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Abstract 

In this paper we generalise the concept of Heegner 
point on the modular curve XQ(N) to the case of any dis
criminant D, i.e. for D positive or negative and not neces
sarily fundamental. We reduce their study and evaluation 
of their number to that of primitive 0-ideals of norm Â , 
where O is the order of discriminant D of a quadratic 
field and, ultimately, to that of certain integral binary 
quadratic forms of discriminant D. When D < 0, we give 
a formula expressing the number of Heegner points by 
using the Minkowski-Siegel theorem concerning repre
sentations of integers by genera of quadratic forms. 

Resumen 

En este artículo, damos una generalización del concep
to de puntos de Heegner de la curva modular XQ(N), para 
cualquier discriminante D; es decir, D puede ser positivo 
o negativo y no necesariamente fundamental. Reducimos 
su estudio y la evaluación de su número al de los 0-idea-
les primitivos de norma Â , donde 0 es el orden de discri
minante D de un cuerpo cuadrático y, en última instancia, 
al de ciertas formas cuadráticas binarias con coeficientes 
enteros de discriminante D. En el caso D < O, damos una 
fórmula que expresa el número de puntos de Heegner a 
partir del teorema de Minkowski-Siegel relativo a las re
presentaciones de enteros por géneros de formas cuadrá
ticas. 

Introduction 

The central topic of Gauss' Disquisitiones Arithme-
ticŒy written by the author in his youth, is the study of 
diophantine equations 

m Y) = n. 

where f(X, Y) = aX^ + bXY + cY^ is an integral binary 
quadratic form, and n is an integer. 

One of the most useful tools in Gauss theory is the 
classification of the forms under the action of the modular 
group GL(2, Z), or the special modular group SL(2, Z). 
Two forms/(X, Y),f\X', Y') are defined to be equiva
lent, respectively properly equivalent, if and only if there 
exists a change of variables 

X 
Y = 

Vx' 
\_Y'_ 

Partially supported by DOES: PB96-0166. 

defined by a matrix in GL(2, Z), respectively in SL(2, Z), 
which transforms/into/'. All the forms belonging to the 
same class must have the same discriminant D = b^ - Aac. 

Gauss reduction theory implies that the number of 
classes of forms of a given discriminant is always finite. 
A closer investigation of the algebraic properties of the 
classes of forms led Gauss to the concepts of order, ge
nus, and character. 

Extensive tables of class numbers were calculated by 
Gauss himself. They gave rise to the formulation of seve
ral conjectures about the asymptotic behaviour of the 
class number as ID I tends to infinity. In particular, Gauss 
claimed that his list of negative discriminants with class 
number equal to one was probably complete. Neverthe
less, he added, a proof of this fact seemed to be very 
difficult. 

The 19th century saw the emergence of a theory that 
connected integral binary quadratic forms, complex 
multipHcation of elliptic functions, and modular func
tions. Much of the content of the theory was included in 
the third volume of the Lehrbuch der Algebra of Weber 
[We 08]. 

In the 1950's, an initial approach to the solution of the 
class number one problem was provided by Heegner. By 
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using the language and tools of Weber's book, Heegner 
[He 52] v̂ as the first to prove that the list of negative 
discriminants for class number one given by Gauss was, 
indeed, complete. Nevertheless, Heegner's proof was not 
accepted at first, mainly due to its heavy reliance on the 
use of modular functions, which were out of favour at 
that time. After a period of obscurity, solutions to the 
class number one problem were given, independently, by 
Baker [Bak 66] and Stark [St 67]. 

Heegner's main idea [He 52] was to make use of alge
braic relations among modular functions in order to pro
duce algebraic equations with integral algebraic coeffi
cients, once the modular functions are evaluated at 
suitable points. 

His article caught the attention of several authors such 
as Siegel [Si 68], Deuring [De 68], Birch [Bi 68], Stark 
[St 69], and Cox [Cox 89]. Heegner's techniques, which 
were a source of inspiration to [Bi 75], [Gr 84], [Gr-Za 
86], [Gr-Ko-Za 87], today play a central role in the 
study of diophantine equations of type 

Y^ = aX^ + bX^ + cX + d, a, h c, d e Q; 

or, more precisely, in the study of rational points of ellip
tic curves E/Q. 

As was conjectured by Poincaré at the beginning of the 
20th century, and as follows from a theorem of Mordell 
[Mo 22], the set of rational points E{Q) of an elliptic 
curve defined over the rationals is a finitely generated 
abelian group. The rank of this group is, by definition, 
the rank of the elliptic curve. 

The Birch and Swinnerton-Dyer conjecture [Bi-SD 65] 
predicts that the rank of EIQ equals the order of vanis
hing at ^ = 1 of the associated L-series E{E, s). Although 
there is a great deal of numerical evidence for the truth of 
this conjecture, until now the most general theoretical re
sults are based on those obtained by Coates and Wiles 
[Co-Wi 77], Gross and Zagier [Gr-Za 86], and 
Kolyvagin [Ko 90], some years ago. 

Coates and Wiles [Co-Wi 77] proved that if the ellip
tic curve EIQ has complex multiplication by the ring of 
integers of an imaginary quadratic field with class numb
er one, and its rank is greater than zero, then the value 
E(E, 1) must be zero. 

Gross and Zagier [Gr-Za 86] proved that all modular 
elliptic curves EIQ whose L-series has a simple zero at 
5 = 1 are of rank greater than zero. 

In the articles [Gr-Za 86], [Gr-Ko-Za 87], Gross and 
Zagier, and Gross, Kohnen, and Zagier produced a re
markable formula relating the heights of explicit rational 
divisors of degree zero of the modular curve XQ(N), 
called Heegner divisors, to the derivatives at ^ = 1 of L-
series of cusp forms of weight 2 and level Â . In particu

lar, if L(E, 1) = 0 and LXE, 1) ;̂  0, the formula provides a 
rational point of E/Q of infinite order and, therefore, infi
nitely many rational solutions of the defining diophan
tine equation. 

The set XQ{N)(C) of complex points of the modular 
curve can be parametrised by means of the modular func
tions j(z) J (N z) of level one and N, respectively. If z e C 
is a quadratic imaginary argument, then the value j(z) is 
an algebraic integer, extensively studied in the classical 
theory of complex multiplication. If z G C is an algebraic 
number which is not imaginary quadratic, a theorem of 
Siegel [Si 49] tells us that the value j(z) is transcenden
tal. Therefore, on imaginary quadratic arguments, pairs 
{i(z)J(Nz)) define points_of Xo(N) whose coordinates lie 
in the algebraic closure Q c: C of the rational field. 

But in connection with the theoretical treatment of 
diophantine problems, such as those just mentioned, 
other interpretations of the points of the modular curve 
are currently used. Namely, the points XQ(N)(K), which 
are rational over a subfield ^ ^ C , are understood as 
pairs (£"1 -^ E2) consisting of generalised elliptic curves 
E¿/K linked by a cyclic isogeny defined over K, of degree 
N. In this setting, a Heegner point of the modular curve 
XQ(N) is defined as a pair (^j -^ Ej) in which both elliptic 
curves E¿ have complex multiplication and the rings of 
complex multiplications End(E^), End(£"2) are isomor
phic. 

More recently, integral algebraic values of other auto-
morphic functions have been considered and, moreover, 
several generalizations of the Birch and Swinnerton-
Dyer conjecture have been proposed; cf., Shimura [Sh 
67], Mazur [Ma 77], Bertolini and Darmon [Be-Da 98], 
Ruck and Tipp [Rü-Ti 99], and Zhang [Zh 99]. 

Together with this study, quoted [Ar-Ba 2000-1], in 
this issue we present a series of four more articles: [Ar-
Ba 2000-2], [Ba-Tr 2000-1], [Ba-Tr 2000-2], [Ba-Tr 
2000-3], whose aim is to provide an approach to the the
ory of Heegner points and special values of automorphic 
functions, without neglecting their origins. 

We begin [Ar-Ba 2000-1] by comparing the modem 
approach to Heegner points with a definition related to 
the classical theory of integral binary quadratic forms. In 
particular, this presentation allows us an easy calculation 
of the number of Heegner points of a given discriminant 
D in the modular curve XQ{N), without assuming any 
condition on the common divisors of N and D. For this 
purpose, we use a theorem of Minkowski-Siegel which 
evaluates the number of representations of an integer N 
by forms in the genus of a given quadratic form. 

A special type of Heegner points, called by Mazur 
complex multiplication points, were considered in [Ma 
77]. In each level Â , only a finite number of dis
criminants D can yield complex multiplication points of 
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type {N, D). We study these points in [Ar-Ba 2000-2], 
where explicit computations are performed. 

In [Ba-Tr 2000-2], the theory of integral binary quad
ratic forms is related to an arithmetic theory of quadratic 
orders embedded in orders O of the split quaternion alge
bra M(2, Q). The embeddings will be classified under the 
action of groups F attached to 0 . If 0 = M(2, / ) , then we 
can take F = SL(2, Z). Other examples are obtained 
when we consider, for each N> 1, the congruence group 
TQÍN) which uniformises XQ(N). It will be shown that the 
study of the F-classes of embeddings is equivalent to the 
study of the F-classes of some integral binary quadratic 
forms. 

Ground material for an arithmetical study of these 
non-commutative orders is developed in [Ba-Tr 2000-1]; 
it covers some aspects that we were unable to find in the 
standard references. 

Finally, putting together the results obtained in [Ba-Tr 
2000-3] and [Ar-Ba 2000-1], it is proven that the general 
theory of Heegner points on the modular curve XQ(N) is 
equivalent to the theory of FQ(A^)-classes of integral bi
nary quadratic forms of level N. By definition, these are 
the forms of type aNX^ + bXY + cY^, where a, b, c are 
integers. 

Although most of the time we will restrict ourselves to 
the modular case, it will be clear throughout that many of 
the definitions given may fit Heegner points on curves 
parametrised by arithmetic fuchsian groups other than 

In our articles, the reader will find several formulae 
which count the number of Heegner points of different 
sorts. The formulae have been derived by the authors to 
check that some different definitions appearing in differ
ent contexts and expressed in different languages in fact 
involve the same principles. 

norm. If we drop the condition of positive norm, we get 
the usual Picard group Pic(0). Obviously there is a natu
ral surjection Pic^(0) - ^ Pic(0) whose kernel is non-tri
vial of order 2 if and only if O is real and all its units have 
positive norm. Thus, Pic^(0) ^ Pic((D) if either O is im
aginary (i. e., its discriminant D is negative) or O is real 
and has a unit of negative norm. 

With this data we introduce the following 

Definition 1.1. A Heegner triplet (O, n, [a]) of type 
(N, D) is given by an order O of a quadratic field of 
discriminant D, a primitive 0-ideal n of norm N (i. e., 
0/n is a cyclic group of order N), and an element [a] of 
Pic^(O). 

In our next considerations, we will show why this defi
nition is consistent with the usual concept of Heegner 
point on XQ(N). 

Recall that the open modular curve YQ(N) over the ra
tional field classifies ordered pairs (E^ -^ E^ of elliptic 
curves linked by a cyclic isogeny of degree N. Its complex 
points, YQ(A^)(C), have the structure of a Riemann surface 
which is analytically isomorphic to the quotient space 
H/Fo(A )̂ of the upper half-plane, H = { z G C I I m z > 0 } , 
by the action of the congruence group 

ro(A^) = 
a P' 
y Ô 

G S L ( 2 , Z ) l y = 0(modA^) 

To the point y = {E^-^ E^ in YQ{N){C) we may associate 
a pair of tori (C/Lj —> CIE^ linked by a cyclic isogeny 
of degree N. Applying to the lattice L^ a homothety, if 
necessary, we may assume that Lj <= L2, and that the 
isogeny is given by the identity map on the common uni
versal covering space C. Since the quotient group L2/L1 
is cyclic of order Â , there exists an oriented Z-basis 
(oj., cOo), i. e., z = cOo/cOi is in H, such that Li = <(co,, cOo), 

1. GENERALISED HEEGNER POINTS ON X,iN) ^„¿' ¿ f 1 < „ ; , ' „ ^ / ^ \ -^hen the analytical isomorphism 

We fix an integer N > 1 and a discriminant D which 
may be either positive or negative and not necessarily 
fundamental. Recall that any discriminant D is of the 
form D^r^, where DQ is a fundamental discriminant (i. e. 
DQ=1 (mod 4) and D^ square free; or DQ = 0 (mod 4), 
D Q / 4 square free, and Do/4 = 2 or 3 (mod 4)), and r is 
any integer; and that orders in quadratic fields are com
pletely determined by their discriminants. 

We next consider triplets ( 0 , n, [a]), where O stands for 
a quadratic order i. e., an order in an arbitrary quadratic 
field not necessarily imaginary, n is an ideal in O of norm 
[O : n]= iV > 1, and [a] stands for the class of a in the 
group Pic^(0). Recall that Pic'^(0) is the quotient of the 
abelian group of invertible fractional 0-ideals modulo 
the principal ones defined by generators of positive 

assigns to the point y the Fo(A^)-orbit of z, which is well 
defined. To see that the map is surjective, we associate 
to each z in WTQÍN) the class defined by the ordered 
pair of elliptic curves (£, = C/<1, z> - ^ £2= C/<1, z/N)), 
related by the obvious cyclic isogeny of degree Â . 

Let XQ(N) be the natural compactification of YQ(N). 

This is the modular curve which classifies pairs of gene
ralised elliptic curves linked by cycUc isogenics of de
gree N. The complex points XQ(N) ( C ) may be identified 
with the quotient H*/Fo(A^), where H* = H u P^(Q). The 
finite set P'(Q)/Fo(A^) consists of the cusps of XQ(N). 

Modifying slightly Birch's [Bi 75] definition, we can 
give the following geometric description of a Heegner 
point. 
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Definition 1.2. A point y = (Ej -^ E2) in Yo{N){C) is 
called a Heegner point attached to an order O of an ima
ginary quadratic field K if the endomorphism rings 
End(Ej) and End(E2) are both isomorphic to O. 

The next proposition gives a condition which guaran
tees the existence of Heegner points on XQ(N) attached to 
an order O of discriminant Z) < 0 in a quadratic field. 

Proposition 1.3. Given an order O of discriminant 
D <0 in a quadratic field, the modular curve YQ(N) has 
Heegner points attached to O if and only if there exists a 
primitive 0-ideal n of norm N. 

an 0-isomorphism if and only if all its localisations at the 
maximal ideals of O are so. To see that 0/n is isomor
phic with an~Va, we proceed similarly: we have now n^ = 
= O^x, for some x in n, and then we consider the map 
from 0/n into on" Va induced by multiplication by a/x and 
localise. D 

Since for any A in K"^, X has positive norm because K is 
imaginary and multiplication by A induces an isomorp
hism from C/a into C/Aa, for any invertible 0-fractional 
ideal a, we see that the curves ¿i(C) and E^iC) depend 
only on the class [a] of a in Pic''(0). This justifies our 
generaUsed definition of Heegner point (cf. [Gr 84]). 

Proof If y = (Ej - ^ £'2) is a Heegner point attached 
to 0 , then the associated lattices a, <h := Lo are 
both invertible fractional 0-ideals, since for any lattice 
ac iC , we clearly have End(C/a):^{x G C l x a ^ a } . As 
remarked previously, we may assume that aj c 02 and 
that C/aj -^ C/a2 is the natural map. Then n = a^ a^^ is 
an invertible 0-ideal contained in O which defines a 
quotient group 0/n cyclic of order Â ; that is, n is a pri
mitive ideal of norm Â . Conversely, if such an ideal n 
exists in 0 , we may construct Heegner points with O = 
End(Ey) = End(E2) as follows. Let abe an invertible frac
tional 0-ideal. We write £,(C) = C/a, E^iQ = C/an'K 
These curves are related by the obvious isogeny with ker
nel an"Va. But as the following lemma will show, we 
have an~Va^ 0/n. Therefore, in particular, the obvious 
isogeny is cyclic of degree N. D 

Lemma 1.4. Let 0 be an order of a quadratic field K, 
n an 0-ideal of norm N and a an invertible fractional 0 -
ideal. Then the 0-modules an~Va, 0/n and a/an are all 
isomorphic. 

Proof Since 0 is a noetherian integral domain of di
mension one [Ne 92], and n is a non-zero ideal, there are 
a finite number of maximal ideals, say ntp ..., m ,̂ con
taining n. Localising with respect to the multiplicative 
system S = 0\u-^ j m., we obtain a semilocal domain 0^ 
and as a is 0-invertible, then â  is 05-invertible and, 
hence, principal (cf. [Ka 70]); i. e., â  = O^a, for some a, 
which can be taken in a. Now multiplication by a induces 
an 0-homomorphism: 

0/ n- o/on (1) 

which localised at S clearly yields an 05-isomorphism: 

O^/n^ ^ (0/n)g - ^ (a/an)s c:^ a^/a^n^ = 0^a/(a)n^. 

Localising a little further (localising is transitive), we ob
tain (0/n)^ '^ (fl^^m for / = 1, . . . , /. For the other maxi
mal ideals m, we clearly have (0/n)^c^Ç)^ (aJna)^. Thus 
(1) is an 0-isomorphism, since an (D-homomorphism is 

2. PRIMITIVE IDEALS 

In this section, we characterise the existence of primitive 
0-ideals of norm N in terms of binary quadratic forms. 

Proposition 2.1. Given a quadratic order 0 of dis
criminant D, there exists a primitive 0-ideal n of norm N 
if and only if there exists an integral primitive binary 
quadratic form of discriminant D which primitively re
presents N. 

Proof Given a primitive integral binary quadratic 
form f(X, Y) of discriminant D, it is well known that 
there exists an invertible fractional 0-ideal a = (a, P) 
such that 

n(xa - yñ) ^^ 
f(x, y) = ^ ; ^ ^ for all (x, y) e J}. 

n(a) 

Here n stands for the norm of an element of Q(^D) or, 
respectively, for the norm of a fractional ideal in 0 . 

Now assume that there exists (XQ, JQ) ^ ^^ with 
gcd(xQ, y^) = 1 and/(xo, y^) = N. Thus there exists an ele
ment ^Ea,^ = XQ(X - y^P, such that n(0 = Nn(a). The fact 
that (XQ, JO) is primitive allows us to extend (̂  to a Z-basis 
of a; i. e., there exists Y\EK such that a = {̂ , /f) = (^(1, z ), 
z = r¡/^. 

Let aX^ + ¿>X + c be the Z-irreducible equation of z, 
with a > 0. Then /?̂  - 4ac = D and 0 = (1, az) (cf. [Bo-Sh 
66 chap. 2]). Moreover, n(a)= ln(Oln((l, z)) = n(£,)a~\ 
Then, from this result and from n(^) = Nn(d), we have 
a = N. Therefore, 0 = (1, Nz). If (') stands for conjugation, 
we have now: n := ^a~^ = (^n(a)"'a' = (^n(a)~^^Xl' z') = 
= n(On(a)-\l, ¿) = N{1, z) = {N, Nz). But 0 i s also the 
ring of coefficients of a' and then 0= (1, Nz), so that 
0 / n ^ Z / A ^ Z . 

Conversely, let n ^ 0 be a primitive 0-ideal of norm 
N and let k be the smallest positive integer in n. We claim 
it can be extended to a Z-basis of n. In fact, express k in 
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any Z-basis {a, ^} of n: ^ = Aa + fi^, and observe that 
A, fj. have to be coprime rational integers, for otherwise 
we could write k = d(À^a + ^,j8), for some integer d> I, 
with Ap /̂ ¿j G Z, and then k/d would be a positive integer 
in n smaller than k, since /:/<i G Q n n ^ Q n 0 = Z. This 
establishes our claim and we can write n = {k, ky), for a 
certain y. As usual, let us consider the irreducible equation 
for y over Z: aX^ + bX + c, with a>0 and gcd(a, ¿>, c) = 1. 
Since 0 = (1, ay) andnc : 0 , we see that a\k; i. e., k = as 
with ^ G Z . But then from n = (a^, a -̂y), we obtain 
0/n ^ I./asZ X Z / sZ, which tells us that 0/n is cyclic of 
order Â  if and only if 5 = 1 and, consequently, a = N = k, 
so that the quadratic form aX- + bXY + cY^ represents Â  
primitively and satisfies all our requirements. D 

Corollary 2.2. There exists a primitive 0-ideal of 
norm N if and only if the equation D = B^ - 4NC can be 
solved in integers with gcd(N, B, C) = 1. 

Proof If there exists a primitive 0-ideal of norm 
Â , then there exists a primitive binary quadratic form 
f(X, Y) = aX^ + bXY + cY^ which primitively represents 
N; i. e., there exists a pair of integers (XQ, JQ) such that 
/(XQ, JO) - ^ ï̂̂ d gcd(Xo, Jo) - 1- Then there also exist 
z, t eZ such that XQZ - yot = 1. And we have 

x^ 0 yo 

t z 

a bll 

bll c yo z_ 

N ^ 

that is,/(X, Y) is SL(2, Z)-equivalent to a primitive form 
of type NX' + BXY + CY^ with B^ - ANC = D. 

Conversely, if the equation B^ ~ ANC = D can be sol
ved in integers such that gcd(A, B, C) = I, then we can 
construct a primitive binary quadratic form NX^ + BXY + 
+ CY^ of discriminant D which obviously represents N 
primitively. D 

Now it is easy to determine the primitive ideals n in 0 
of norm N. But, first, let us recall that a basis (a, jS) of a is 

k P I 

a 

said to be oriented if 

when D > 0; and if ^ - 1 

< 0 in the real case, i. e.. 

p' 
> 0 (or, equivalently, 

when p/a e H) in the imaginary case, i. e., when D < 0. 

Proposition 2.3. The number of primitive ideals n in 
0 of norm N equals the number of integral solutions (b, c) 
of the equation Y^ - 4NZ = D with gcd(N, b, c) = J and 
-N<b < N. These ideals can be expressed by 

n = A < l , ^ ^ > -
^ 2A ^ 

Proof We proceed as in the proof of proposition 2.1 
and observe that we can write n = A^(l, y) for a certain y 
satisfying a quadratic equation of type NX" + bX + c = 0 
with gcd(N, b,c) = l,b~- ANc = D. But, if n = A^<1, y,), 
then, obviously, y^ = ±y(mod Z). The case of minus sign, 
however, leads to a non-oriented basis. Thus y is unique
ly determined if we require its rational pait to lie in 
[-1/2, 1/2), and y either to lie in HI (for non real y), or to 
have positive irrational part (for real y). The rest is obvi
ous. D 

3. THE CLASS SET H{N, D) 

The next two lemmas aim to establish that the automor
phisms of a binary quadratic form of discriminant D be
longing to the proper class associated with the strict class 
of an invertible fractional 0-ideal can be identified with 
the units of 0 of positive norm. 

Lemma 3.1. If a is an invertible fractional 0-ideal 
and k belongs to Q {-JD), then Aa = a if and only if X e 
0*. Furthermore, if {a, p) is an oriented basis of a and A 
lies in 0 * then (Aa, Xp) is another oriented basis of a if 
and only if X has norm +1. 

Proof For a given element A G Q(-^Dj, we have that 
A G 0 * if and only if A0 = 0 . So, if A is a unit, Xa = a. 
Conversely, if for A G Q{J^) is Aa = a, then 0^ Xe O, 
and multiplying by A"' we obtain a =X~^a\ so A"̂  G 0 , 
i. e., A G 0"^. This proves the first assertion. Next, if we 

write 

we 
Aa 

Aa 

xp 
obviously 

A'a' 

XP X'P' 
we have 

t u 
have 

r s 
t u 

,, with 

(primes 
a a' 

G GL(2, Z), as 

conjugates) 

, by taking determinants. 

t u 
denoting 

n(X) 
a a' 

p P' 
r s 
t u\ 

la a' 

\f¡ P' 

So the orientations are preserved if and only if 

niX)= r s 

t u 
= +1. D 

Lemma 3.2. Let a be an invertible fractional 0-ideal 
and select an oriented basis (a, P) in a. Then the group 
0 f of elements of norm 1 in 0 * is isomorphic to the 
isotropy group O'^(f) a SL(2, Z) of the binary quad
ratic form associated with the oriented basis chosen in a, 
/. e. 

fix, Y) = 
niXa - Yp) 

n{a) 
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Proof For X e Of, (Aa, kfi) is by the previous lemma 
another oriented basis of a, so that la = ra + sfi, À f] = 

\ r s \ 
= ta+ uP with G SL (2, Z). Then we have 

\_t iij 

n(Xa - Yp) _ n{XXa - YXP) _ 

n{a) n(a) 

niiXr - Yt)oi - (-Xs + Yu)P] 

n(a) 

This shows that A is a well-defined map 

from Of into the isotropy group 0'^(/) of / under the 
action of SL(2, Z). It is clearly injective. We next show it 
is surjective. By [Za 81], we know that an element of 
0^ ( / ) may be written as 

¡i-bv 
-cv 

av 
¡.I + bv 

for certain integers ¡x, v and where we assume/(X, Y) = 
= aX^ + bXY + cY^. Now we realise that, from the defini
tion of the map it suffices to check that the equality 

fi- bv P a fi + bv 
-— av- = CV- + —-— 

2 a p 2 

holds, since this equality trivially implies (cf. lemma 
above) that the element occurring in it has to lie in 0* , 
and actually in Of, as the determinant of the preceding 
matrix is +1. But the preceding equality can be simplified 

-b p Oí b 
to a- = c - + -^ which is easily seen to hold if we 

2 Oí P 2 
multiply through by p/oc and recall that p/a has to be a 
root off(X, 1). That this bijective map is a group isomor
phism is clear from a routine checking. D 

Remark 3.3. For imaginary quadratic fields, of 
course, Of = O^, since all elements have non-negative 
norm. 

Given an order O of discriminant D and an integer 
N>1, let us denote by 3-[(N, D) the set of integral quadratic 
forms of type aNX^ + bXY + cY^, with D = b^ - 4Nac, 
gcd(aN, b, c) = gcd(a, b, Nc) = 1. 

Theorem 3.4. The group TgiN) operates on 3-[{N, D). 
The quotient H(N, D) := 3-[{N, D)/TQ(N) is a finite set. 
Moreover there is a bijection between H(N, D) and the 
set of pairs (n, [a]), where n is a primitive O-ideal of 
norm N and [a] is the proper class, i. e., in Pic^(O), of an 
invertible fractional 0-ideal a. 

Proof If 
Va pi 
\_yN ôj 

a yN\ 

IP ¿J 

G TQ(N), computation of 

aN b/2 

b/2 c 
a p 

jN Ô 

shows that aNX- + bXY + cF^ is transformed into a form 
of type aiNX- + b^XY + c^Y~ with a,, Z?p c, G Z and, of 
course, 

gcá{a^N, èi, Cj) = gcà{aN, b, c). 

But then it is immediately checked that 

G SL(2, Z) transforms aX~ + bXY + cNY-
+ b,XY 

y 

PN 
Ô 

into a^X-
c,NY' It follows that gcd(<3i, èj, c^N) = 

= gcd(a, b, cN). This shows that TQÍN) does operate on 
J-L(N, D). That the set H{N, D) is finite is a trivial conse
quence of the finiteness of the number of classes of bi
nary quadratic forms of discriminant D under SL(2, Z)-
equivalence, together with the fact that ^(A^) has finite 
index in SL(2, Z). 

In order to establish the asserted bijection, we proceed 
as follows: Take a pair (n, [a]). Then, by lemma 1.4, 
an~Va:^Z INT, so that, by the theory of elementary div
isors, we can write a = (co ,̂ CD-^ = co/l , T) and an~^ = 
= (cOy/N, (D^= œ^{\IN, T) = A^"^a;i<l, A î), for a suitable 
oriented basis (coj, œ^). 

Let the Z-irreducible polynomial of T be aX^ + bX + c, 
with a > 0 and that of Â T be AX^ + BX+C, with A > 0. 
Taking norms, we have, on the one hand, n{arC^) = 
= n{a)n(n)~^ = N~^n(a) = N~^ \n(oj^)\a~\ and, on the other, 
n(an^) = n(A-'co,<l, A^T» = A '̂̂ A"̂  \n(co^)\, whence aN = 
= AN^; i. e., a = AN. Furthermore, the equation A(NTf + 
+ B(NT) + C = 0 yields AA^T' + BT + CN-'= 0, from which 
we obtain B = b, CN~^ = c. Then it follows that/(x, y) = 
= ax^ + bxy + cy^ e J-i(N, D) and it is this form that we 
associate to (n, [a]). Now, it is easy to check that a differ-

ent oriented Z-basis {œ^ ,cb^ of a such that cm =/---: ' 0)2 ! 

would yield a ro(A^)-equivalent quadratic form in j-[{N, D) 
In fact, if we express cb^ = aœ^ + Paj2 and CÔ2 = 7<̂ i + ¿<̂ 2 

CO, CO, 
and do the same for — and á>2 with respect to — and co 

N 

10 (mod A). But f = 
COo 

œ, 

N 

we immediately obtain P 

¿T + y 
= ' and from this, it is easy to see that the corre-

p i + a 
sponding quadratic forms for i and f are rQ(N)-equival-
ent and that, if we consider Aa with ^(A) > 0 instead of a, 
we can proceed with the oriented basis (Aco,, ACO2) to ob
tain the same results (observe that if n(X) < 0, then 
(Aco,, ACO2) is not oriented by lemma 3.1). This estab
lishes a map from the set {(n, [a])} into H{N, D). 
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Conversely, for a quadratic form f{X, Y) = aNX^ + 
+ bXY + cY- e 3~C(N, D), let T be the root of the polyno
mial aNX^ + bX + c such that the Z-basis (1, T) is 
oriented. Then, we can associate to f(X, Y) the pair 
(n, [a]), where [a] is the class of (1, i) in Pic"^(0) and n is 
jUSt(l,T)<lW, T)-^ 

If we consider another form ro(A^)-equivalent to our 
original one, and f is the corresponding root^of the de-

a p 
homogenised form, then there exists a matrix 

yA^ Ô 
(XT + B 

G S L ( 2 , Z ) , such that f = :• Now we see that 
yNx + ó 

n(yNT + (5) > 0; in fact, only the real case needs to be 
considered. We have 

ax' + P ar + P 

yNi' + Ô JNT + Ô 

= n{yNx + èr\aô - pyN){x' - T) 

and, as both (1, T) and (1, f) are oriented and {aè - PyN) = 
= 1, we obtain n{yNx + (5) > 0. But then (1, i) = (yNi + 5)'^ 

aNx + ^A^ 
(1, T), SO that [a] is well-defined. Since Nx = — ̂  

yNx + o 
we also have (1, Nx) = (yNx + ô)~^ (1, A^T), SO that (1, T) 
(1, Nxy^= (1, T) <1, NT)" ' , and n is well-defined too; i. e., 
we have a well defined map from the set H(N, D) into 
{{̂ ^ [it])}. Now it is trivial to check that the two maps are 
inverse to each other. D 

We introduce the following notations fox N> 1 : 

KMgen/)H¿^VÍZ ' 
1 

''''•''^f'>--[lvti)--[L^a^ 
resp. r*(A ,̂ gen / j , r^(N, gen / ) , for the average numbers 
of representations, resp. primitive representations, of an 
integer Â  by all the classes of forms in the genus off 
We understand that the sums run over a complete set 
of representatives for the v GL(2, Z)-classes, resp. v"̂  
SL(2, Z)-classes, in the genus off 

Lemma 4.1. Let f be a binary quadratic form. 

i) Iff admits an improper automorphism, i. e., an auto
morphism of Gh(2, 7.) of determinant -1, then 

rM gen/) = r(N gen/), r^iN gen/) = r*(A ,̂ gen/). 

ii) Iff admits no improper automorphisms, then 

r^(N g e n / ) = 2r(N, g en / ) , 

r*(A ,̂ g e n / ) = 2r*(A ,̂ gen / ) . 

Proof In fact, if/admits an improper automorphism, 
then o(f) = 2(9'"(/), but the number of SL(2, Z)-classes 
coincides with that of GL(2, Z)-classes. I f /admits no 
improper automorphisms, then o(f) = o'^(f), but the 
number of SL(2, Z)-classes doubles that of GL(2, Z)-
classes. D 

Setting h(N, D) := ^H{N, D), we have the following: 

Corollary 3.5. The class number h(N, D) equals the 
product of h^(D) := Pic^(O) by the number s(N, D) of 
primitive 0-ideals of norm N. In particular, h(l, D) = 
= h\D). 

THE EVALUATION OF H{N, D) 
IN THE IMAGINARY CASE 

In this section we obtain a formula for the number 
h{N, D) of Heegner points of type (Â , D) in terms of 
numbers of representations by the genera of binary qua
dratic forms of discriminant D. Recall [Si 35] that two 
forms belong to the same genus, in the sense of Siegel, if 
and only if they are GL (2, Z^-equivalent for each prime 
p, including p = oo; the genus of a primitive quadratic 
form / consists of a finite number of classes and, in the 
case of binary forms, the number of SL(2, Z)-classes in a 
genus depends only on D. The genus of a quadratic form 
will be denoted by gen / 

Theorem 4.2. The number of Heegner points of type 
(N, D) is 

h(N, D) = h(D) - ^ ¿ X AK^) s(fj) r(Nd-\ gen / ) . 

Here v stands for the number of SL(2, Z)-classes in a 
genus of any primitive binary quadratic form of dis
criminant D; t stands for the number of genera of primi
tive binary quadratic forms of discriminant D; IÂ(-) de
notes the Mobius function; 

Í2 / D < - 4 , 
o'-(D) = U if D = -4, 

[e ifD = -3, 

is the number of roots of unity in the quadratic field; and 

, 1 iff admits improper automorphisms. 
£ ( / ) 

2 otherwise. 

Proof. Since a Heegner point of type {N, D) is de
scribed by the data ( 0 , n, [a]), we see that their number is 
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s(N, D)h{D), where s{N, D) denotes the number of primi
tive 0-ideals of norm N. By proposition 2.1 and its proof, 
to any primitive representation of Â  by a primitive binary 
quadratic form / , i. e., {x, y) e 1} with /(x, y) - N, 
gcd (x, j ) = 1, we associate an element ^ = (xx-Pyeeaof 
positive norm. The corresponding primitive 0-ideal n of 
norm Â  is ^a~\ where a is a representative of the class of 
the invertible fractional 0-ideal associated to 

f(X, Y) = 
niXoi - YP) 

n(a) 
a = (oc, p). 

If we take another primitive representation ofNhyf, i. e., 
(Xj, y^) E 1} with/(Xi, Ji) = Â , gcd(Xi, y^ - 1, we obtain 
(Ji e a and another primitive 0-ideal of norm Â , namely 
Ttj =^,a\ We have ^\' e Q(^) and n(^^¡') = 1. Obvi
ously, ^, ^j are associates if and only if ^^]^ G 0J*. There
fore, if ^ and (̂1 are not associates, they yield different 
primitive 0-ideals of norm Â  in the class, defined by a~K 
But by the previous lemma 3.2, ^ and ^^ are associates if 
and only if the corresponding solutions are 0^(/)-equiv-

aient. This shows that '-— is precisely the number of 

distinct primitive 0-ideals of norm N in the inverse of the 
class of invertible fractional 0-ideals corresponding to 
the class of/. By considering all the classes, we have that 

h o\f) o\D); 
X r * ( M g e n / . ) = 

X £(/;•) r*(A ,̂ gen/;.). 

But 

cfiD); 

r^iN, gmf) = X ^i(d)r(Nd-\ gen / ) , 

and the claim follows. D 

Remarks 4.3. i) The above formula is also true for 
N = I. In fact, since the integer 1 is only represented by 
the forms of the unit class, say [ / ] of the group H(D), and 
the forms in this class have improper automorphisms, we 
obtain 

r ( l , g e n / ) = 

Therefore, h(l, D) = h(D). 

o\D) 

ii) The value r(N, gen / ) can be determined by means 
of the so-called p-adic densities. In fact, applying Min-
kowski-SiegeVs main theorem [Si 35], we have 

r(N, g e n / ) = ^ dJNJ) f] d^{N,fl 

where, the ô 's stand for the p-adic densities. In our case, 

2K 
SdN,f) = 

\D\ 

and 

d,(N,f) 
r,(N,f) 

with q = p'' and a > 2Vp{2N)\ v (-) stands for the p-adic 
valuation; r (N, f) stands for the number of representa
tions of N by f modulo q. 

Hi) Since D = Dgr^, we have (cf., [Za 81]j 

o"{D) J,; V p J 

In what follows, for any positive integer Â  we shall 
write its factorisation into primes in the form Â  = 2''p\^ 
''' Pr' ^i' '" <?.f̂  where a > 0, r > 0, 5' > 0, p- = 1 or 3 
(mod 8) for I <i<r,qj = 5 or! (mod 8) for I <j < s, and 
the exponents a-, pj are strictly positive (whenever they 
occur). 

We illustrate the preceding results with the following 
example: 

Proposition 4.4. With the preceding notations, for 
any positive integer N, we have 

h{N, -8) = 
T if oc < 2 and s = 0, 

0 otherwise 

Proof In this case,/can be considered to be X^ + 2F^ 
and we have gtnf = f because h(-S) = 1. We first obser
ve that for a > 2, we have h(N, -8) = 0, since, by reducing 
(mod 4), we easily see that r^N, f) = 0 and, then we just 

r*(A^,/) 
recall that h(N, -8) = /z(-8) — So, in the sequel, we 

will always assume 0 < a < 1. 

By theorem 4.2 we have 

HN, -8)= ~ X Kd)r(Nd-\ gen/). (2) 

By the Minkowski-Siegel formula, we have, for m = 
Nd-\ 

1 271 '' 
r(m, gen / ) = - -^j= d^im, / ) f ] 5 ,̂(m, / ) f ] ^ei^^ / ) 

exp

and we next evaluate the p-adic densities. 
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In order to calculate d2{m, / ) , we distinguish the cases 
a = 0 and a =1. In the former case, we readily obtain 

d2{rn, / ) = - rg(m, / ) = 2. In the latter, as will be shown 
8 

later in this proof, we will only need to assume all the jS's to 
be even. In this case, an elementary but tedious checking 
(essentially reduced to computing the powers of 3 (mod 16)) 

shows that m = 2, 6, 18, 22 (mod 32) and for these cases, 

we immediately have d2{m, f) = — r^ji^' / ) = 2. Sum

marising, d2(m, f) = 2 in the cases we are interested in. 

Next, for the primes /?• = 1, 3 (mod 8) occurring in the 
factorisation of N, we have (cf. [Ar-Ba 87]) 

d^,imj) = {v^(m) + 1) P i - \ 

Pi 

^ 0(;- 1 

. , t ^ i^ /+ l i , ,^ , , . (a ,+ l)(a ,+ l) 

+(-!)'n 
i=i Û Î / + 1 . 

= a 1 - Z (1 - 7,) + 

+ E (1-7 i)(l-y,)-••• + ( - ! / r i d - ^ - i ) 
l < / < y < r /=1 

where y- stands for 2(a • + l)~\ 1 < / < r. But the alternating 
sum in brackets is easily seen to be equal to yj y/, 
just observe that 

\<i<j<r 

= 0(1-^,)' 

where, as before, v^im) stands for the /?-adic valuation 
of m. 

For q\m, q = 5, 1 (mod 8), we have 

+ 1 

5im, / ) = < q 
if V (m) is even. 

lO if v^fjn) is odd. 

For a prime € / m, we simply have 

5,(m, / ) = 1 
€ n 

Recalling that 

i ' ( i > z - 8 ) = n ( i - ( Y ) ^ 

where the product is extended over all finite primes, and 

that h{-%) = 7= L(l, X-g), we see that 
2 . / 2 

(3) r(m, g e n / ) = 2 0 {%(f^) + !)• 

Now we compute the right hand side of (2) using (3) 
in the case a < 2, 5 = 0 and r > 0. Recalling that a-

r 

=Vp(N), 1 < / < r, and setting a := Yl (̂ i + 1), we obtain 
i=[ 

\ X liid)r{M-\ gen/) = r{N, gen/) - t riNp:\ gen/) + 
"^ d-\N / = 1 

+ X r(Npfpf,genf)- ^ r{Npfpfpf,gQnf) + 
\<i<j<r \<i<j<k<r 

+ -- + {-irr(Np]'--p;\genf) = 

and then substitute Z,. = 1 - y,. Consequently, we see in 
our case 

h(N, -8)= \ Z ^iid)r(Nd-\ g e n / ) = a • n - ^ = 2'. 
^ ¿/2|yv /=1 ^/+ 1 

Observe that this result also holds for r = 0, in which 

case, the preceding sum reduces just to - r(N, gen / ) = 1. 

If ^ > 0 and all the Pj are even, the preceding calcula
tions may still be used, as we explain with a simple 
example: observe that by our preceding formulae, for in
stance, r(NpfpJ^, g e n / ) remains unaltered by (3) if we 
add squares of q's to the denominator and thus all non-
vanishing terms ¡À{d)r{Nd~^, g e n / ) where d is the prod
uct of p¿pj with possibly other q's yield the following 
contribution to the whole sum: 

r(Npfpj\ g e n / ) - ^ ^iNpfpfqf, g e n / ) + 
k=l 

+ X r{Npfp-:\fqf, gen / ) - + • • • + 

+ {-\yr{Npfpfqt q:\ gen/) = 

= a ( l - y , ) ( l - 7 . ) 

i\ 

+ (-1)-^ = 0. 

As the same happens in the remaining cases, the result 
follows trivially. 

Of course, in the case where a prime q appears with an 
odd exponent, we also obtain the value 0 but, here, we do 
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not require the preceding calculations; we just observe that 
d {Nd~^, g e n / ) is already zero for all <î  IA^ (and this also 
allows us to get rid of the computation for Ô2(Nd~^, g e n / ) 
when not all jS's are even). This completes the proof. D 
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