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RESUMEN

Mostramos un procedimiento para calcular los coefi-
cientes de los polinomios de division de una curva elipti-
ca, y calculamos sus seis coeficientes de grado mayor.

ABSTRACT

We show a procedure for computing the coefficients
of the division polynomials of an elliptic curve, and com-
pute their six coefficients of greatest degree.

INTRODUCTION

In this paper, our goal is to give a method for comput-
ing the coefficients of the division polynomials of an el-
liptic curve. In the first section, we summarize some
known results on isogenies between elliptic curves defi-
ned over fields of characteristic 0. Also, to each finite
and non-trivial subgroup C of an elliptic curve E we at-
tach a polynomial:

Ye(x) =x‘"" = 5, x*~*+ lower order terms,

where d = |C|, and study the relationship between this
polynomial and the formulas given by Vélu [Ve 71]. In
the second section, we provide a procedure for comput-
ing the coefficients of the division polynomials and com-
pute the six coefficients of greatest degree.

1. ISOGENIES BETWEEN ELLIPTIC CURVES

Let K be an algebraically closed field of characteristic
0. In the sequel, an elliptic curve means an elliptic curve
given by an equation of the form Y? = X* + AX + B with

' This research has been partially supported by DGES, PB96-0970-C02-02.

A, B € K. After fixing an elliptic curve E, we use the
following notation:

® O is the origin of E.

* (x(Q), ¥(Q)) denote the affine coordinates of the
point Q € E(K)\{O}.

® w, is the regular differential dX/Y.

Let E and E’ be elliptic curves. Every isogeny p: E— E’
determines an element y, € K, individualized by the con-
dition:

M* ( wE') = y;th‘

It is clear that 7, = O if and only if p is the constant
isogeny. If u is non-constant, then it is given by an ex-
pression of the form:

1 dfx

wx, y) = (fu(x), —y >, with f,(x) € K(x).
Vu dx

The assignment y — 7y, from the set of all isogenies
between elliptic curves in the field K, satisfies the fol-
lowing properties:

(1) Composition. If u: E—E'andv: E'— E" are
isogenies, then y,,, =7, - 7,

(2) Addition. If u, i : E — E’ are isogenies, then
Vusuw = Vo + 7, Properties 1 and 2 are a conse-
quence of the fact that the action of the isogenies
on the regular differentials satisfies:

(vow*=p*ovk (u+p)*=p*+p*

(3) Product by integers. If [m] denotes the multipli-

cation by the integer m on E, then y,, = m.

(4) Q-algebra of endomorphisms. The map @ ®
End (E) > K,a ® v+~ ay, is a Q-embedding of
Q ® End (E) into K. This property is a conse-
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quence of the preceding properties and the fact
that v = 0 if and only if y, = 0.

(5) Twists. Given 6 € K* and an elliptic curve E :
Y*= X + AX + B, we denote by E; the elliptic
curve which has the equation Y* = X> + A§*X + B&®
and by u, the isomorphism of E into E; given by
(x, y) = (x0%, y6°). Then, y, = 1/0.

Normalized Isogenies

We say that an isogeny p is normalized if y, = 1. The
set of normalized isogenies is stable under the action of
the group Gal(K/Q)). The following proposition, al-
though elementary, shows the significance of these
isogenies.

Proposition 1.1. Ler y,, u, : E— E’ be normalized
isogenies. Then 1, = L,

Proof. Let [, be the dual isogeny of y,. We have that
v, =y o f, v, 1= [, o {i, are endomorphisms of £’ such
that y, =7, . Then v, = v, and, thus, p, = . O

Note that to every isogeny u : E — E’ there corres-
ponds a normalized isogeny p': E — E’’, where E'' =
E’, and p' = p, o p. This normalization y' : E — E”
is determined by the conditions:

ker u =ker p', y,=1.
With a finite and non-trivial subgroup C of E(K) fixed,

we denote by . : E — E_ the normalized isogeny such
that its kernel is C. If E and E. are given by the equations

E:YV'=X’+AX+B , E.:Y'=X+AX + B,

then the expressions for u., A- and B have been com-
puted by Vélu [Ve 71]. The isogeny u. is given by:

d
el ) = <fc<x>, y e )

(1.1)

HQ) Q)
9=+ T (225 + 22

where #(Q) = 3x(Q)* + A and u(Q) = 2(x(Q)’ + Ax(Q) + B).
The values that we give for #(Q) and u(Q) are different
from the values given in [Ve 71]. The reason for this dis-
agreement is that, here, we take summatories extended
over the set Q € C\{O} instead of the set (C\{O})/~,
where ~ denotes the equivalence relation Q ~ Q" if and

only if Q = +Q".
The coefficients of E_ are obtained by:

{A;A—St, with 1= . 0, 1Q),
B.=B-Tw, with w=),_c 0 (UQ)+X(QHQ)).

We note that the normalized model y. : £ — E is com-
patible with the action of the group Gal (K/Q). That is, for
each o € Gal(K/Q) we have that

G(EC) = (GE)oc’ U(uc) = lu("C)'

Polynomial attached to a finite subgroup

As before, let C be a finite and non-trivial subgroup of
E(K). We consider the polynomial:

lpC(X) = H

Qe\o}

(X - x(Q)) € KIX].
Let d = |C|. Put

YeX) =X+ Y (1) s, X4

i1
where s, =0fori >d - 1.

Every root of (X) is double or simple. The polynomial
Y-(X) has simple roots if and only if C\{O} contains a 2-
torsion point and, in this case, the simple roots are the
values x(Q) with Q € C n E[2\{O}. We note that if E is
defined over a subfield L of K, then

*C = Cforall 7 € Gal(K/L) if and only if Y(X) € L[X].

When this happens, that is, if £ and C are L-defined, then E -
and . are L-defined.

Proposition 1.2. The values s,, s,, s, and the integer
d = |C| determine the subgroup C.

Proof. Indeed, applying to (1.2) the relations:

Z X(Q) =95,

QeC\{0}

Y MQP=si-2s,,

0eC\0)

Y x(Q) =s; - 3s;s, + 355,

Qe C\0}

we obtain that

{AC=_15s% +30s,+ (6 - 5d)A, (1.3)

B.=-355> +105s,5, — 1035, — 21As, + (15 — 14d)B.

The curves E and E. determine a unique normalized
isogeny u. : E — E_ and, thus, its kernel C. |

In fact, by Proposition 1.1 the values ¢ and w determine
C, but the statement of Proposition 1.2 is more suitable
for our purpose. Next, we will show the procedure for
determining f and C from the values 4, s,, s, and s;. To
simplify certain expressions, we sometimes write t and w
instead of their values in the variables s,, s,, sy and d.
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a) Computation of fA(X) fromd, s,, ..., s,_,. The for-
mula (1.1) for f(x), shows that f(x) = x + P(x)/}(x)
with P(x) € K[x] and deg P < deg .. The coefficients
of P(x) can be computed without the mentioned for-
mula, using the fact that f(x) is a solution of the differen-
tial equation:

fg(x)+ Acfdx) + B. = fc/(x)z(x3 +Ax + B) (1.4)
For instance, we obtain that

P)=t""7+ (w —ts)x' 7% + (5,0 — syw + 1(t = A)3p'~* +

(—6B+ 11As,—33s5,+9w — 11s,7)t+ (154 +335,)w

_5 .o
PP X34

(1.5)

Observe that if x + P(x)/\} -(x) is a solution of (1.4) then
X + X"P(0)/(x" (x)) 1s a solution too. Thus, taking into
account that s, = 0 for i > d — 1, the expression (1.4) is
true although d — 5 < 0.

b) Computation of {s,},., from d, s,, s,, s;. We pro-
ceed as follows. We put

1
8c0) = — (fe1x) = 1x) =

y (Q) xu(Q)

= + ——"
ocanoy 1 =xx(Q) s (1 - xx(Q))*
We obtain the following relation:

di

dg,.c O =i! Y xO' ((QxQ) + iu(Q) =
X QeC\(0)
=013 +2i) Z x(O)Y 2+ i1A(1 + 20) Z x(Q) +
QeC\(0] QeC\{0}
+ 2i!Bi Z x(Q) . (1.6)

QeC\{0)

Changing x by 1/x in (1.3) and replacing f(1/x) and
fA(1/x) by the relations

felix) = xgx) + 1/x, fA(1/x) = 1 = x¥(g(x) + xge(x)),

we obtain that g(x) is a solution of the differential equa-
tion R(x, y, ¥') = 0, where

R(x, y, y) = =x*(1 + Ax* + Bx*)y* +
+ 2x(1 = yx») (1 + Ax* + By + x*y’+
+ X2 = AxX* + By + (5 + 2Ax* + Ax* + 2BxY)y +
+Ar—A + x(B. - B). (1.7

For each i-th derivative, we have a differential equation
R(x, v, ¥, ..., y*")=0.

When i > 1, the replacement of the value x = 0 in these
equations and the values (1.6) yield s; as a polynomial in
A B d s, ..., s, Fori < 2, the value x =0 and (1.6)
yield the formulas of Vélu for the coefficients of E.:

i=0: gud0)=(A-AQS,

1: g0)=(B - B/,

and g(0) = 1.

i and g0) = w.

For i = 2, 3 we have the following equalities:

i=2: gi0)=-2g0)(2A + Ac+2g0))9.

i=3: gl0)=(-6g0)(A.+4A + 2g(0)) - 12Bg (0))/11.
Introducing (1.6) in these, we obtain

(=2 +3d — d*)A? + (48A + 12Ad + 6s,)s,
Sy = +
84
(2B + l4s, — 85,5, + 4As, — Ads, +2s7)s,
14 ’

(1.8)

PAB(—Ad+d)+12Bs,(5=d)tAs (11 T+15d) 55,5,
S5= +5;
165

(19
where P € Q[A, B, d, sy, S5, S5, S4].

This procedure yields gX(0) as a polynomial in the
variables A, B, t and w with rational coefficients. When
the function g.(x) is known, the relation

= 5 S0

provides the function f-(x).

2. ON DIVISION POLYNOMIALS

Let E be an elliptic curve given by the equation Y* =
=X? + AX + B. By the theorem of Riemann-Roch, every
function on E which has a single pole at O is a poly-
nomial in the functions X and Y, and can be written as a
polynomial of the set K[X] @ YK[X] in only one way.
As in [Si 86], for each integer m > 0 the polynomials
v, €Z[A, B, X] ® YZI[A, B, X] denote the m-division
polynomials for E. These polynomials are viewed as
functions on E and satisfy

diV lpm = Z

Qe E[mMO}

(Q) = (m* = 1)(O).
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Thus, y,, € Z[A, B, X]if misodd and ,, € YZ[A, B, X] if
m is even. The polynomials ,, are determined by the
values

m

1 if m=1,
2Y if m=2,
3X*+6AX*+12BX - A? if m=3,
4Y(X°+5AX*+20BX>~5A’X*>~4ABX -8B*-A®  if m=4,

‘pm -

and by the recursive relations

lp2m+ 1=
2’YlPZm =

The polynomials

Wm+2w13n - lpm llpm+l If mz 2’
lpm("pm+2lpm—l - lpm—-Zwint 1) lf mz 3

(X, Y) can be written as follows:

m

m-—l i
v, (X, V)im = {z’”( DS,X ° I
" PSS, X

if m is odd,

if m is even,

where mS; ,, € Z for all i 2 0.

Proposition 2.1. For allm 21 we have S, ,, = 1. The
polynomial > (X)Im* coincides with the polynomial

Y g(X) attached to the subgroup E[m].

Proof. We will prove that S, ,, =1 by induction on m.
The assertion is true for m < 4. Let us assume that m > 4
and §, , = 1 for all kK < m. Using the recursive relations,
we obtain

(M2 (k=12 (k-2 (k+2P)2=2k=m  if m=2k
O k2R = (k= 1) (k+173=2k+1=m if m=2k+1.

Therefore, S, ,, = 1 for all m. We recall that the squares of
the division polynomials satisfy:

ZeZ[A B, X1, degy?=m*-1.

Since the polynomials ,,(X)/m* and ¥, (X) are monic
and have the same divisor viewed as functions on E, they
are equal. O

We put:

Y20/ = Y (X) =X Y (<D, X
i>0

In this case, s, ,, = 0 for i > m*> — 1. The following prop-

osition provides the values {s, ,,},, for I <i <5 and shows

the procedure for computing s, ,, for a fixed i.

Lm

Proposition 2.2. For all m = 1, we have

0 fi=1,
gm—lg(m§g>(m2+6)A ifi=2
Si, N — _(m=D(m+ 110)(g;14+m2+ IS)B Uc‘ l = 3’
(m—D(m+ DH(m ~ 21!2!12052!111141-75"12 +294!A2 lf‘ i= 4,

_ (m =D+ D = 2)(m + 2)(mO + 16m™ + 54m? + 261) cpos
6930 AB if i=5.

Proof. First, we prove that S, , = 0. We consider the

polynomials in X

Y,  ifmisodd,
f;n = {

Y, /Y if miseven.

1,m

Let Sbe a set of polynomials in one variable (with coeffi-
cients in any field) having the property that the sum of all
its roots is 0. We have that:

i) Iff,ge SthenfgeS.
ii) Iff,geSanddegf—degg#=+l,thenf+gesS.

In our case, the polynomials f,(X), 1 <m <4, and X° +
+ AX + B satisfy this property. For m > 4, it is easy to
check that the recursive formulas provide polynomials
Jfu(X) with this property. Thus, S, ,, = 0 and 5, , = 0.
When K is a subfield of C, we can give the following
alternative proof. Since the condition s, ,, = 0 is invariant
by twists, we can consider that the elliptic curve E is
given by the equation Y? = 4X*> — AX — B. By the uni-
formization theorem for elliptic curves, we can choose ©
in the upper half-plane such that g,(t) = A and g,(7) = B.
Here, g, and g, denote the usual modular functions of
weight 4 and 6 for the group I'(1) = SL,(Z). Now, we
consider the function

iT+]j
h(z) = 50< ;r>,
OSi,jgm—l, m

i+j#0

where ¢ (z; t) denotes the Weierstrass g -function for
the lattice (1, 7). It is easy to check that the function 4 is a
modular function of weight 2 for the group I'(1). Since
the unique modular function of weight 2 for I'(1) is the
constant function zero, it follows that A = 0 and s, ,, = 0.

Now, we consider C = E[m]. In this case, d = |C| =
and the coefficients of the elliptic curve E are A= Am?,
B, = Bm°®. Applying (1.3) we obtain

Am* =30s, ,, + (6 — 5 m>A,
Bm® = -105s, ,, + (15 — 14m*)B.

Therefore, s, ,, = (m* + 5m*> — 6)A/30
and

—(m® + 14m* — 15)B/105.

s3, m=
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For i = 4 (resp. i = 5), the statement is obtained from
(1.8) (resp (1.9)), replacing s,, s,, sy and d by 0, s, ., S5,
and m? respectively. ]

Note that in the two preceding propositions we have
proved that S, ,, = 1 and S, ,, = 0. The computation of
2 <i <5, can be obtained from the relations

1 >

S2,m = 2S2,m + EnA’ S3 m = 25 B’

3m m
— 2
S4, m = 254,111 + S’7 m + 28;7AS2, m?

SS,m = 255, m + 2S7 mS"i m + gm(ASS m S2, m)’
where ¢, = (1 + (=1)")/2.

The proposition 2.2 provides a method for comput-
ing s, ,, for a fixed k. Indeed, it suffices to compute an
analogue relation to 1.9. This relation can be obtained
computing R/(x, y, ..., y'* V) for i < k — 2 and using (1.6).

Finally, the previous values s, ,, ...
Sk, m*

. Si_1.m provide

We also observe that from the recursive formulas of
the division polynomials, we can deduce that

Sk, m = Z

2r+3j=k

a, (mA'B’, with m’a, (m) € Z.

The differential equation (1.7) and the procedure pres-
ented here show that a, (m) = P, (m?), where P, (x) €
e Q[x] and P, (i*) = 0 for all integers i # 0 such that
i<k + 1.
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