the relationship between properties GLD, 
GGLD, (5, WNS and KK and we prove that CQ cannot be 
renormed to have GGLD. Finally we study properties 
GLD and GGLD in / (x,) and JT (jc-). 

Definition 2.2. A Banach space X has the generaliz
ed Gossez-Lami Dozo property (GGLD) if for every 
weakly null sequence [y^Xi ^^^^ ^^^^ 1™A2 ll^n" = ^ we 
have that D {y^^} > 1, where 

D {yj = lim sup (lim sup II J^ - yj). 

1. INTRODUCTION 

In the last few years several geometric properties im
plying weak normal structure have appeared in the litera
ture, among them those defined by Gossez and Lami 
Dozo [11], by Jiménez-Melado [12] and by Khamsi [13]. 
Our aim is to put those properties under perspective and 
also to study their relationship with other concepts re
lated to these issues, like for instance the Kadec-Klee 
property and normal structure (see e.g. [10]). We also 
prove that c^ cannot be renormed in order to have either 
the property defined by Jiménez-Melado or that of Gos
sez and Lami Dozo. In the last section we study those 
properties in generalized James spaces. 

2. DEFINITIONS 

We start by giving a list of the definitions of the prop
erties which will be the object of our study. 

Definition 2.1. A Banach space X with a Schauder 
basis has the Gossez-Lami Dozo property (GLD) if for 
each e > 0, there exists r > 0 such that for every xeX and 
n E M we have 

IIP,,xll = 1 and II(/ - PJxW > s imply 11x11 > 1 + r, 

where {P„}„ is the sequence of natural projections asso
ciated with the basis. 

In 1992 Jiménez-Melado [12] generalized this concept 
as follows: 

The next definition is a variation of a property defined 
by Khamsi [13]. It was studied in detail in [7] and [8]. 

Definition 2.3. A Banach space X with a Schauder 
basis {xj^ is said to have property ô if there exists ô > 0 
such that for every x, y e X with 11x11 = WyW = 1 and con
secutive supports, that is x = X"=i ciiXj, y = Z"L„ + i b-x-, 
m>n- I, we have 

(2 - Ô) \\x -H y\\ > 2. 

Brodskii and Milman [1] defined the concept of nor
mal structure; the most relevant existence for non-expan
sive mappings is related to this notion restricted to weak
ly compact sets as was proved by Kirk [14], who showed 
that if r i s a non-expansive mapping from a weakly com
pact convex set K with normal structure into itself, then it 
always has a fixed point. 

Definition 2.4. 

a) A convex bounded subset K of a Banach space X 
has normal structure if and only if it does not con
tain a diametral sequence, that is if and only if 
there is no sequence [y,X^ ^^^^ '̂̂ ^̂  

lim úí(y„^,, conv {};,, ..., j j ) = diam {yj^=^, 

where d(y,A) denotes the distance between y and 
the set A, conv A denotes the convex hull of A and 
diam A the diameter of A. 

If every convex bounded subset ofX has normal 
structure, we say that X has normal structure (NS). 
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b) A space X has weak normal structure (WNS) if 
every weakly compact convex subset ofX has nor
mal structure, that is if there is no weakly null dia
metral sequence in X. 

We remark that all of the previously defined notions 
imply WNS as can be seen in [11], [12] and [7]. 

Another concept related to fixed point theory is the 
Kadec-Klee property: 

Definition 2.5. The norm in a Banach space X has 
the Kadec-Klee property (KK) if the weak topology and 
the norm topology coincide on the unit sphere ofX. 

Definition 3.2. A sequence {y,J,^ in a Banach space 
X is called asymptotically diametral ijlim^^ lly,JI exists 
and 

Yim\\y„\\=A{y„}, 

where A{y,J is as in (3.1). 

Corollary 3.3. Let {j,J^^ be a weakly null sequence in 
a Banach space X which is asymptotically diametral. 

a) Then every subsequence of {y^^} is asymptotically 
diametral and has the same asymptotic diameter as 

{yn)n' 

3. GGLD, 5, WNS et al. 

In this section we study the relationship between the 
various properties defined above. First we start by giving 
an equivalent characterization of spaces with GGLD, 
which marks its similarity to spaces with WNS. 

Domínguez Benavides et al. [5] proved that X has 
GGLD if and only if for every weakly null subsequence 

lim sup ll3;JI < A{ j j = lim (sup II3;. - v.|l), (3.1) 

where A {y J is called the asymptotic diameter of {y,,],,. 

The referee pointed out to us that in [15] Sims and 
Smyth proved that GGLD is equivalent to a property 
called by them asymptotic P. This result in essence is the 
same as our proposition 3.4 (see also [16]). However our 
proof is not the same and is very simple. 

Lemma 3.1. Let {j,J,^ be a weakly null sequence in a 
Banach space X. Then lim sup̂ ^ ll_y,JI < A {y^J. 

Proof IfA,^ = sup ily. - ŷ -ll, B^^ = sup {lly. - yII : y e 
i,j>n 

com {y¡),?!„ +1,7 >n} , clearly A„ <B„ and lim,, A„ = A{yJ. 
On the other hand if j > n, y = Z¡=„ + | ^¡yi, A, > 0 and 
2^;'=«+|Ai= 1'then 

yj- Z "^¡yi < Z ^^\yJ-y^\<A,, 

Thus Bn = A,̂  and since y,^ - ^ 0, 0 G conv {y^ }/î„^., for 

all n and A„ = B,^ > \\yj\ for every n. Hence the result 
follows. D 

This motivated us to define the following: 

b) If {sj,, c: W tends to zero and {wj^^ czX is such 
that lly„ - wj\ < e^^, then {w,Ĵ ^ is asymptotically 
diametral. 

Proof 

a) Let {yn^]k ^ [yn)n be a subsequence. Then 

limlly,JI = l iml l3 ;J I=A{yJ>A{y,^ 

and by lemma 3.1, 

limllv | |=A{v }. 

b) Since lljjl - £„ < llwjl < lljjl + e, and \\y. - yjW -
- e- - &j<\\w. - WjW < \\y¡ - yjW + £• + Sj we get that 

lim llwjl = lim \\yj\ = A{yJ =A{wJ. D 

Proposition 3.4. A Banach space X has GGLD if and 
only if it does not have weakly null asymptotically dia
metral sequences. 

Proof. If X does not have GGLD let {_y,̂ },, be a weak
ly null sequence such that 

lim sup \\yJ\=A{yJ. 
n 

Then there is a subsequence {y^^J with \\m,. Wyn^W -
= A{_y,J > A{y,,J and by lemma 3.1 

l imlly„JI=A{j„J. 

The other implication is obvious. D 

The following corollary is an immediate consequence 
of proposition 3.4 and corollary 3.3. 



H. Fetter et al. Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 2000; 94 433 

Corollary 3.5. A Banach space X with a Schauder 
basis does not have GGLD if and only if there is a nor
malized asymptotically diametral weakly null block basis 
in X. 

Now we will start the study of the relationship be
tween the different properties. 

First observe that if X has a basis and GLD, then the 
basis is monotone since for every x, IIP^xll < 11x11. 

Proposition 3.6. Let X be a Banach space with a 
Schauder basis. If X has GLD, then X has property ô. 
However there is a Banach space with a monotone 
Schauder basis, property ô and without GLD. 

Proof. Let x, y e X with consecutive support and 
11x11 = \\y\\ = I. Let 8 = 1 , since X has GLD, there exists 

2r 
r > 0 such that llx + y II > 1 + r. Thus if d < 

1 + r 

2 < ( 2 - ( 5 ) ( l + r ) < ( 2 - ( 5 ) l l x + 3;ll. 

Now let X be the completion of the space CQQ of real 
sequences with finite support with the norm 

Thus 

A{yJ> > L=l im llyjl, 
2-Ô 

and by corollary 3.5, X has GGLD. 

Now let {a¿}¡ e CQQ and let {af }• be the non-increasing 
rearrangement of the sequence {la-l}-. 

Define X to be the completion of CQQ with the norm 

i=\ ^ 

Then it is shown in [8] that X does not have property ô 
and that X has WNS. The proof of this latter fact also 
shows that X has GGLD. 

Jiménez-Melado in [12] proved the following: 

Proposition 3.8. Let X be a Banach space. If X has 
GGLD then X has WNS but the inverse of this is false. 

Now we turn our attention to the relations between KK 
versus GLD and GGLD. 

Z^/^/ = max ^la,l, —^ + 1̂ 21 ¡̂  + X '^z'-

1 1 
Let y = ^, -h - e^. Then WP^yW = 1, 11(7 - P,)yll = - and 

llyll = 1; thus X does not have GLD. However, if x = 
= S-_,a,^,,y = Z;.'L„^iZ7.e,, 11x11 = llyll = 1, then if/i > 1, 
2zz||jc + 3;|| = 11x11 + ll>'ll;ifx = ai^i andy = I;.l2¿^,.^,, 
then 

^ + X : i 3 1/7,1 = 2 - 1/7,1 > ^ if \b,\<^-

ilx + yll = 
1̂ ,1 ^ 1 3 1 
- ^ + I - S 1/7,1 = - + 1 = - if \b,\>-' 
2 '-' ' 2 2 ' 2 

Hence property ô holds for ô = D 

Proposition 3.7. Let X be a Bcmach space with 
Schauder basis. Then property ô implies GGLD but the 
inverse of this is false. 

Proof. Suppose {y,J,, c: X is a weakly null block basis 
with lly,JI = 1. Since property ô holds, iFor m ^ n, 

y„ - y,Ji ^ 

Proposition 3.9. Let X be a Banach space with a 
Schauder basis. Then, if X has GLD it also has KK but 
KK does not imply GGLD and thus in particular does not 
imply GLD. 

Proof. The proof that GLD implies KK is similar to 
that of JT having the Kadec-Klee property found in [6], 
observing that property GLD can be restated as: For 
evei7 e > 0 there exists r > 0 such that if lljll = 1 and for 
some n e N, IIP,,yll > 1 - r, then 11(7 - PJyW < e. 

The counterexample for the second part is the follow
ing: Consider CQ with the norm 

i{«,},ii= Z 
(afy 

2 \ 2 

2-Ô 

where as before {af},, is the non-increasing rearrange
ment of {1(2,1},. This norm is equivalent to the usual norm 
in CQ and thus does not have GGLD (see proposition 4.3) 
and in Diestel [4] it is shown to be locally uniformly con
vex and consequently has KK (see e.g. [2]). 

Finally observe that /, is an example of a space with 
GLD and without NS. D 

In the next section we complete the previous analysis 
by showing that there exists a space with NS, and thus 
with WNS, and without GGLD. 
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To wrap up this section schematically we present the 
following diagram: 

KK 

GLD :^;^ S ^^ GGLD : ^ WNS 

\ 
^ NS ^ - ^ NS 

4. GGLD, a' and c^ 

One of the referees pointed out to us that in [9] Garcia 
Falset et al. introduced property a', which is related to 
Kuratowski's measure of non compactness and implies 
WNS, and that they showed that neither CQ, nor /j can be 
renormed to have a'. Since it is evident that any Schur 
space has GGLD, GGLD does not imply a'. We do not 
know if a' implies GGLD, however we will see in this 
section that a stronger version of a', defined in [17], im
plies GGLD. Afterwards we will show that CQ cannot be 
renormed in order to have GGLD. 

Definition 4.1. Let X be a Banach space. 

1. Let A d X. The Kuratowski measure a{A) is defined 
as 

a(A) = inf {r : A can be covered by a finite 
number of sets of diameter < r}. 

2. The space X has property a' if there exists 0 < ó < 1 
such that for every fe X* with ll/ll = 1, 

4s(fà))<h 

where S(f Ô) = {x E B^ : f{x) > \ - d). 

3. The space X has property strong a' if there exist 
0 < ¿ < 1 and 0 < r < 1 such that for every f e X^^ 
with ll/ll = 1, 

a(5(/, ¿)) < r. 

The proof of the next theorem follows along the lines 
of the proof that a' implies WNS in [9]. 

Theorem 4.2. Let Xbe a Banach space with property 
strong Of!. Then X has GGLD. 

Proof Suppose that X has strong a' and doesn't have 
GGLD. Then by corollary 3.3 there exists a weakly null 
asymptotically diametral sequence {x,J„ in X with IU,JI = 1, 
n = 1, 2, ... and 

1 = hm llx,JI = lim sup \\x- - x-ll = A{x,J. 

We will see that o(({x,J) = 1. If this is not true, since 
clearly a({x,J) < A{x,J = 1, there exist s > 0 and 5 j , ..., 
Bj, with diam B.<1 - sso that {x,J,̂  cz: uf= i B¡. Thus there 
are ZQ and a subsequence {x,,.}^ so that {x,j.}y. Then 

lim sup llx,̂ . - x^^M < 1 - s 
k i,j>k ' ^ 

and this contradicts the fact, proved in corollary 3.3, that 
every subsequence of an asymptotically diametral se
quence is a also asymptotically diametral with the same 
asymptotic diameter as the original sequence. Hence 
a({x„})=A{x„} = l. 

Since X has strong a' there exist 0 < ó < 1 and 0 < r < 1 
so that a(5(/, ô)) < r for every f e X* with ll/ll = 1. 
L e t / o e Z * with II/QII = 1 so that/o(A-,) - 1. Let e > 0 

f è £ \ 
with r < 1 - e and £, = min | z ^' -. I- Then, since 

'' M - á l - £ 
{x„ - X, }„ converges weakly to -x, . 

-/o 
1 

1 + s, 
(x„ - X|) 

1 
>l-ô. 

Hence there exists n, so that 

x„: n>n,} c 
1 + 8, 1 +£ 

1 +Ê, 

X, + 5(-/o, Ô) 

and thus 

1 

< a 

1+G, 

1 

= A 
1 

1 + e, = a 
1 

1 +e . 

X, + S(-/o, Ô) ] = oc(S(-/o, ¿)) < r < 1 - e 

1 
which is a contradiction because 

1 + e, 
> 1 - e. 

This proves that X has GGLD. 

Proposition 4.3. The space CQ cannot be renormed in 
order to have GGLD. 

Proof Let {e¡}¡ be the canonical basis in CQ and sup
pose that the norm 11-11 in CQ is such that 

L sup 11(2.11 < Z ̂ i^i < M sup la-l. 

Let /?„ = sup {llSj'̂ n a-̂ ,11 : sup. \a¡\ = I, r> n}. Clearly 
/?„ > /?,̂ ^ 1 and L<R,^< M. Let R = lim„ /?,,. There exist r, 
and {a¡y¡i^ such that max,<,<^. I a-I = 1 and 

/ ? , - ! < Ya^i^i </?,. 
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There exist r2 > r, and {ai}'¡i^ ^, with max,. +i</<rj^/' = 
1 and 

.̂:4- Z ^i^i <R.. 

and so forth, there exist r,̂  > r,̂ _j and {<3/}¡=,-̂ „̂, + i such 
that max,. _ +,</<,. \a¡\ = 1 and 

R. 
1 

— < 
n 

Ë /̂̂ z </?,. 

Let w„ = X/=;-,̂ _, + i í3/^/, where r̂  = 0. Clearly II^Jl -^ R, 

u,^ - ^ 0 and if /, j > n 

\\u^-ii^\\<R,^^_^,,. 

Hence Um^ (̂sup-̂ >„ llw- - ŵ ll) < R. Thus by lemma 3.1, 
lim,, llw,JI = A{uJ = R and by proposition 3.4 (CQ, II-II) 

does not have GOLD. 

However Day, James and Swaminathan [3] proved 
that every separable space can be renormed to have NS 
and thus in particular to have WNS. Hence renorming Q 
properly we get a space with NS and without GGLD. D 

Corollary 4.4. Let X be a Banach space containing a 
subspace isomorphic to CQ. Then X does not have GGLD. 

5. GLD AND GGLD IN JAMES' SPACES 

Based on Khamsi's paper [13] we proved in [6] that JT 
has WNS; in this section we study the relation of the gen
eralized James and James tree spaces with regards to the 
GLD and GGLD properties. 

We begin by remembering the definitions of those 
spaces. 

Definition 5.1. Let X be a Banach space with a nor
malized Schauder basis {x-}-. 

a) J(x¡) is the completion of CQQ with the norm 

Z ^i^i sup if a, 
i=\ \j=p. 

where the sup is taken over all finite sequences of 
natural numbers with \<p^<q^<p2<-" <Pj,<q,^. 

b) The standard binary tree is T^- {(n, /) : 0 < n < oo, 
0 < / < 2"}. The points (/i, /) are called nodes; 
(/Î + 1, 2/) and (n + 1, 2/ + 1) are the offspring of 
(n, i). A segment is a finite set S = {̂ |̂, ^2' • • • ' ^̂m) ^f 
nodes such that for every j , s^^, is an offspring ofsj. 
We order 7^= {t¡}¡í, by t,,^j = (ij)for i = 0, \^..., 

7 = 0, ..., 2' ~ 1. Now we define two functions a 
and p from the set of segment to N as follows: If 
S= {r,jj, f„̂ , ..., /,̂  }, where the subscripts of the 
nodes are those give by the order in % a(S) = n^ 
and p(S) = n,„. JT(x¡) is the completion of CQQ with 
the norm 

sup Z Z 
i=\ \teSi 

a, X, t r'aiSi) 

where the sup is taken over all collections S^, ..., 5^ 
of finite disjoint segments in "T. 

It is easy to see that {Cj}- is a monotone Schauder basis 
in J{x) and {//J^^^is a monotone Schauder basis in JT{x¿). 

Proposition 5.2. IfX has a normalized Schauder basis 
{x-}¡ and GGLD (GLD), then JT{x¡) also has GGLD (GLD). 

Proof. Let {uj,^ be a normalized weakly null block 
basic sequence in JT(x¿) with u,^ = Y^flp^^ CÍ^.Y}^.. Then there 
exist {/:•}•, and disjoint segments S¡ such thatp,^ < cr(5f) < 
< ^¿(5f) < ^, for/• = 1, . . . , / : , and 

= \\u\\ = 
i=\ \teSf 

Now let v,^ = Sf=i {^tesr^i}^cr(s!') ^ ^' ^^ '^ill ŝ ^ that 
{vj,̂  is weakly null in X. Define U : [uj —> X by U(uJ = 
= v,^ where [uj is the closed linear span of {uj,^. Then by 
the definition of the norm 

z 
n 

K?"""")! 
/=! \reS'.' 

\x 

y<^(s 
1 n 

/') -
\x 1 

\\x 

n 1 

Hence U is continuous and {vj^^ is weakly null in X. 

In particular, for all n, m 

lU/, - uj>\\v,^-vj^. 

Since X has GGLD, A[uJ > A{vJ > 1 = lim„ IIÜJI;, = 
= lim„ \\uj\ and by corollary 3.5, 77(x-) has GGLD. 

Now suppose X has GLD and let e > 0 and w,, 2̂ ̂  JT(x¡), 
with consecutive supports and llwjil = 1, IIW2II > s- Sup
pose w, = S-=i cifJI,., ih = ^7=n + \ ^ti^ti- ^ s before, there 
exist v^ and V2 in X with consecutive supports and llw, II = 
= llî jllx and 11̂ 2II = ll̂ zllx- Since X has GLD there exists 
r > 0 so that 

1 + r < III;, + V2\\x ^ llw, + W2I 

and this finishes the proof. D 

file:///teSi
file:///teSf
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Since J(x-) is isometrically isomorphic to a subspace of 
JT(x¡), via an isomorphism U such that {i/^,}, is a sub
sequence of {i%}t^q-, we get the following corollary: 

Corollary 5.3. IfX has a normalized Schauder basis 
{x¡}¡ and GGLD (GLD), then J(x¡) also has GGLD (GLD). 

Remark 1. There are other generalizations of J: 

a) The space Ji(x¡) is the completion of CQQ with the 
norm 

Z ^i^i = sup Z (a^ - a,^ )x„ 
^ P2i P2i-\^ P2i-\ 

where the sup is taken over all finite sequences of 
natural numbers with I < p^ < P2< •" < P2k-

b) The space /2(-̂ ;) ^^ ^^^ completion of CQQ with the 
norm 

Z ^i^i = sup IK.^-^PK 

where the sup is taken over all finite sequences of 
natural numbers with 1 </7j </?2 - "• < PA+I-

Modifying the definition of GLD slightly as follows: if 
for each 8 > 0, there exists r > 0 such that for every xeX 
and n eN we have 

IIP„xll =\ and\\{I - P,,^^)x\\ > e implies lUII > 1 + r, 

then proposition 3.6 remains true. 

Using this we can prove with an argument similar to 
that employed in the proof of proposition 5.2, that if X 
has GGLD {GLD), then /¡(x-) and J2(^i) have GGLD 
{modified GLD). In particular taking X as I2, it follows 
that James space J has modified GLD; although it does 
not have GLD. 
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