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ABSTRACT 

We construct polynomials with Galois groups the ima­
ges of mod p Galois representations attached to elliptic 
curves. Explicit polynomials are computed for each sub­
group of GL2(F3) and GL2(F5) that appears as an image 
for elliptic curves without complex multiplication and 
with conductor <200. 

RESUMEN 

Construimos polinomios cuyos grupos de Galois son 
las imágenes de la representaciones galoisianas módulo p 
asociadas a curvas elípticas. Para cada uno de los subgru-
pos de GL2(F3) y de GL2(F5) que aparecen como imagen 
para las curvas elípticas sin multiplicación compleja y 
con conductor <200, calculamos explícitamente polino­
mios con estos grupos como grupos de Galois sobre el 
cuerpo de los racionales. 

INTRODUCTION 

Let E be an elliptic curve defined over a field K of 
characteristic 0. Let K be an algebraic closure of K and 
G^ = Gal(^/^) the absolute Galois group of ^. Let/7 be a 
prime number and E[p] denote the group of the/?-torsion 
points of_E. The Galois group G^ acts naturally on the 
group E{K) of all /^-rational points of E. The Galois ac­
tion of G^ on E[p] defines a mod p Galois representation 

^E,p Aut(£[p]) ^ GL2(FJ. 

Let K{E[p]) denote the field generated by the coordinates 
of all the /7-torsion points of E over K, the Galois exten­
sion K{E{pY)IK has Galois group 

G?i\{K{E[p])IK) ^ p^/G^) GL2(Fp. 

The purpose of this paper is, given an elliptic curve E 
defined over K and a prime number p, to find a polyno­
mial with coefficients in K whose Galois group over K 
will be the group p̂ .̂ CG )̂ = G^\[K{E{p])IK). 

As is well known, Serre [4] has shown that whenever E 
is an elliptic curve defined over a number field and wit­
hout complex multiplication this representation is surjec-
tive for all but finitely many prime numbers p. In [2] it is 
studied the images of the mod p Galois representation 
associated to elliptic curves having an isogeny defined 
over K of degree /?, the non surjective case. The Galois 
group Gal(Q(£'[/7])/Q) for all elliptic curves E defined 
over Q without complex multiplication and with conduc­
tor N < 200, for all primes /?, is determined. 

In this paper we prove that the Galois group of the 
polynomial ^j^ , whose roots are the first coordinates of 
the non-trivial p-torsion points of E, is PE,P(GK) — 
c^ Gsil{K(E[p])/K), for the non-/7-exceptionai elliptic 
curves over K which admits a jK -̂isogeny of degree p. In 
the surjective case, that is PE,ÁGJ^ ^ GsLl{K(E[p])/K) c^ 
^ GL2(F )̂, we determine an irreducible polynomial with 
Galois group over K such a group. Finally, we will give 
examples of polynomials whose Galois group over Q are 
PE,P(GQ). More precisely, we will give polynomials for 
each subgroup of GL2(F3) and GL2(F5) that appears as an 
image of the representation attached to the elliptic curves 
without complex multiplication with conductor N < 200. 

1. POLYNOMIALS IN NON-/;.EXCEPTIONAL 
CASE 

Let E/K be an elliptic curve defined over K, consider a 
Weierstrass model of E over K. Let /? be a prime number 
and let Xp be the mod p cyclotomic character. Let p^ ^ be 

This research has been partially supported by DOES grant PB96-0970-C02-01. the mod p G a l o i s r e p r e s e n t a t i o n aSSOCiatcd tO tht p-tOt 

mailto:areverte@pie.xtec.es
mailto:vila@mat.ub.es


418 A. Reverter et al. Rev.RAcad.Cienc.Exact.Fis.Nat. (Esp), 2000; 94 

sion points E{p] of E. By the Weil pairing, det p^ ^(a) = 
= lp{(^). for all G eGj^. 

Definition. Let EIK be an elliptic curve and loXp^l 
be a prime number. We will say that £ is a p-exceptional 
elliptic curve over K if it satisfies the following condi­
tions: 

(i) The elliptic curve E has no non-trivial /^-ratio­
nal p-torsion points. 

(ii) There exist an elliptic curve E'/K and a AT-iso-
geny (p : E ^ E' of degree p. 

(iii) Every elliptic curve E' iiC-isogenous to E with 
isogeny of degree/? has no non-trivial ^-rational 
/?-torsion points. 

We note that of the 722 elliptic curves over Q without 
complex multiplication with conductor <200 listed in the 
Antwerp tables [1], only 31 are 3-exceptional over Q, 27 
are 5-exceptional over Q, 8 are 7-exceptional over Q, 4 
are 11-exceptional over Q and 4 are 13-exceptional over 
Q; if p > 13 all elliptic curves are non-p-exceptional 
over Q. 

Tlieorem 1.1. Let E be a non-p-exceptional elliptic 
curve over K that admits a K-isogeny of degree p. Let ^*^ 
be the polynomial whose roots are the first coordinates 
of the non-trivial p-torsion points of E. Then the Galois 
group over K of the polynomial ^ ^ is pp p{Gj^ = 
= Gú{K(E[p])/K). 

Proof By [2, Theorem 1.5], there exists a basis of 
E[p] such that 

0 Xp(G,) * 

"-*'=''= 1,0 W-lo W - l o 1 
Then -id ^ PE,P(GK). Let K{x(E[p])) denote the field genera­
te by the first coordinates of the /?-torsion points. It is clear 
that, if a eGf^ fixes all the x-coordinates, then a(P) = ±P. 
Moreover, the sign does not depend on the point, if a{P) = P 
and (7(0) = - 0 , then (j(P + Ô) ^ ±iP + Q)- So, 

p,XG^\{K{E[p])IK{x{E{p])))) ^ {±id}. 

Therefore, the Galois group over K of the polynomial ^^f is 

PE,p{G^) = G?\{K{E[p])IK\ 

Remark 1.2. We note that the point, in the above re­
sult, is that - id is not in the image pEp(Gj^). Therefore, 
whenever EIK is an elliptic curve with this property, e.g. 
if the elliptic curve E has non-trivial p-torsion points de­
fined over K, the Galois group of the polynomial 4̂ f̂ over 
Kisp,p(G^) = G^l{K(E[p])/K). 

2. POLYNOMIALS IN THE SURJECTIVE CASE 

The following theorem allows us to find polynomials 
with coefficients in K whose Galois group over K is 
G L # ^ J / { ± l } o r G L # p . 

Theorem 2.1. Let E be an elliptic curve defined over 
K. Let p ^2 be a prime number, assume that the repre­
sentation pp p : Gj^ -^ GhjiElp]) is surjective, then 

(i) The polynomial ^ ^ whose roots are the first 
coordinates of the non-trivial p-torsion points of 
E is irreducible and its Galois group over K is 
GL,(i^)/{±l}. 

(ii) Let P = (x, y) e E[p]\{0}. The characteristic 
polynomial of the multiplication by x -\- y in 
K(x, y) is irreducible and its Galois group over K 
is GL,(Fp. 

xis Proof. First, we will see that the set of conjugates of 

{x^ : GeG^} = [x, : (x, ±3;,) G E[p] \ {0}}, 

and the set of conjugates of x H- y is 

{{X ^yy'.Ge G^} = {x, ± y, : (x,, ±j,) e E[p] \ {0}}. 

Since (x, yY e E[p], for a e G^, there exists / such that 
(x, yY = (x-, ±y¿}. So, x'̂  = x-, y^ = ±y¡, and (x + yY = 
= X. ± _y.. Reciprocally, if (x-, ±y¡) e E[p] is non-trivial, let 
R = (x-, y.) . Let [P, Q] be a F^ -̂basis of £"[^1, with P = 
= (x, y). Let a, b e i^ be such that R = aP + bQ. Since 

aï^O or b^O, there exists 
yb dj ''""' "^^'^ 

is surjective, there exist CTQ, CTJ e G¡^ with p^ ,,(^0) = 

e GL2(F ). Since p¿ 

= X. H- y i and (x + yY^ = ^i - J,-

I. Then, x""» = x-, (x + yY"" = 

(i) Clearly #{x" : a G G^} = ^-^^ = deg ¥ f̂, then "V^ 
is the irreducible polynomial of x over K and its Galois 
group over K is G2i\{K{x{E{p]))lK) = GL2(Fp/{±l}. 

(ii) Since 

K{E{p^) = K{{x, ± y,.},.^, ¿_,) = K{{(x + y r i . e c , ) , 
2 

the decomposition field over K of the irreducible polyno­
mial Irr(x + y, ^ ) of X + y over K is K(E[p]) and its 
Galois group over K is p^ JiGj^ = GL2(Fp. On the other 
hand, since pi^2 and -id e G?i\{K{E[p])IK{x{E{p]))\ it is 
easy to see that x- ± y- i=- x- ± y- for all / ^f and x, + y- ^ 
^ X- - y- for all /. Then, the degree of Irr(x + y, K) is 
p^ - \. Let m^^^, : K(x, y) -> K(x, y) be the morphism 
multiplication by x + y in K(x, y). The dimension of 
K{x, y) over K is p^ - 1. Therefore, the characteristic 
polynomial of the morphism m^ + ,̂ is lrr(x + 3;, K) and its 
Galois group is GL2(F ,̂). 
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Example. Let E :Y- = AX^ - g^ - g^ be an elliptic 
curve and/7 = 3. The polynomial Tf whose roots are the 
first coordinates of the non-trivial 3-torsion points of £" is 

^•¡ = 3X'--g,r--3g,X á 
16 

Let P = (x, y) be a non-trivial 3-torsion point, we have 
the relations 

/ = Ax^ - g^x 

(a) p = ?>. 

(i) PwB 3(^0) - GL2(F3). We remark that 1 IB is the 
modular curve XQ(1 1). The polynomial obtained 
by using Theorem 2.1, is given in table 23b [3]. 

(ii) PI4C3(GQ) = 

VJ/14C ^ 

2304 

1 0 

{AX+ 1)(12Z-25)(144Z2 + 

+ 264X+ 1849). 

Let us consider {1, x, x", x ,̂ y, xy, x^y, x^y} as a ^-basis of 
the vectorial space K{x, y). Then, the characteristic poly­
nomial of 

m^^y : K{x, y) ^ K(x, y) 

a I—> a • (x -I- y). 

is the characteristic polynomial of the matrix 

0 
0 
0 
82 
48 

- ^ 3 

12 

0 
d 
48 

1 
0 
0 

^ 3 

-82 

3^3 
si 
12 

^ 2 ^ 3 

0 
1 
0 
S2 

2 

0 

^ 2 

3^3 
7,d 
12 

0 
0 
1 
0 
4 
0 

gi 

3^3 

1 
0 
0 
0 
0 
0 
0 

48 

0 
1 
0 
0 
1 
0 
0 

gi 

0 
0 
1 
0 
0 
1 
0 
^ 2 

2 

0 
0 
0 
1 
0 
0 
1 
0 

If p^ 3 is surjective, this characteristic polynomial has 
Galois group p¿- 3(G^) = GL2(F3). In particular, if we take 
the generic elliptic curve 

Ej : y^ = 4x^ - Tx - Z 

which defines a surjective modp Galois representation of 
GQ(7^), for all p (cf. [5], § 63), we obtain the polynomial 
with coefficients in Q(T) computed in the table 23b of [3]. 

3. POLYNOMIALS FOR PE,piG^), /? = 3, 5 

In this section we will give examples of polynomials 
whose Galois groups over Q are the images PE,P(GQ). In 
[2, Theorem 3.2] it is determined the Galois group 
Ga.\{Q(E[p])/Q) for all the elliptic curves E defined over 
Q without complex multiplication with conductor Â  < 200 
and for all primes p. Now, we will give a polynomial for 
each subgroup of GL2(F3) and GL2(Fg) that appears as 
Galois group. 

By Theorem 1.1, the polynomial is the quadratic 
factor. 

(iii) PMA,3(GQ) = 

VJ/14A _ 

2304 
( 1 2 X - 1)(576X^ + 4 8 X - -

- 596X + 625). 

By Theorem 1.1, the polynomial is the factor of 
degree 3. 

(i^) P HE, 3(GQ) = 
0 1 

Vpl4£ _ ^ 

^ 2304 
(4X + 25) 

(1728X^ - 10800^2 - 521820X - 2679769). 

By Theorem 1.1, the polynomial is the factor of 
degree 3. 

(V) Pm3(Go) = (̂ Q ^ j . S i n c e 4 > r = ( X - ^ ) - ^ 3 , 

with 4̂ 3 an irreducible polynomial over Q of de­
gree 3, we can take the basis {P, Q} of E^^\3] 
with P = {j2' ^5) and Q = (x, y), where x is a 
root of ^ 3 . The matricial expression of the ima­
ge of the representation tells us that any 3-tor­
sion point different from ±P is conjugated with 
Q. Hence, 

{(X + # . - ( T G G Q } = x,±j,.:(x,±y,)6£^«^[3],x,;^ 
12 

So, the decomposition field over Q of Irr(x + y, 
IS 

Û({x,±j,},.,2,3) ^ Q(E- '̂̂ '[3]). 



420 A. Reverter et al. Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 2000; 94 

But we can check that the polynomial Irr(x + y, Q) is 

^ 5 ^ 30845 ^ 397015 , 

6 432 1296 

37960175 , 735364625 
+ X^ X + 

20736 373248 

47376998675 

8957952 

which has the dihedral group Dg 
0 as 

Galois group over Q. So, Q{{x¡ ± 3',},= i.2,3) = 
= Q(E^°'^[3]), and the above polynomial is the 
one we are looking for. 

(vi) p,,c. 3(GQ) = (l J , in the Fj-basis of £'̂ «^[3] 

P = 

We have 

847 r - \ /175 686 , 
. 3 4 3 V - 7 I Q = { ' . / 2 1 

2 ^ /' '^ V 4 9 

Q(£^'^^[3]) = Q 343V-7 , 

So, the polynomial is 

I r r ( v ^ + x p 7 , Q) = X* + 20X2 + 16. 

(b) p^5. 

(i) PioB. SÍGQ) = GL2(F5). We remark that 20fi is the 
modular curve Xo(20), and the polynomial is gi­
ven in table 23b of [3]. 

(ii) PIIS.5(GQ) 

"¥ I I B _ 1 

1 0 

0 *, 

(3X- 14)(3X-47)(45X2+75X-241) 
531441 

(SIX'' + 189X' + 1026X2 + 3954X + 9391) 

(SIX^ + 1323X^ + 10989X2 + 23097X + 19081). 

By Theorem 1.1, we can take either of the fac­
tors of degree 4. 

(iii) PMA.5(GQ) 
1 * 

0 * 

1 

' 531441 
(3X - 2)(3X + 1) 

(295245X'° + 98415X' - 112193IX** + 

+ 3595428X' + 260253X^ + 54675X= + 

+ 293544X'' - 693360X-' + 912627X2 -

-333516X+55049) . 

By Theorem 1.1, we can take the factor of de­
gree 10. 

(iv) PIIC.5(G^Q) = 

V J / l l C ^ 

* * 

0 1 

1 
(45X2-F 4575X 4- ii6279) 

531441 

(243X5 + 21060X4 - 2063205X^ -

- 322004880X2 - 13790509365X -

- 198101488289) 

(243X5 - 45765X'' - 15650955X^ -

- 1358064135X2 - 48900953415X -

- 644288081042). 

By Theorem 1.1, since the Galois group of either 
of the irreducible factors of degree 5 is the Fro-
benius group FJQ C d j , of order 20, we can take 
either of these polynomials. 

(V) P99D. 5 ( < ^ Q ) = 
±1 0 

0 * 

^Pf " = (X + 14)(X + 47)(5X2 - 25X - 241) 

(X" -7X^+114X2 _ j 3 j g j ^ 939J) 

(X'* - 49X^ + 1221X2 - 7699X +19081) 

Let {P, Q} be a Fj-basis of £^'^''[5] such that the 
image of the representation has the previous ma-
tricial form. We take P = (-14, 33.J-Ï) and Q = 
= (jc, 3̂ ), where Q is a 5-torsion point with x a 
root of one of the factors of ^f^ of degree 4. So, 
we can choose 

[5 33 J 5 

\ 2 10 
' 3 2 6 7 - -

6534 , /5 

Then, 

3, J 3261--
6 5 3 4 J 5 

25 

25 

Q(£[5]). 

Since [Q(£''''^[5]) : Q] = 8, the irreducible poly­
nomial over Q with decomposition field 
Q^£.99Dp] is the polynomial of degree 8 
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, 7914686688 ^ 
X"- - 13056X^ + X^ -

125 

16891361683776 

125 

1674227268777390336 

x'- + 

15625 

±1 
(Vi) P99C. 5(<^Q) = 

4'f̂  = {X- \){X+2) 

(5X'° - 5X'' - 17IX^ - 1644X' + 357X^ -

- 225X-'* + 3624X'' + 25680X3 + 101403X- + 

+ 111172X +55049). 

Let {P, Q] be a Fj-basis of E[5] such that the 
image of the representation has the previous ma-
tricial form. We can take P = (1, 3 ^ - 3 ) , Q = 
= (x, y), where x is any root of the factor of de­
gree 10. The matricial expression of the image 
of the representation indicates us that any 5-tor-
sion point different from ±P is conjugated with 
Q, and so, 

{(x + yr:c7e GQ} = {x, ±3',. : (x, ±j,) eE[5]\<P>}. 

Then, 

Q(£^^^[5}) = Q({x, ± 3;,},,,, .., ,0, V ^ ) = 

= Q ( { x , y , } , ^ , . , , o , y ^ ) , 

and consequently, the polynomial of degree 22 
we are looking for is Irr(x + y, Q)(X^ + 3). 

(vii) P^"«'^(GQ) = 
1 * 

0 ±1 

\J/50G _ 
^ 8916100448256 

0 ±2 

(12X-85)(12Z + 35) 

- 55628881920000X^ + 

+ 1206636134400000X' -

- 3537551232000000X*-

- 58165801920000000X^ + 

+ 1009074753000000000Z'* -

- 11967618375000000000X3 + 

+ 87165442132031250000X' -

- 313745335166015625000X + 

+ 442487707579345703125). 
By Remark 1.2, the polynomial we are looking 
for is the factor of degree 10. 

(viii) P=°^'=(GQ) = 

\^50E _ . 

±1 

1/ \0 -1 

(144X2 + 120X - 155) 

(61917364224X'o + 257989017600X^ 

8916100448256 

(248832X^ - 1347840X^ + 432000^^ -

- 2541600X2 - 826500X - 6632125) 
(248832X' + 1140480X4 + 4579200X' -
- 6170400^2 - 5290500X - 3749125). 

By Remark 1.2, since the Galois group of either 
of the irreducible factors of degree 5 is the Fro-
benius group F20 c: (B^, of order 20, we can take 
either of the two above factor polynomials. 
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