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ABSTRACT 

Usando técnicas básicas de geometría hiperbólica, 
construimos un dominio fundamental de las curvas de 
Fermât y sus cocientes. A partir de éste, calculamos una 
base del grupo de homología singular //¡(F^, Z) y deter­
minamos el apareamiento de intersección respecto de 
esta base. 

We construct a fundamental domain for the Fermât 
curves F^:X^ +Y^ = \, and their quotients, using basic 
facts from hyperbolic geometry. We use it to give a basis 
for the singular homology group H^(F^, Z). We also de­
termine the intersection pairing with respect to this basis. 

1. INTRODUCTION 

Let F^ : X^ + Y^ = I he the Fermât curve of Mh de­
gree, with N> 4. The period lattice of F^ is well known 
([3], [1]). In order to compute this lattice, one needs a 
family of generators for the singular homology group 
H^(F^, Z). In the references mentioned, this family is 
constructed by lifting some paths in the complex plane to 
the curve, and computing the action of the automorphisms 
of Fyy in these liftings. But no basis for H^(Fj^, Z) is given, 
and it is hard to calculate the intersection product of the 
generators. In particular, finding a symplectic basis for 
//i(F^, Z) is rather messy. A symplectic basis is necessary, 
for instance, to compute the theta functions associated to 
the curves. 

We present a construction that allows easy specification 
of both a basis and the intersection product in //,(F^, Z). 
Using basic facts from hyperbolic geometry, we build a 
fundamental domain for F^, as a polygon with some 
sides and vertices identified. By elementary topology 

methods, we extract a basis for H^(Fj^, Z) from this poly­
gon, for which the intersection product is trivially com­
puted. We also develop these computations for the quo­
tient curves of the Fermât curves of prime exponent. 

2. CONSTRUCTION OF CURVES OF GENUS 0 

Let us denote by D the complex unity disk, with centre 
a given point A in the complex plane. Let Â  > 4 be an 
integer. Since ^ -h^ + ^ < l , we can construct inside 
of D an hyperbolic triangle with interior angles n/N, n/N, 
7i/N, and with one vertex on A. Call the other vertices 
B, C. Let ABC be the symmetric triangle with respect 
to the side AB. 

Figure 1 

Let a (resp. P) be the hyperbolic rotation of centre A 
(resp. B) and angle 2n/N. Both rotations are elliptic linear 
transformations and they operate on D and on its boun­
dary. Thus, the discrete group 

r = < a, /?; r = l > 

Partially supported by DGES:PB-96-0166. 
is a fuchsian group of the first kind. It is a general fact 
([2]) that the quadrilateral Q = ACBC is a fundamental 
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domain for the action of F on D. As none of the vertices 
of Q is on the boundary of D, the quotient â= F\D is a 
compact and connected Riemann surface. On ¿?, the 
orientated sides of Q are identified in the following way: 

AC - AC\ BC - BC 

We have 2 inequivalent sides, and 3 inequivalent 
vertices. Hence 

Z(^ = 1 - 2 + 3 = 2, giÛ) = 0. 

We now construct two new curves of genus 0, as coverings 
of Û. Consider the group homomorphism 

a —> 1 

The kernel of 0^ is F^ = (P, DF>, where DF is the com­
mutator subgroup of F. A fundamental domain for the 
action of F^ on D is 

PA = UfsMQl 

which is a hyperbolic regular polygon with 2N sides and 
interior angles equal to n/N. The vertices of this polygon 
are the points B¿ = cé{B) and Q = cé{C). We enumerate 
the sides of the polygon from 0 to 2Â  - 1 counterclock­
wise, starting from CQBQ. 

Figure 2 

We will denote by jS¿ the rotation of center J5 . and angle 
InIN, ^. = a'^a"'. Since P^ G ker 0^, every even side on 
the quotient curve â^ = F̂ XD is identified with the next 
odd side and all the vertices Q are identified: 

2/ - 2/+ 1, / = 0, ...,A^- 1, 

C ^ C C. 

The curve â^ is a covering of degree N of â, ramified 
over the points A, C. The natural projection û^ -^ ¿^maps 
every quadrilateral Q¡ = ocXQ) onto the original quadri­
lateral Q. The group of automorphisms of û^ over â is 
7/4 = F/T^ = (a), which is cyclic of order N. 

We can mimic the construction of ¿̂ ,̂ interchanging 
the roles of a and p. We obtain a new curve â^ of genus 0, 
corresponding to the fuchsian group F^ = (a, DT). A fun­
damental domain is composed by the quadrilaterals 
QJ = pJ(Q), Tht group of automorphisms of û^ over ^is 
H, = r/r, = ip). 

Since the genus oîâ^ is 0, there exists a F^-automorphic 
function establishing an analytic isomorphism between 
û^ and P^(C). Let us call this function X. We assume X 
normaUzed to satisfy X(A) = 0, X(B) = 1, X(C) = 00. We 
have an isomorphism between the function field of <̂ ,̂ 
C(¿? ĵ, and C{X). Similarly, we can find a F^-automo-
rphic function Y estabhshing an analytic isomorphism 
between â^ and P^C), with Y(A) = 1, Y(B) = 0, Y(C) = 00 
andC(¿?5):^C(Y). 

Proposition 2.1. 
we have 

For some r, s e Z coprime with N, 

Xo(x = e^'^'^'X, F o a = e^""''^ Y. 

Hence 

Xiû^) = 1 - Â  4- (Â  + 1) = 2, g{â,) = 0. 

Proof. The zeroes and poles of X o a coincide with 
those of X, because a(A) = A and a(C) = C\ which are 
identified on â^. Hence, â^ being compact, the quotient 
X{a(z))/X(z) is a constant function k. We obtain 

X{a\z)) = kX{z). 

For / = Â  the last inequality tells us that ^ is a A -̂root of 
unity. If y = 1 for some7 < N, we would have X o â  = X. 
As X is bijective, that would imply that â  = 1, which is 
not possible. The second equality is proved in the same 
way. D 

Corollary 2.2. C{âJ = C(X^) = C(Y% 

Proof. We have 

X^ o a = X^ F^ o ^ = Y\ 

and hence both functions are invariant under the action 
of F. Thus, C(X^) ^ C(¿^ ^ C(âJ = C(X), C(F^) ^ 
^ C((i) ^ C(¿^^) = C(Y). Counting degrees, we obtain 
the equalities. D 

Proposition 2.3. For any z e Û, 

X̂ (z) + nz)= 1. 

Proof The functions X^ and 1 - F^ have the same 
zeroes and the same poles over Û, and therefore their 
quotient is constant. Evaluating this quotient on the point 
B we see that its value is equal to 1. D 
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UNIFORMIZATION OF THE FERMAT 
CURVES 

We define the group homomorphism 

r 
a • 

ZINZ X ZINZ 

(1,0) 

(0, 1), 

whose kernel is T^ = DT. We will see that the quotient 
curve, 0^ = DFXD is a model for the Fermât curve of 
degree N. Let H^ = TIDY be the group of automorphisms 
of ôj^ over Û. We can take as representatives of the 
classes in H^ the elements {Pic^'}^j=x- With this selec­
tion, the polygon 

P = Uf̂ 'o iff,aim) 

is a fundamental domain for the Riemann surface ûj^. 

We will now introduce some notation. From now on, 
we will consider all indices as integers modulus Â . Put 
(2,, = i8M(0 = m:) = ^Wy For every / e {0, 1, ..., 
A^- 1}, the quadrilaterals g,. Q, g. J, ..., Q,jv-i form a 
2A^-sided regular polygon T-, centered on the point B.. We 
label its vertices C- ,̂ starting from the point A and moving 
counterclockwise, so that C^y = P/i^), Q,2/ + i = PH^i)-
Note that, under the natural projection â^^ —> à, the points 
C, 2/ i^^P to the point A, and the points C- 2j+i ^^^P to C. 
Finally, we denote by b¿j the side of Q' which goes from 
the point C-j to the point Qy+i- With this notation, the 
boundary oif the polygon P is described by the sides 

h 
sketched in figure 3. 

o. The case N = 5 is 

Proposition 3.1. The genus ofûj^ is (N~l)(N- 2)12. 

Proof. Let us analyze the identifications of the sides 
and vertices of P on û^. We have 

Hence 

z = 0, ..., A^- 1, j= 1, ...,N - 2. 

In the same way, 

,, j = l , . . . , N - l 

bi.2j-X~Kl,2j 

^ 0 , 2j ~ C2 2j ~ • • • ~ ^ W - 1, 27' 

^ i . I ~ ^ / + 1, 3 ~ *-'/ + 2, 5 ' •c, / •+A^-l ,2/V-3' _3, / = 0 , . . . , A / ^ - l . 

Therefore 

^{¿^^) = 1 - Â (Â  -\) + 2N - \=-N^ - 3N, 

mdg(û^) = iN- 1){N -2)12. D 

Proposition 3.2. T/ẑ  cwrr^ ¿̂ ^ is a model of the Fer­
mât curve of degree N. 

Proof. By proposition 2.3, it is enough to see that 
C{û^) = C(X, Y). The functions X and F are F^^-automor-
phic, because F̂ ^ c= F^ fi F^. This gives the inclusion 
C{XJ) cz C(^^). The polynomial F^ + (X^ - 1) is irre­
ducible in C[X] [Y] (because it is {X - 1)-Eisenstein), and 
thus [C(X, Y) : C(X)] = N, which implies the desired 
equality. D 

4. A BASIS FOR i/i(F^, Z) 

In this section we will find a basis for //i(F^, Z). For 
every /, 7, choose a path €• 2̂ ^ 1 joining the middle points 
of the sides b-y+i, bi+\,2j+2 of the fundamental domain 
we have found for F^ in the last section. Our result is 
based on the following lemma: 

Lemma 4.1. Assume that S is a compact connected 
surface, given as a polygon P, with 2r-sides identified by 
pairs {a¡, ¿>.}, but with vertices not necessarily identified. 
Let I- be a path joining the middle points of the sides a-
and b-, passing through the interior of the polygon. Then, 
the first homology group / / ,(S, Z) is generated by the 
classes of l^, ..., /,.. 

Proof. It is very well-known that with a finite number 
of elementary transformations, we can pass from the 
original polygon P to a new polygon Q with all vertices 
identified and the border given by 

Figure 3 
C^CjC^ C2 C,S, ,C¡ 'c¡ ; , /7 ,e , •••b„b„ 
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In order to prove the lemma, we will see that: 

a) The result is true for the polygon P if and only 
if it is true for the polygon Q. 

b) The result is true for the polygon Q. 

We begin by part b). It is well-known that the classes of 
the sides (c^, ..., c ,̂ op ..., è,̂ ) of the polygon Q generate 
//j(S, Z). Let us consider the path /̂  (resp. I2) joining the 
middle points of c^ and c'¡^ (resp. C2 and C2'). It is evident 
that /j is homotopic to C2 and that I2 is homotopic to c^ so 
that we can replace c^, c^ by /^ l^ in the list of generators 
of Hi(S, Z). In the same way, the path // joining the 
middle points of the consecutive sides b- and b- is 
homotopic to any of these sides, so that we can also re­
place b- by //. 

Let us now proof part a). We know that the classes of 
the sides of the polygon P generate the full homology 
group //i(5, Z). In passing from P to the polygon Q we 
make a finite number of elementary transformation of 
one of the following four types: 

al) Cancel two consecutive sides of the first kind 
(i.e., of type aa~^). 

a2) Transform two different vertices into equivalent 
vertices. 

a3) Transform two sides of the second kind (i.e., of 
type ad) into consecutive sides. 

a4) Transform a couple of pairs of sides of the first 
kind 

'•• a-'" a^ •" a¡^ •" a^"" '" 

into consecutive sides ••• afljüj^aj^ ••• . 

In each of these transformations, we pass from a polygon 
Pj^ to a new polygon P^+i. We denote by /f the paths join­
ing the middle points of the sides of the polygon P^. One 
can check that after each of these transformation, the 
subspaces (/f, ..., /f) and {l\^\ ..., l^^-"') of H,(S, Z) co­
incide, so that the lemma is true for P^ if and only if it is 
true for P^ +1- This proves a). D 

Theorem 4.2. 

a) A basis for H^(Fj^, Z) is 

b) The intersection product in H^(F^, Z) is given by 

( n 2/ - 1' ^i+ 1, 1) " ( n 2 / - 1' S" + 1, 3) ~ " * ~ \^i, 2 ; - 1' %•+ 1,2/- 1) = 1 

V"̂ /, 2 / - 1 ' ^i+\,2j+\) = ••• = (t-/, 2 / - 1 ' ^i+\,2N-3) ~ ^ 

(^,-.2;-P«,>.2.-,) = 0 r=2,...,N-2,k = 0,...,N-L 

c) H^(F^, Z) is a cyclic Z[a, p]-module, generated by 
any of the paths €• jj+i-

Proof If we apply lemma lemma 4.1 to our case, we 
obtain 

^ l ( ^ N ' ^ ) = ( ^ 0 , 1 ' '^0 ,3 ' • • • ' ^. N- l , 2N-3 . ). (1) 

Of course, this family of generators cannot be free, be­
cause it has N{N - 1) elements, while the rank of//^(F^, Z) 
is {N - \){N - 2). But one can check easily that the 
cycles 

yv-i 

Z a*(io,2,>,) ; = 0, . . . , y v - 2 . 
k = Q 

N-\ 

1 ( ^ . 2 ; . . . . ) j = 0 , . . . , y V - 2 , 
k = Ç> 

are homotopic to zero, and so we can eliminate the paths 
^N-1,2;+1' ^N-2,2J+ P J = 0 , . . . , Â  - 2, from the generators 
(1). As the number of remaining generators coincides 
with the rank of H^(Fj^, Z), they form a basis. 

The second assertion is immediate. We will prove c) 
only for the path €0 ^ but during the proof it will become 
evident that it is also true for any €• 2j+]' It is evident that 
a(€o j) = €, 2- Let us compute P(£Q J). Denote by M-j the 
middle point of the side ¿- ̂ , and by R¿j the center or the 
quadrilateral Q^ j. We deform £Q ^ to the homologous path 
£' +e + e + t + €^ where: ' 

- €̂  goes from MQJ to PQ,; 

- €^ goes from PQJ to PQQ; 

- €^ goes from RQQ to PJQ; 

- i"̂  goes from PJQ to P , , ; 

€^ goes from P,, to M 12-

Taking into account the identifications in the boundary 
of the polygon P, we see that P(QI^Q) = 2i, i- We apply P 
to the five preceding paths: 

- €j = P(£^) goes from MQ2 to P02; 

- €2 = jS(€ )̂ goes from P02 to PQ^ 

- €3 = P(£^) goes from PQ, to MQJ, which is identified 
with M,2, and then continues from this point to Pu*, 

_ €4 = p{t) goes from Pj, to P,2; 

- €3 = j?(̂ 5^ goes from P12 to M,4. 
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Figure 4 

With this description of ¡^{ÎQ J), we can compute its 
intersections with the rest of the €/27 + 1 using a) and b). 
From these calculations one sees that 

r ( ^ 0 , 1) ~ '^1,3 ^\, 1' 

P v'̂ O, 1) 7 '^1,5 "" "^1,3' 

P v m 1) ~ '^l,2A^-3 ~ "^1,2^-5' 

r-'(^o,,) = -̂ o.,-

Using that ocY^o,2/+i) - ^i,ii+\^ ^^ obtain c). 

(2) 

D 

Remark 4.3. Combining equations (2) and theorem 
4.2 we find that the paths 

a W o , , ) , / = 0, . . . , y V - 3 , y = 0, . . . , y V - 2 , 

form also a basis for H^(F^, Z). 

Remark 4.4. Mi/z i/i^ preceding result, the computa­
tion of a symplectic basis for H^{Fj^, ̂ ) for a concrete 
value of N can be easily performed using the Gram-
Schmidt orthogonalization process. 

5. QUOTIENTS OF THE FERMAT CURVE 

We have given a presentation of the Fermât curve C^ 
as a covering of a curve C of genus 0. We now study 
subcoveringsC^-^C ->C. As Aut(C^/C) = F/DF, these 

subcoverings correspond to subgroups F =) F ' ID DT. 
We know that F/DF = Z/NZ x Z/NZ, so that these sub­
groups F ' must be of the form F,. ^ .•= {a'p', DT). For 
instance, the subgroups Fj Q and FQ J give rise respective­
ly to the curves C^ and C^ of section 2. 

In order to simplify the exposition, from now on we 
will suppose that Â  = p is a prime number. In this case, 
every subgroup F,. ^ is conjugate to a subgroup F^ j , 
so that we can confine our attention to the subgroups 
F, := (a'P, DT), r ^ 0, - 1 (mod p). We call C,: = F , \0 
the subcovering of C /̂C corresponding to the subgroup F,.. 

The subgroup F,. is normal, since it is the kernel of the 
surjective map 

a • 

Z/pZ 

r' 

1, 

where r' is such that rr' = -\ (mod p). Let us write 
F,. : = F / D F . From proposition 2.1 and the fact that 
[TIDY : F,] =p, we deduce that C(X, Yf'- = C(X^, XTj . 
We see thus: 

Proposition 5.1. The curve C,. = F^\D is given by the 
equation 

V^' = U'(l - U\ 

where [/ = X^ V = X'Y. 

These are exactly the quotients of the Fermât curve 
built in ([1]). We now proceed to build a fundamental 
domain and a basis for the homology group of these 
curves. 

As F/F,. = (a), the hyperbolic polygon F,. = UfJo*a'(g) 
gives a fundamental domain for the curve C,.. This co­
incides with the polygon P^ of section 2, but the sides 
and vertices of P^ are identified in a different way. One 
finds easily that (following the notation of section 2): 

2 /+ 1 - 2 / + 2r + 2, / = 0, ...,/7 - 1, 

Q - C, 

•• B p-i^ (3) 

• • C, p-\-

Corollary 5.2. The genus of the curve C,. is 
p-\ 

Let m- denote the path on P^. which joins the middle 
points of the sides 2/ + 1, 2/ + 2r + 2. The same type of 
reasoning applied to the Fermât curve on section 4 gives 
now: 
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Theorem 5.3. 

a) A basis for H ̂ {û,., Z) is {mj, ..., m^_]}. 

b) The intersection product in H^{û,, Z) is given by 

K ' m,^,) = (m„ m,^2) = ••• = K-^ % + r-i) = 1̂  

(m ,̂ m^_i) = (m .̂, m ,̂_2) = ••• = (/?%, m^_,.) = - 1 , 

(m-, m )̂ = 0 in any other case. 

c) H,(û,,Z) = Z[a]{m,). 
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