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ABSTRACT

We construct polynomials with Galois groups the ima-
ges of mod p Galois representations attached to elliptic
curves. Explicit polynomials are computed for each sub-
group of GL,(F;) and GL,(F;) that appears as an image
for elliptic curves without complex multiplication and
with conductor <200.

RESUMEN

Construimos polinomios cuyos grupos de Galois son
las imagenes de la representaciones galoisianas médulo p
asociadas a curvas elipticas. Para cada uno de los subgru-
pos de GL,(F;) y de GL,(F;) que aparecen como imagen
para las curvas elipticas sin multiplicacién compleja y
con conductor <200, calculamos explicitamente polino-
mios con estos grupos como grupos de Galois sobre el
cuerpo de los racionales.

INTRODUCTION

Let E be an elliptic curve defined over a field K of
characteristic 0. Let K be an algebraic closure of K and
G, = Gal(K/K) the absolute Galois group of K. Let p be a
prime number and E[ p] denote the group of the p-torsion
points of E. The Galois group Gy acts naturally on the
group E(K) of all K-rational points of E. The Galois ac-
tion of G, on E[ p] defines a mod p Galois representation

Pi p : Gy = Aut(E[p]) =~ GLy(F ).

Let K(E[ p]) denote the field generated by the coordinates
of all the p-torsion points of E over K, the Galois exten-
sion K(E[p])/K has Galois group

Gal(K(E[p)V/K) = pp, (Gy) S GLy(F,).

' This research has been partially supported by DGES grant PB96-0970-C02-01.

The purpose of this paper is, given an elliptic curve E
defined over K and a prime number p, to find a polyno-
mial with coefficients in K whose Galois group over K
will be the group p; (G) = Gal(K(E[ p])/K).

As is well known, Serre [4] has shown that whenever E
is an elliptic curve defined over a number field and wit-
hout complex multiplication this representation is surjec-
tive for all but finitely many prime numbers p. In [2] it is
studied the images of the mod p Galois representation
associated to elliptic curves having an isogeny defined
over K of degree p, the non surjective case. The Galois
group Gal(Q(E[p])/Q) for all elliptic curves E defined
over () without complex multiplication and with conduc-
tor N < 200, for all primes p, is determined.

In this paper we prove that the Galois group of the
polynomial W%, whose roots are the first coordinates of
the non-trivial p-torsion points of E, is pg (Gy) =
~ Gal(K(E[p])/K), for the non-p- exceptlonal elliptic
curves over K which admits a K-isogeny of degree p. In
the surjective case, that is pj; ,(Gy) =~ Gal(K(E[p])/K) ~
~ GL,(F,), we determine an 1rreduc1ble polynomial with
Galois group over K such a group. Finally, we will give
examples of polynomials whose Galois group over Q are
pr, (Gg). More precisely, we will give polynomials for
each subgroup of GLZ([F3) and GL,([F;) that appears as an
image of the representation attached to the elliptic curves
without complex multiplication with conductor N < 200.

1. POLYNOMIALS IN NON-p-EXCEPTIONAL
CASE

Let E/K be an elliptic curve defined over K, consider a
Weierstrass model of E over K. Let p be a prime number
and let y, be the mod p cyclotomic character. Let p;, , be
the mod p Galois representation associated to the p-tor-
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sion points E[ p] of E. By the Weil pairing, det p;. (o) =
= 1,(9), for all ¢ € Gg.

Definition. Let E/K be an elliptic curve and let p # 2
be a prime number. We will say that E is a p-exceptional
elliptic curve over K if it satisfies the following condi-
tions:

(i) The elliptic curve E has no non-trivial K-ratio-
nal p-torsion points.

(i) There exist an elliptic curve E/K and a K-iso-
geny ¢ : E— E’ of degree p.

(iii) Every elliptic curve E’ K-isogenous to E with
isogeny of degree p has no non-trivial K-rational
p-torsion points.

We note that of the 722 elliptic curves over Q) without
complex multiplication with conductor <200 listed in the
Antwerp tables [1], only 31 are 3-exceptional over Q, 27
are 5-exceptional over Q, 8 are 7-exceptional over @0, 4
are 11-exceptional over Q@ and 4 are 13-exceptional over
Q; if p > 13 all elliptic curves are non-p-exceptional
over Q.

Theorem 1.1. Let E be a non-p-exceptional elliptic
curve over K that admits a K-isogeny of degree p. Let lPF
be the polynomial whose roots are the first coordinates
of the non-trivial p-torsion points of E. Then the Galois
group over K of the polynomial ‘PE is pg (G =
= Gal(K(E[ p])/K).

Proof. By [2, Theorem 1.5], there exists a basis of
E[ p] such that

1 E N1 0 1,(Gp) ¥
g E"’(G")"<0 xp<GK>>’ <0 x,,<GK>> °r< 0 1>‘

Then —id ¢ p;, ,(Gy). Let K(x(E[p])) denote the field genera-
te by the first ‘coordinates of the p-torsion points. It is clear
that, if ¢ € G, fixes all the x-coordinates, then g(P) = £P.
Moreover, the sign does not depend on the point, if (P) = P
and 0(Q) = -Q, then (P + Q) # (P + Q). So,

o5, (Gal(KELpIYK(x(E[p]))) < {=id}.
Therefore, the Galois group over K of the polynomial ‘P, is
pe, (Gy) = Gal(K(ELp)V/K).

Remark 1.2. We note that the point, in the above re-
sult, is that —id is not in the image p; (Gy). Therefore,
whenever E/K is an elliptic curve with this property, e.g.
if the elliptic curve E has non-trivial p-torsion pomts de-
fined over K, the Galois group of the polynomial ‘I’ over
K is ;. (Gy) = Gal(K(EI p])/K).

2. POLYNOMIALS IN THE SURJECTIVE CASE

The following theorem allows us to find polynomials
with coefficients in K whose Galois group over K is
GL,(F )/{x1} or GLy(F ).

Theorem 2.1. Let E be an elliptic curve defined over
K. Let p # 2 be a prime number, assume that the repre-
sentation py, , : Gy — GL,(E[p]) is surjective, then

(i) The polynomial ‘I’f whose roots are the first
coordinates of the non-trivial p-torsion points of
E is irreducible and its Galois group over K is
GL,(F )/{£1}.

(ii) Let P = (x, y) € E[p]M{O}. The characteristic
polynomial of the multiplication by x + y in
K(x, y) is irreducible and its Galois group over K
is GLy(F).

Proof. First, we will see that the set of conjugates of x is
{(x7:0€ Gy} ={x;: (x, xy) € E[p] \ {0}},

and the set of conjugates of x + y is

(x;, £y,) € E[p]\ {O}}

Since (x, y)’ € E[p], for o € G4, there exists i such that
(x, )7 = (x, 2y). S0, x” = x;,, y* = xy, and (x + y)* =
= x + y.. Reciprocally, if (x;, +y,) € E[ p] is non-trivial, let

= (x, y,) - Let {P, O} be a [ -basis of E[p], with P =
= (x y). Let a, b € T, be such that R = aP + bQ. Since

€ GLy(F ). Since p;,

{(x+y):0eG} ={xxy,:

a# 0 or b #0, there exists <b

d
is surjective there exist 0y 0, € G with p, (0,) =
a Cc
= ) g, . Then, x% =x,, (x + y)% =

=x;+y, and (x + y)”l =X, -y

(i) Clearly #{x" : 6 € G} =25 = deg V£, then V£
is the irreducible polynom1al of x over K and'its Galois
group over K is Gal(K(x(E[ p])))/K) = GL(F )/{=1}.

(i1) Since

KEp) =K(lx 2 y),_, po0)=

2

K(((x +3)°),e6):

the decomposition field over K of the irreducible polyno-
mial Irr(x + y, K) of x + y over K is K(E[p]) and its
Galois group over Kis pp (Gy) = GLz(lF ). On the other
hand, since p # 2 and —id € Gal(K(E[ p])/K(x(E[ pD)), itis
easy to see that x; £y, # x; + y, for all i #, and x; + y, #
;tx —y, for all i. Then, the degree of Irr(x + y, K) is
p°—1. Let m , : K(x y) = K(x, y) be the morphism
multiplication by X + y in K(x, y). The dimension of
K(x, y) over K is p* — 1. Therefore, the characteristic
polynomial of the morphism m, , , is Irr(x + y, K) and its
Galois group is GL,([F ). '
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Example. Let E: Y* = 4X° — g,X — g, be an elliptic
curve and p = 3. The polynomial W% whose roots are the
first coordinates of the non-trivial 3-torsion points of E is

_3g X—ﬁ

3
WE=3xt -2
58X 16

Let P = (x, y) be a non-trivial 3-torsion point, we have
the relations

4 gz 2 gZ

e y=4x - gx - g,

Let us consider {1, x, x*, X, y, xy, x*y, x’y} as a K-basis of
the vectorial space K(x, y). Then, the characteristic poly-
nomial of

. KO, y) = K(x, y)

a—>a-(x+y).

is the characteristic polynomial of the matrix

0 1 0O O 1 0 0O
0 0 1 0 0 1 00
0 0 0 1 0 0 1 0
2 g % 0 0 0 01
-, - 0 4 0 1 0 0f
& 3 & & 0 0 0 1 0
0 % 3¢, g 0 0 0 1
588 % 3, 5 & %0

If p,. 5 is surjective, this characteristic polynomial has
Galois group p, 5(G¢) = GL,(F;). In particular, if we take
the generic elliptic curve

E :y =43 -Tx - T,

which defines a surjective mod p Galois representation of
Gy for all p (cf. [5], § 63), we obtain the polynomial
with coefficients in Q(T") computed in the table 23b of [3].

3. POLYNOMIALS FOR p, (Gg),p =3, 5

In this section we will give examples of polynomials
whose Galois groups over Q are the images p,. (Gg). In
[2, Theorem 3.2] it is determined the Galois group
Gal(Q(E[ p])/Q) for all the elliptic curves E defined over
() without complex multiplication with conductor N < 200
and for all primes p. Now, we will give a polynomial for
each subgroup of GL,([F;) and GL,(F;) that appears as
Galois group.

(@ p=3.

(i)

(i)

(iii)

(iv)

v)

p115.+Ggq) = GL,([F;). We remark that 11B is the
modular curve X(11). The polynomial obtained
by using Theorem 2.1, is given in table 23b [3].

1 0
p14c.3(G@)=<0 *)

Pl = m 4x + 1(12x -

+ 264X + 1849).

25)(144X* +

By Theorem 1.1, the polynomial is the quadratic
factor.

1 *
.014A,3(G®)=<0 >x<>

P = m (12X - 1)(576X° + 48X —

—-596X + 625).

By Theorem 1.1, the polynomial is the factor of
degree 3.

% %
101413,3((;@):(0 1>-

P = 4X +25
2304( +25

(1728X> — 10800X* — 521820X — 2679769).
By Theorem 1.1, the polynomial is the factor of
degree 3.

%k N
Psoa, 3(Ga) = <0 (X - E) ¥,

with P, an irreducible polynomial over @ of de-
gree 3, we can take the basis {P, Q) of E5*[3]

with P = 12 f) and Q = (x, ) where x is a
root of \P,. The matricial expression of the ima-
ge of the representation tells us that any 3-tor-
sion point different from +P is conjugated with
0. Hence,

. Since Y3 =

{(e+y): UEG@}—{X £y,:(x, 2y) e E™[3], x;tlsz}

So, the decomposition field over @ of Irr(x + y,
Q) is

Qx; £y,}ic123) S QE™[3)).
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(vi)

But we can check that the polynomial Irr(x + y, Q) is

30845 397015
432 1296

37960175 _, 735364625
20736 373248

47376998675
8957952

X6+§X5+
6

k0 ok
which has the dihedral group D, ~ 0 * as

Galois group over Q. So, Q({x; = y,},_,,3) =
= Q(E*™(3]), and the above polynomial is the
one we are looking for.

* 0
Posc, 3(Gg) = (0 *>, in the F;-basis of E**[3]

=< 847,343 f) <175 626 \/§—1>

We have

Q(E*[3]) = (343f )
= QW/-3, /-1 = Q. /-3 + ﬁ)

So, the polynomial is

Irr(\ /-3 + /-7, Q) = X* + 20X* + 16.

b p=5

@)

(i)

(iii)

P08, 5(Gg) = GL,(F5). We remark that 20B is the
modular curve XO(2O) and the polynomial is gi-
ven in table 23b of [3].

1 0
Pus s(Ga) = 0 */

1
WiB=—— (3X - 14)(3X -47)(45X>+75X - 241
s =531241 ¢ ) (45X "+ )

(81X* + 189X° + 1026X? + 3954X + 9391)
(81X* + 1323X° + 10989X2 + 23097X + 19081).

By Theorem 1.1, we can take either of the fac-
tors of degree 4.

1 *
pllA,S(GQ)=<0 >k>'

I
Plia = 3X - 2)(3X + 1
s T 531441 ¢ BX+ 1)

(295245X "0 + 98415X° — 1121931X°® +

+ 3595428X7 + 260253X° + 54675X° +

+293544X* — 693360X° + 912627X* —
—333516X + 55049).

By Theorem 1.1, we can take the factor of de-
gree 10.

o
(iv) pnc,s(G@):(O 1>~

1
WY = o (45X7 + 4575 + 116279)

(243X° + 21060X* — 2063205X° —
— 322004880X* — 13790509365X —
— 198101488289)

(243X° - 45765X* — 15650955X° —
- 1358064135X* — 48900953415X —
— 644288081042).

By Theorem 1.1, since the Galois group of either
of the irreducible factors of degree 5 is the Fro-
benius group F,, < ®,, of order 20, we can take
either of these polynomials.

=1 0
(v) p991>,5(G@)=<0 +>

PPP = (X + 14)(X + 47)(5X* — 25X - 241)
(X*=7X° + 114X* — 1318X + 9391)
(X* = 49X° + 1221X? — 7699X + 19081)

Let {P, O} be a Fs-basis of E*”[5] such that the
image of the representatlon has the previous ma-

tricial form. We take P = (-14, 33\/>) 3)and O =
= (%, ¥), where Q is a 5-torsion point with x a
root of one of the factors of W2°” of degree 4. So,
we can choose

o- 5,335 267 6534./5
27 107 25 )
Then,

(f 3267—6534\/-> < Q(ELS).

Since [Q(E*”[5]) : Q] = 8, the irreducible poly-
nomial over @ with decomposition field
Q(E*P[5] is the polynomial of degree 8
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(vi)

(vii)

7914686688 X
125

_ 16891361683776 x?
125

1674227268777390336
15625

+] ¥
Pooc, (Ga) = 0o =/

PPC=X-1)X+2)
(5X'° = 5X° — 171X® - 1644X" + 357X° —
- 225X° + 3624X* + 25680X° + 101403X* +
+ 111172X + 55049).

4

X® - 13056X° +

Let {P, Q} be a [s-basis of E[S] such that the
image of the representation has the previous ma-

tricial form. We can take P = (1, 3\/_—>3), 0=
= (x, y), where x is any root of the factor of de-
gree 10. The matricial expression of the image
of the representation indicates us that any 5-tor-
sion point different from +P is conjugated with
0, and so,

{(x+y):0eGg) ={x;xy;: (x, xy) € E[S]\(P)}.

1

Then,

QE™SH = QU £ Y1, o +/-3) =
=Q ({x, yi}ici, 00 \/j3)s

and consequently, the polynomial of degree 22
we are looking for is Irr(x + y, @)(X? + 3).

500,5(G _ 1 * -1 *
p @)= 0o =1/\0 =2/

50G

57 8916100448256
(61917364224X'° + 257989017600X° —

(12X - 85)(12X + 35)

- 55628881920000X°® +
+ 1206636134400000X 7 -
- 3537551232000000X°¢ —
- 58165801920000000X° +
+ 1009074753000000000X* —
- 11967618375000000000X° +
+ 87165442132031250000X* —
— 313745335166015625000X +

+ 442487707579345703125).
By Remark 1.2, the polynomial we are looking
for is the factor of degree 10.

S50E, 5 — il * iz *
w3 )3 )

S50E _

> 7 8916100448256
(248832X° — 1347840X* + 432000X° —
— 2541600X> — 826500X — 6632125)
(248832X° + 1140480X* + 4579200X° —
— 6170400X?> - 5290500X — 3749125).

(144X + 120X - 155)

By Remark 1.2, since the Galois group of either
of the irreducible factors of degree 5 is the Fro-
benius group F,, < s, of order 20, we can take
either of the two above factor polynomials.
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