POLYNOMIALS OF GALOIS REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES

(elliptic curves/galois groups)
Amadeu Reverter* and Núria Vila**
* Departament de Matemàtiques. I.E.S. Bellvitge. Avda Amèrica, 99. E-08907 L'Hospitalet de Llobregat. Spain. E-mail: areverte@pie.xtec.es
** Departament d’Àlgebra i Geometria. Facultat de Matemàtiques. Universitat de Barcelona. Gran Via de les Corts Catalanes, 585. E-08007 Barcelona. Spain. e-mail: vila@mat.ub.es

Abstract

We construct polynomials with Galois groups the images of $\bmod p$ Galois representations attached to elliptic curves. Explicit polynomials are computed for each subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ and $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ that appears as an image for elliptic curves without complex multiplication and with conductor ≤ 200.

RESUMEN

Construimos polinomios cuyos grupos de Galois son las imágenes de la representaciones galoisianas módulo p asociadas a curvas elípticas. Para cada uno de los subgrupos de $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ y de $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ que aparecen como imagen para las curvas elípticas sin multiplicación compleja y con conductor ≤ 200, calculamos explícitamente polinomios con estos grupos como grupos de Galois sobre el cuerpo de los racionales.

INTRODUCTION

Let E be an elliptic curve defined over a field K of characteristic 0 . Let \bar{K} be an algebraic closure of K and $G_{K}=\operatorname{Gal}(\bar{K} / K)$ the absolute Galois group of K. Let p be a prime number and $E[p]$ denote the group of the p-torsion points of E. The Galois group G_{K} acts naturally on the group $E(\bar{K})$ of all \bar{K}-rational points of E. The Galois action of G_{K} on $E[p]$ defines a $\bmod p$ Galois representation

$$
\rho_{E, p}: G_{K} \rightarrow \operatorname{Aut}(E[p]) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) .
$$

Let $K(E[p])$ denote the field generated by the coordinates of all the p-torsion points of E over K, the Galois extension $K(E[p]) / K$ has Galois group

$$
\operatorname{Gal}(K(E[p]) / K) \simeq \rho_{E, p}\left(G_{K}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

[^0]The purpose of this paper is, given an elliptic curve E defined over K and a prime number p, to find a polynomial with coefficients in K whose Galois group over K will be the group $\rho_{E, p}\left(G_{K}\right)=\operatorname{Gal}(K(E[p]) / K)$.

As is well known, Serre [4] has shown that whenever E is an elliptic curve defined over a number field and without complex multiplication this representation is surjective for all but finitely many prime numbers p. In [2] it is studied the images of the $\bmod p$ Galois representation associated to elliptic curves having an isogeny defined over K of degree p, the non surjective case. The Galois $\operatorname{group} \operatorname{Gal}(\mathbb{Q}(E[p]) / \mathbb{Q})$ for all elliptic curves E defined over \mathbb{Q} without complex multiplication and with conductor $N \leq 200$, for all primes p, is determined.

In this paper we prove that the Galois group of the polynomial Ψ^{E}, whose roots are the first coordinates of the non-trivial p-torsion points of E, is $\rho_{E, p}\left(G_{K}\right) \simeq$ $\simeq \operatorname{Gal}(K(E[p]) / K)$, for the non- p-exceptional elliptic curves over K which admits a K-isogeny of degree p. In the surjective case, that is $\rho_{E, p}\left(G_{K}\right) \simeq \operatorname{Gal}(K(E[p]) / K) \simeq$ $\simeq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, we determine an irreducible polynomial with Galois group over K such a group. Finally, we will give examples of polynomials whose Galois group over \mathbb{Q} are $\rho_{E, p}\left(G_{Q}\right)$. More precisely, we will give polynomials for each subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ and $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ that appears as an image of the representation attached to the elliptic curves without complex multiplication with conductor $N \leq 200$.

1. POLYNOMIALS IN NON-p-EXCEPTIONAL CASE

Let E / K be an elliptic curve defined over K, consider a Weierstrass model of E over K. Let p be a prime number and let χ_{p} be the $\bmod p$ cyclotomic character. Let $\rho_{E, p}$ be the $\bmod p$ Galois representation associated to the p-tor-
sion points $E[p]$ of E. By the Weil pairing, $\operatorname{det} \rho_{E, p}(\sigma)=$ $=\chi_{p}(\sigma)$, for all $\sigma \in G_{K}$.

Definition. Let E / K be an elliptic curve and let $p \neq 2$ be a prime number. We will say that E is a p-exceptional elliptic curve over K if it satisfies the following conditions:
(i) The elliptic curve E has no non-trivial K-rational p-torsion points.
(ii) There exist an elliptic curve E^{\prime} / K and a K-isogeny $\phi: E \rightarrow E^{\prime}$ of degree p.
(iii) Every elliptic curve $E^{\prime} K$-isogenous to E with isogeny of degree p has no non-trivial K-rational p-torsion points.

We note that of the 722 elliptic curves over \mathbb{Q} without complex multiplication with conductor ≤ 200 listed in the Antwerp tables [1], only 31 are 3-exceptional over $\mathbb{Q}, 27$ are 5-exceptional over $\mathbb{Q}, 8$ are 7-exceptional over $\mathbb{Q}, 4$ are 11 -exceptional over \mathbb{Q} and 4 are 13-exceptional over \mathbb{Q}; if $p>13$ all elliptic curves are non- p-exceptional over \mathbb{Q}.

Theorem 1.1. Let E be a non-p-exceptional elliptic curve over K that admits a K-isogeny of degree p. Let Ψ_{p}^{E} be the polynomial whose roots are the first coordinates of the non-trivial p-torsion points of E. Then the Galois group over K of the polynomial Ψ_{p}^{E} is $\rho_{E, p}\left(G_{K}\right)=$ $=\operatorname{Gal}(K(E[p]) / K)$.

Proof. By [2, Theorem 1.5], there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) \text { or }\left(\begin{array}{cc}
\chi_{p}\left(\mathrm{G}_{K}\right) & * \\
0 & 1
\end{array}\right) .
$$

Then -id $\notin \rho_{E, p}\left(\mathrm{G}_{K}\right)$. Let $K(x(E[p]))$ denote the field generate by the first coordinates of the p-torsion points. It is clear that, if $\sigma \in G_{K}$ fixes all the x-coordinates, then $\sigma(P)= \pm P$. Moreover, the sign does not depend on the point, if $\sigma(P)=P$ and $\sigma(Q)=-Q$, then $\sigma(P+Q) \neq \pm(P+Q)$. So,

$$
\rho_{E, p}(\operatorname{Gal}(K(E[p]) / K(x(E[p])))) \subseteq\{ \pm \mathrm{id}\}
$$

Therefore, the Galois group over K of the polynomial Ψ_{p}^{E} is

$$
\rho_{E, p}\left(G_{K}\right)=\operatorname{Gal}(K(E[p]) / K) .
$$

Remark 1.2. We note that the point, in the above result, is that -id is not in the image $\rho_{E, p}\left(G_{K}\right)$. Therefore, whenever E / K is an elliptic curve with this property, e.g. if the elliptic curve E has non-trivial p-torsion points defined over K, the Galois group of the polynomial Ψ_{p}^{E} over K is $\rho_{E, p}\left(G_{K}\right)=\operatorname{Gal}(K(E[p]) / K)$.

2. POLYNOMIALS IN THE SURJECTIVE CASE

The following theorem allows us to find polynomials with coefficients in K whose Galois group over K is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) /\{ \pm 1\}$ or $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Theorem 2.1. Let E be an elliptic curve defined over K. Let $p \neq 2$ be a prime number, assume that the representation $\rho_{E, p}: G_{K} \rightarrow \mathrm{GL}_{2}(E[p])$ is surjective, then
(i) The polynomial Ψ_{p}^{E} whose roots are the first coordinates of the non-trivial p-torsion points of E is irreducible and its Galois group over K is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) /\{ \pm 1\}$.
(ii) Let $P=(x, y) \in E[p] \backslash\{0\}$. The characteristic polynomial of the multiplication by $x+y$ in $K(x, y)$ is irreducible and its Galois group over K is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Proof. First, we will see that the set of conjugates of x is

$$
\left\{x^{\sigma}: \sigma \in G_{K}\right\}=\left\{x_{i}:\left(x_{i}, \pm y_{i}\right) \in E[p] \backslash\{0\}\right\}
$$

and the set of conjugates of $x+y$ is

$$
\left\{(x+y)^{\sigma}: \sigma \in \mathrm{G}_{K}\right\}=\left\{x_{i} \pm \mathrm{y}_{i}:\left(x_{i}, \pm y_{i}\right) \in E[p] \backslash\{0\}\right\}
$$

Since $(x, y)^{\sigma} \in E[p]$, for $\sigma \in G_{K}$, there exists i such that $(x, y)^{\sigma}=\left(x_{i}, \pm y_{i}\right)$. So, $x^{\sigma}=x_{i}, y^{\sigma}= \pm y_{i}$, and $(x+y)^{\sigma}=$ $=x_{i} \pm y_{i}$. Reciprocally, if $\left(x_{i}, \pm y_{i}\right) \in E[p]$ is non-trivial, let $R=\left(x_{i}, y_{i}\right)$. Let $\{P, Q\}$ be a \mathbb{F}_{p}-basis of $E[p]$, with $P=$ $=(x, y)$. Let $a, b \in \mathbb{F}_{p}$ be such that $R=a P+b Q$. Since $a \neq 0$ or $b \neq 0$, there exists $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Since $\rho_{E, p}$ is surjective, there exist $\sigma_{0}, \sigma_{1} \in G_{K}$ with $\rho_{E, p}\left(\sigma_{0}\right)=$ $=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right), \rho_{E, p}\left(\sigma_{1}\right)=\left(\begin{array}{ll}-a & c \\ -b & d\end{array}\right)$. Then, $x^{\sigma_{0}}=x_{i},(x+y)^{\sigma_{0}}=$ $=x_{i}+y_{i}$ and $(x+y)^{\sigma_{1}}=x_{i}-y_{i}$.
(i) Clearly $\#\left\{x^{\sigma}: \sigma \in G_{K}\right\}=\frac{p^{2}-1}{2}=\operatorname{deg} \Psi^{E}$, then Ψ_{p}^{E} is the irreducible polynomial of x over K and its Galois group over K is $\operatorname{Gal}(K(x(E[p])) / K)=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) /\{ \pm 1\}$.
(ii) Since

$$
K(E[p])=K\left(\left\{x_{i} \pm \mathrm{y}_{i}\right\}_{i=1, \ldots, \frac{p^{2}-1}{2}}\right)=K\left(\left\{(x+y)^{\sigma}\right\}_{\sigma \in G_{K}}\right)
$$

the decomposition field over K of the irreducible polynomial $\operatorname{Irr}(x+y, K)$ of $x+y$ over K is $K(E[p])$ and its Galois group over K is $\rho_{E, p}\left(G_{K}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. On the other hand, since $p \neq 2$ and $-\mathrm{id} \in \operatorname{Gal}(K(E[p]) / K(x(E[p])))$, it is easy to see that $x_{i} \pm y_{i} \neq x_{j} \pm y_{j}$ for all $i \neq j$, and $x_{i}+y_{i} \neq$ $\neq x_{i}-y_{i}$ for all i. Then, the degree of $\operatorname{Irr}(x+y, K)$ is $p^{2}-1$. Let $m_{x+y}: K(x, y) \rightarrow K(x, y)$ be the morphism multiplication by $x+y$ in $K(x, y)$. The dimension of $K(x, y)$ over K is $p^{2}-1$. Therefore, the characteristic polynomial of the morphism m_{x+y} is $\operatorname{Irr}(x+y, K)$ and its Galois group is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Example. Let $E: Y^{2}=4 X^{3}-g_{2} \mathrm{X}-g_{3}$ be an elliptic curve and $p=3$. The polynomial Ψ_{3}^{E} whose roots are the first coordinates of the non-trivial 3-torsion points of E is

$$
\Psi_{3}^{E}=3 X^{4}-\frac{3}{2} g_{2} X^{2}-3 g_{3} X-\frac{g_{2}^{2}}{16} .
$$

Let $P=(x, y)$ be a non-trivial 3-torsion point, we have the relations

$$
x^{4}=\frac{g_{2}}{2} x^{2}+g_{3} x+\frac{g_{2}^{2}}{48}, \quad y^{2}=4 x^{3}-g_{2} x-g_{3} .
$$

Let us consider $\left\{1, x, x^{2}, x^{3}, y, x y, x^{2} y, x^{3} y\right\}$ as a K-basis of the vectorial space $K(x, y)$. Then, the characteristic polynomial of

$$
\begin{aligned}
m_{x+y}: K(x, y) & \rightarrow K(x, y) \\
a & \mapsto a \cdot(x+y)
\end{aligned}
$$

is the characteristic polynomial of the matrix

$$
\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\frac{g_{2}^{2}}{48} & g_{3} & \frac{g_{2}}{2} & 0 & 0 & 0 & 0 & 1 \\
-g_{3} & -g_{2} & 0 & 4 & 0 & 1 & 0 & 0 \\
\frac{g_{2}^{2}}{12} & 3 g_{3} & g_{2} & 0 & 0 & 0 & 1 & 0 \\
0 & \frac{g_{2}^{2}}{12} & 3 g_{3} & g_{2} & 0 & 0 & 0 & 1 \\
\frac{g_{2}^{3}}{48} & g_{2} g_{3} & \frac{7 g_{2}^{2}}{12} & 3 g_{3} & \frac{g_{2}^{2}}{48} & g_{3} & \frac{g_{2}}{2} & 0
\end{array}\right) .
$$

If $\rho_{E, 3}$ is surjective, this characteristic polynomial has Galois group $\rho_{E, 3}\left(G_{K}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$. In particular, if we take the generic elliptic curve

$$
E_{T}: y^{2}=4 x^{3}-T x-T,
$$

which defines a surjective $\bmod p$ Galois representation of $G_{Q(T)}$, for all p (cf. [5], § 63), we obtain the polynomial with coefficients in $\mathbb{Q}(T)$ computed in the table 23b of [3].

3. POLYNOMIALS FOR $\rho_{E, p}\left(\boldsymbol{G}_{Q}\right), \boldsymbol{p}=\mathbf{3 , 5}$

In this section we will give examples of polynomials whose Galois groups over \mathbb{Q} are the images $\rho_{E . p}\left(G_{\mathbb{Q}}\right)$. In [2, Theorem 3.2] it is determined the Galois group $\operatorname{Gal}(\mathbb{Q}(E[p]) / \mathbb{Q})$ for all the elliptic curves E defined over \mathbb{Q} without complex multiplication with conductor $N \leq 200$ and for all primes p. Now, we will give a polynomial for each subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ and $\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$ that appears as Galois group.
(a) $p=3$.
(i) $\quad \rho_{11 B, 3}\left(G_{\mathbb{Q}}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$. We remark that $11 B$ is the modular curve $X_{0}(11)$. The polynomial obtained by using Theorem 2.1, is given in table 23b [3].

$$
\begin{align*}
& \rho_{14 C, 3}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & *
\end{array}\right) . \tag{ii}\\
& \Psi_{3}^{14 C}=\frac{1}{2304}(4 X+1)(12 X-25)\left(144 X^{2}+\right. \\
& \quad+264 X+1849) .
\end{align*}
$$

By Theorem 1.1, the polynomial is the quadratic factor.
(iii)

$$
\begin{aligned}
\rho_{14 A, 3}\left(G_{\mathbb{Q}}\right)= & \left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right) . \\
\Psi_{3}^{14 A}= & \frac{1}{2304}(12 X-1)\left(576 X^{3}+48 X^{2}-\right. \\
& \quad-596 X+625) .
\end{aligned}
$$

By Theorem 1.1, the polynomial is the factor of degree 3.

$$
\begin{align*}
& \rho_{14 E, 3}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right) . \tag{iv}\\
& \Psi_{3}^{14 E}=\frac{1}{2304}(4 X+25) \\
&\left(1728 X^{3}-10800 X^{2}-521820 X-2679769\right) .
\end{align*}
$$

By Theorem 1.1, the polynomial is the factor of degree 3.
(v) $\rho_{50 A, 3}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$. Since $\Psi_{3}^{50 A}=\left(X-\frac{5}{12}\right) \cdot \widetilde{\Psi}_{3}$, with $\widetilde{\Psi}_{3}$ an irreducible polynomial over \mathbb{Q} of degree 3 , we can take the basis $\{P, Q\}$ of $E^{50 A}[3]$ with $P=\left(\frac{5}{12}, \sqrt{5}\right)$ and $Q=(x, y)$, where x is a root of $\widetilde{\Psi}_{3}$. The matricial expression of the image of the representation tells us that any 3-torsion point different from $\pm P$ is conjugated with Q. Hence,

$$
\left\{(x+y)^{\sigma}: \sigma \in G_{\mathbb{Q}}\right\}=\left\{x_{i} \pm y_{i}:\left(x_{i}, \pm \mathrm{y}_{i}\right) \in E^{50 A}[3], x_{i} \neq \frac{5}{12}\right\} .
$$

So, the decomposition field over \mathbb{Q} of $\operatorname{Irr}(x+y$, (Q) is

$$
\mathbb{Q}\left(\left\{x_{i} \pm y_{i}\right\}_{i=1,2,3}\right) \subseteq \mathbb{Q}\left(\mathrm{E}^{50 A}[3]\right) .
$$

But we can check that the polynomial $\operatorname{Irr}(x+y, \mathbb{Q})$ is

$$
\begin{aligned}
& X^{6}+\frac{5}{6} X^{5}+\frac{30845}{432} X^{4}-\frac{397015}{1296} X^{3}+ \\
& +\frac{37960175}{20736} X^{2}-\frac{735364625}{373248} X+ \\
& \quad+\frac{47376998675}{8957952}
\end{aligned}
$$

which has the dihedral group $D_{6} \simeq\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$ as Galois group over \mathbb{Q}. So, $\mathbb{Q}\left(\left\{x_{i} \pm y_{i}\right\}_{i=1,2,3}\right)=$ $=\mathbb{Q}\left(E^{50 A}[3]\right)$, and the above polynomial is the one we are looking for.
(vi) $\quad \rho_{98 C, 3}\left(G_{Q}\right)=\left(\begin{array}{ll}* & 0 \\ 0 & *\end{array}\right)$, in the \mathbb{F}_{3}-basis of $E^{98 \mathrm{C}}[3]$
$P=\left(-\frac{847}{12}, 343 \sqrt{-7}\right), Q=\left(\frac{175}{4}, \frac{686}{9} \sqrt{21}\right)$.
We have

$$
\begin{aligned}
& \mathbb{Q}\left(E^{98 c}[3]\right)=\mathbb{Q}\left(343 \sqrt{-7}, \sqrt{\frac{847}{12}}\right)= \\
& =\mathbb{Q}(\sqrt{-3}, \sqrt{-7})=\mathbb{Q}(\sqrt{-3}+\sqrt{-7})
\end{aligned}
$$

So, the polynomial is

$$
\operatorname{Irr}(\sqrt{-3}+\sqrt{-7}, \mathbb{Q})=X^{4}+20 X^{2}+16
$$

(b) $p=5$.
(i) $\rho_{20 B, 5}\left(G_{\mathbb{Q}}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$. We remark that $20 B$ is the modular curve $X_{0}(20)$, and the polynomial is given in table 23b of [3].
(ii) $\rho_{11 B, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & *\end{array}\right)$.

$$
\begin{gathered}
\Psi_{5}^{11 B}=\frac{1}{531441}(3 X-14)(3 X-47)\left(45 X^{2}+75 X-241\right) \\
\left(81 X^{4}+189 X^{3}+1026 X^{2}+3954 X+9391\right) \\
\left(81 X^{4}+1323 X^{3}+10989 X^{2}+23097 X+19081\right)
\end{gathered}
$$

By Theorem 1.1, we can take either of the factors of degree 4.
(iii) $\rho_{11 A, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)$.

$$
\Psi_{5}^{11 A}=\frac{1}{531441}(3 X-2)(3 X+1)
$$

$$
\begin{aligned}
& \left(295245 X^{10}+98415 X^{9}-1121931 X^{8}+\right. \\
& +3595428 X^{7}+260253 X^{6}+54675 X^{5}+ \\
& +293544 X^{4}-693360 X^{3}+912627 X^{2}- \\
& -333516 X+55049) .
\end{aligned}
$$

By Theorem 1.1, we can take the factor of degree 10 .
(iv)

$$
\begin{gathered}
\rho_{11 C, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right) . \\
\Psi_{5}^{11 C}=\frac{1}{531441}\left(45 X^{2}+4575 X+116279\right) \\
\left(243 X^{5}+21060 X^{4}-2063205 X^{3}-\right. \\
-322004880 X^{2}-13790509365 X- \\
\quad-198101488289) \\
\left(243 X^{5}-45765 X^{4}-15650955 X^{3}-\right. \\
-1358064135 X^{2}-48900953415 X- \\
-644288081042) .
\end{gathered}
$$

By Theorem 1.1, since the Galois group of either of the irreducible factors of degree 5 is the Frobenius group $F_{20} \subset \mathbb{G}_{5}$, of order 20, we can take either of these polynomials.

$$
\begin{align*}
& \rho_{99 D, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & *
\end{array}\right) . \tag{v}\\
& \Psi_{5}^{99 D}=(X+14)(X+47)\left(5 X^{2}-25 X-241\right) \\
& \quad\left(X^{4}-7 X^{3}+114 X^{2}-1318 X+9391\right) \\
& \quad\left(X^{4}-49 X^{3}+1221 X^{2}-7699 X+19081\right)
\end{align*}
$$

Let $\{P, Q\}$ be a \mathbb{F}_{5}-basis of $E^{99 D}[5]$ such that the image of the representation has the previous matricial form. We take $P=(-14,33 \sqrt{-3})$ and $Q=$ $=(x, y)$, where Q is a 5 -torsion point with x a root of one of the factors of $\Psi_{5}^{99 D}$ of degree 4. So, we can choose

$$
\mathrm{Q}=\left(\frac{5}{2}+\frac{33 \sqrt{5}}{10}, \sqrt{3267-\frac{6534 \sqrt{5}}{25}}\right) .
$$

Then,

$$
\mathbb{Q}\left(\sqrt{-3}, \sqrt{3267-\frac{6534 \sqrt{5}}{25}}\right) \subseteq \mathbb{Q}(E[5])
$$

Since $\left[\mathbb{Q}\left(E^{99 D}[5]\right): \mathbb{Q}\right]=8$, the irreducible polynomial over \mathbb{Q} with decomposition field $\mathbb{Q}\left(E^{99 D}[5]\right.$ is the polynomial of degree 8

$$
\begin{gathered}
X^{8}-13056 X^{6}+\frac{7914686688}{125} X^{4}- \\
-\frac{16891361683776}{125} X^{2}+ \\
+\frac{1674227268777390336}{15625} .
\end{gathered}
$$

(vi) $\quad \rho_{99 C, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{cc} \pm 1 & * \\ 0 & *\end{array}\right)$.

$$
\begin{gathered}
\Psi_{5}^{99 C}=(X-1)(X+2) \\
\left(5 X^{10}-5 X^{9}-171 X^{8}-1644 X^{7}+357 X^{6}-\right. \\
-225 X^{5}+3624 X^{4}+25680 X^{3}+101403 X^{2}+ \\
+111172 X+55049)
\end{gathered}
$$

Let $\{P, Q\}$ be a \mathbb{F}_{5}-basis of $E[5]$ such that the image of the representation has the previous matricial form. We can take $P=(1,3 \sqrt{-3}), Q=$ $=(x, y)$, where x is any root of the factor of degree 10. The matricial expression of the image of the representation indicates us that any 5-torsion point different from $\pm P$ is conjugated with Q, and so,

$$
\left\{(x+y)^{\sigma}: \sigma \in G_{\mathbb{Q}}\right\}=\left\{x_{i} \pm y_{i}:\left(x_{i}, \pm y_{i}\right) \in \mathrm{E}[5] \backslash\langle P\rangle\right\} .
$$

Then,

$$
\begin{gathered}
\mathbb{Q}\left(E^{99 C}[5]\right)=\mathbb{Q}\left(\left\{x_{i} \pm y_{i}\right\}_{i=1, \ldots, 10}, \sqrt{-3}\right)= \\
=\mathbb{Q}\left(\left\{x_{i}, y_{i}\right\}_{i=1, \ldots, 10}, \sqrt{-3}\right),
\end{gathered}
$$

and consequently, the polynomial of degree 22 we are looking for is $\operatorname{Irr}(x+y, \mathbb{Q})\left(X^{2}+3\right)$.

$$
\begin{align*}
& \rho^{50 G, 5}\left(G_{\mathbb{Q}}\right)=\left\{\left(\begin{array}{cc}
1 & * \\
0 & \pm 1
\end{array}\right),\left(\begin{array}{cc}
-1 & * \\
0 & \pm 2
\end{array}\right)\right\} . \tag{vii}\\
& \Psi_{5}^{50 G}=\frac{5}{8916100448256}(12 X-85)(12 X+35) \\
& \quad\left(61917364224 X^{10}+257989017600 X^{9}-\right.
\end{align*}
$$

$$
\begin{gathered}
-55628881920000 X^{8}+ \\
+1206636134400000 X^{7}- \\
-3537551232000000 X^{6}- \\
-58165801920000000 X^{5}+ \\
+1009074753000000000 X^{4}- \\
-11967618375000000000 X^{3}+ \\
+87165442132031250000 X^{2}- \\
-313745335166015625000 X+ \\
+442487707579345703125) .
\end{gathered}
$$

By Remark 1.2, the polynomial we are looking for is the factor of degree 10 .

$$
\begin{gathered}
\text { (viii) } \rho^{50 E, 5}\left(G_{\mathbb{Q}}\right)=\left\{\left(\begin{array}{cc}
\pm 1 & * \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\pm 2 & * \\
0 & -1
\end{array}\right)\right\} . \\
\Psi_{5}^{50 E}=\frac{5}{8916100448256}\left(144 X^{2}+120 X-155\right) \\
\left(248832 X^{5}-1347840 X^{4}+432000 X^{3}-\right. \\
\left.-2541600 X^{2}-826500 X-6632125\right) \\
\left(248832 X^{5}+1140480 X^{4}+4579200 X^{3}-\right. \\
\left.-6170400 X^{2}-5290500 X-3749125\right) .
\end{gathered}
$$

By Remark 1.2, since the Galois group of either of the irreducible factors of degree 5 is the Frobenius group $F_{20} \subset \mathbb{G}_{5}$, of order 20, we can take either of the two above factor polynomials.

REFERENCES

1. Birch, B. \& Kuyk, W. (eds.) (1972), Modular Functions of One Variable IV, Lecture Notes in Math., Vol. 476, Sprin-ger-Verlag.
2. Reverter, A. \& Vila, N. (2001), Images of mop p Galois representations associated to elliptic curves, Canadian Mathematical Bulletin, 44.
3. Reverter, A. \& Vila, N. (1992), Grups de Galois, In: Corbes modulars: taules, Bayer, P.; Travessa, A. (eds.), Notes del Seminari, n. 1, ISBN 84-604-3577-6.
4. Serre, J.-P. (1972), Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones mathematicae, 15, 259-331.
5. Weber, H. (1908), Lehrbuch der Algebra III, Vieweg, Braunschweig.

[^0]: ${ }^{1}$ This research has been partially supported by DGES grant PB96-0970-C02-01.

