EXISTENCE OF A POSITIVELY HOMOGENEOUS AND TRANSLATION INVARIANT CONTINUOUS CERTAINTY EQUIVALENT

Certainty equivalent/complete preorder/utility functional/translation invariance

GIANNI BOSI*

Department of Applied Mathematics «Bruno de Finetti», University of Trieste, Trieste, Piazzale Europa 1, 34127, Italy

* Gianni Bosi, Dipartimento di Matematica Applicata «Bruno de Finetti», Università di Trieste, Trieste, Piazzale Europa 1, 34127, Italy. Phone: +39-040-6767115, Fax: +39-040-54209, E-Mail: giannibo@econ.univ.trieste.it.

ABSTRACT

Let $(\mathcal{X}, +, \cdot, \tau)$ be a topological real vector space of real random variables (i.e., measurable real functions) on a common probability space $(\Omega, \mathcal{A}, \mathcal{P})$, and consider a complete preorder (i.e., a transitive and complete binary relation) \leq on a real convex cone \mathcal{K} of nonnegative real random variables in $(\mathcal{X}, +, \cdot, \tau)$, containing all the nonnegative constant random variables. Necessary and sufficient conditions are presented for the existence of a certainty equivalence functional $\mathcal{C}: \mathcal{K} \to \mathbb{R}_+$ for \leq (i.e., $\overline{\mathcal{C}(X)} \sim X$ for every $X \in \mathcal{K}$, and $\mathcal{C}(\overline{\lambda}) = \lambda$ for every $\lambda \in \mathbb{R}_+$, with $\overline{\lambda}$ the constant random variable equal to λ), which is strictly monotonic, positively homogeneous, translation invariant and continuous in the induced topology $\tau_{\mathcal{K}}$ on \mathcal{K} .

1. INTRODUCTION

Some authors were concerned with the existence of a linear and continuous utility functional \boldsymbol{v} for a complete preorder ≤ (i.e., a transitive and complete binary relation) on a normed space, or more generally, on a topological vector space (see e.g. Candeal and Induráin [4] and Weibull [10]). In this paper, given a topological real vector space $(\mathbf{X}, +, \cdot, \tau)$ of real random variables on a common probability space $(\Omega, \mathcal{A}, \mathcal{P})$, we consider the case of a complete preorder \leq on a real convex cone \varkappa in $(\mathcal{X}, +, \cdot, \tau)$, containing all the constants and such that each element of κ is nonnegative. Such a situation is interesting in decision theory, and particularly in insurance mathematics and risk theory, because an element X $\in \mathcal{X}$ may be interpreted as a random loss, or a risk. We present necessary and sufficient conditions for the existence of a certainty equivalence functional $\mathcal{C}: \mathcal{K} \to \mathbb{R}_+$ for \leq (i.e., $\overline{\mathcal{C}(X)} \sim X$ for every $X \in \mathcal{K}$, and $\mathcal{C}(\overline{\lambda}) = \lambda$ for every $\lambda \in \mathbb{R}_+$, with $\overline{\lambda}$ the constant random variable equal to λ) which is positively homogeneous, translation invariant, strictly monotonic and continuous. The existence of such a certainty equivalent is derived from the existence of a utility functional \boldsymbol{v} for \leq , exhibiting the same properties.

We recall that in the theory of choice under uncertainty in a multiperiod context, it is usual to assume the existence of a positively homogeneous certainty equivalent \mathcal{C} (see Epstein an Zin [7]), reflecting constant relative risk aversion (see Safra and Segal [8]). In insurance mathematics, positive homogeneity and translation invariance are both desiderable properties of a premium functional \mathcal{A} (i.e., a real functional on the space of all the random losses associated with insurance contracts), which can also be thought of as a certainty equivalent (see e.g. Denneberg [5]). In particular, such properties are satisfed by any Choquet premium functional (see e.g. Wang, Young, and Panjer [9]).

2. **DEFINITIONS**

Denote by $(\mathcal{X}, +, \cdot)$ a real vector space of real *random* variables (i.e., measurable real functions) on a common probability space $(\Omega, \mathcal{A}, \mathcal{P})$.

A subset \angle of \angle is said to be

- (i) a *real cone if* $\lambda X \in \mathcal{K}$ for every $X \in \mathcal{K}$, and for every $\lambda \in \mathbb{R}_+$,
- (i) a real convex cone if it is a real cone and $X + Y \in \mathcal{K}$ for every $X, Y \in \mathcal{K}$.

Given any nonnegative real number λ , the constant random variable equal to λ will be denoted by $\overline{\lambda}$. Further, the set whose elements are all the constant random variables on $(\Omega, \mathcal{A}, \mathcal{P})$ will be denoted by $\overline{?}$.

Assume that \mathcal{X} is endowed with any vector topology τ , so that $(\chi, +, \cdot, \tau)$ is a topological real vector space. We

recall that, given a real vector space $(\mathcal{X}, +, \cdot)$, a vector topology τ on $\boldsymbol{\mathcal{X}}$ is simply a topology which makes the vector operations + and · continuous. Given any subset **₹** of \mathcal{X} , denote by $\tau_{\mathcal{X}}$ the induced topology on \mathcal{X} . For example, in risk theory it is usual to consider the vector space $L_p(\Omega, \mathcal{A}, \mathcal{P})$ $(p \in \mathbb{R}_{++})$ of all the real random variables on $(\Omega, \mathcal{A}, \mathcal{P})$, for which

$$||X||_p = E^{\frac{1}{p}} [|X|^p] = \left[\int_{\Omega} |X|^p d\mathcal{P} \right]^{\frac{1}{p}} < \infty. \tag{1}$$

Sice $\|\cdot\|_p$ is a *pseudonorm* on $L_p(\Omega, \mathcal{A}, \mathcal{P})$, the corresponding pseudonorm topology τ_p is a vector topology on $L_n(\Omega, \mathcal{A}, \mathcal{P}).$

A binary relation \leq on a subset \mathcal{X} of \mathcal{X} is said to be a preorder if \leq is reflexive (i.e., $[X \leq X]$ for every $X \in \mathcal{X}$) and transitive (i.e., $[X \le Y) \land (Y \le Z) \Rightarrow X \le Z$ for every $X, Y, Z \in \mathcal{K}$).

The *strict part* \leq and the *symmetric part* \sim of a given preorder on $\leq \mathcal{K}$ are defined in the usual way, namely, for every $X, Y \in \mathcal{X}$,

$$X < Y \Leftrightarrow (X \le Y) \land \neg (Y \le X),$$
 (2)

$$X \sim Y \Leftrightarrow (X \leq Y) \wedge (Y \leq X).$$
 (3)

A preorder \leq on \varkappa is *complete* if, for two elements X, $Y \in \mathcal{X}$, either $X \leq Y$ or $Y \leq X$. A preorder \leq on \mathcal{X} is said to be

(i) monotonic if, for every $X, Y \in \mathcal{X}$,

$$(X(\omega) \leq Y(\omega) \mathcal{P} - a.s.) \Rightarrow X \leq Y$$

(ii) strictly monotonic if it is monotonic and, for every $X, Y \in \mathcal{X}$,

$$(X(\omega) \leqslant Y(\omega) \mathcal{P} - a.s.) \land (\mathcal{P}\{\omega \in \Omega : X(\omega) < Y(\omega)\} > 0) \Rightarrow X < Y.$$

A preorder \leq on a real cone \varkappa in a vector space \varkappa is said to satisfy constant relative risk aversion (see e.g. Safra and Segal [8]) if, for every $X, Y \in \mathcal{K}$, and for every $\lambda \in \mathbb{R}_{++}$

$$X \le Y \Leftrightarrow \lambda X \le \lambda Y. \tag{4}$$

In economic literature, a preorder satisfying condition (4) is said to be homothetic (see e.g. Bosi, Candeal and Induráin [3]).

We say that a preorder \leq on a real convex cone \varkappa containing the constant $\overline{1}$ (or equivalently $\overline{7}$) is translation invariant if, for every $X, Y \in \mathcal{K}$, and for every $\lambda \in \mathbb{R}_+$,

$$X \leq Y \Leftrightarrow X + \overline{\lambda} \leq Y + \overline{\lambda}. \tag{5}$$

Let \leq be a preorder on a subset \mathcal{X} of \mathcal{X} . A real number λ_X such that $\overline{\lambda}_X \in \mathcal{K}$ is said to be the *certainty equivalent* of $X \in \mathcal{X}$ if $\hat{X} \sim \overline{\lambda}_X$. Further, we say that a real functional \mathcal{C} on \mathcal{K} is a certainty equivalence functional for \leq if the following conditions are satisfied:

 $\mathcal{C}(X)$ is the certainty equivalent of X for every

(6)

(ii) $\mathcal{C}(\overline{\lambda}) = \lambda$ for every real number λ with $\overline{\lambda} \in \mathcal{K}$.

Given a topological space (χ, τ) , and any subset \mathcal{X} of \mathcal{X} , a preorder \leq on $\boldsymbol{\varkappa}$ is said to be *continuous if* $\{Y: Y \leq X\}$ and $\{Y: X \leq Y\}$ are closed sets in the induced topology τ_{\varkappa} on \varkappa for every $X \in \varkappa$.

A real functional *v* on *x* is said to be a *utility func*tional for a complete preorder \leq on \varkappa if, for every X, $Y \in \mathcal{K}$

$$X \leq Y \Leftrightarrow \mathcal{V}(X) \leq \mathcal{V}(Y). \tag{7}$$

A real functional \mathcal{V} on real cone \mathcal{X} in a real vector space $(\mathcal{X}, +, \cdot)$ is said to be *positively homogeneous* if, for every $X \in \mathbb{Z}$, and for every $\lambda \in \mathbb{R}_{++}$,

$$\mathcal{V}(\lambda X) = \lambda \mathcal{V}(X). \tag{8}$$

A real functional \boldsymbol{v} on real convex cone $\boldsymbol{\varkappa}$ in real vector space $(\mathcal{X}, +, \cdot)$, containing the constant $\overline{1}$, is said to be translation invariant if, for every $X \in \mathcal{Z}$, and for every λ $\in \mathbb{R}_{++}$

$$\mathcal{V}(X + \overline{\lambda}) = \mathcal{V}(X) + \lambda. \tag{9}$$

A real functional \mathcal{V} on any subset \mathcal{K} of \mathcal{X} is said to be

(i) monotonic if, for every $X, Y \in \mathbb{Z}$,

$$(X(\omega) \leqslant Y(\omega) \quad \mathcal{P} - a.s.) \Rightarrow \mathcal{V}(X) \leqslant \mathcal{V}(Y),$$

(ii) strictly monotonic if it is monotonic and, for every $X, Y \in \mathcal{X}$,

$$(X(\omega) \leq Y(\omega) \quad \mathcal{P} - a.s.) \land (\mathcal{P}\{\omega \in \Omega : X(\omega) < Y(\omega)\} > 0) \Rightarrow \mathcal{V}(X) < \mathcal{V}(Y).$$

It is clear that, if there exists a positively homogeneous, translation invariant and strictly monotonic utility functional ∇ for a complete preorder \leq on a real convex cone \mathcal{X} in real vector space $(\mathcal{X}, +, \cdot)$, containing the constant $\overline{1}$, then \leq satisfies constant relative risk aversion, and it is translation invariant and strictly monotonic.

3. EXISTENCE OF A CONTINUOUS CERTAINTY EQUIVALENT WHICH IS POSITIVELY HOMOGENEOUS AND TRANSLATION INVARIANT

There is a strict connection between the existence of a positively homogeneous certainty equivalence functional and the existence of a positively homogeneous utility functional for a complete preorder \leq on a real cone \varkappa in real vector space $(\varkappa, +, \cdot)$. The elementary proof of the following lemma is left to the reader.

Lemma 1. Let \leq be a complete preorder on a real cone \mathcal{K} of nonnegative real random variables in a real vector space $(\mathcal{X}, +, \cdot)$, containing the constant $\overline{1}$. Then the following assertions hold:

- (i) If \mathcal{C} is a positively homogeneous utility functional for \leq , then \mathcal{C} is a certainty equivalence functional for \leq if and only if $\mathcal{C}(\bar{1}) = 1$;
- (ii) If the restriction of \leq to $\overline{\bf 9}$ is strictly monotonic, then a certainty equivalence functional for \leq is also a utility functional for \leq .

Remark 1. It is clear that, if there exists a strictly monotonic certainty equivalence functional \mathcal{C} for a complete preorder \leq on a real cone \mathcal{K} of nonnegative real random variables in a real vector space $(\mathcal{X}, +, \cdot)$, containing the constant $\overline{1}$, then the restriction of \leq to $\overline{7}$ is strictly monotonic.

In the sequel, if $(\mathcal{X}, +, \cdot, \tau)$ is a topological real vector space, \mathcal{K} is any subset of χ , and \leq is any complete preorder on \mathcal{K} which is continuous in the induced topology $\tau_{\mathcal{K}}$ on \mathcal{K} , then we shall simply say that \leq is continuous.

Lemma 2. Let \leq be a complete preorder on a real convex cone \mathcal{K} of nonnegative real random variables in a topological real vector space $(\mathcal{X}, +, \cdot, \tau)$, containing the constant $\overline{1}$. If \leq is strictly monotonic and continuous, then, for every $X, Y \in \mathcal{K}$,

$$X < Y \Rightarrow \exists \lambda \in \mathbb{R}_{++} : X < X + \overline{\lambda} < Y.$$

Proof. Since \leq is strictly monotonic, it is clear that $X < X + \overline{\lambda}$ for every $X \in \mathbb{Z}$, and for every $\lambda \in \mathbb{R}_{++}$. So, it suffices to show that, given any two real random variables $X, Y \in \mathbb{Z}$ with X < Y, there exists $\lambda \in \mathbb{R}_{++}$ such that $X + \overline{\lambda} < Y$. Assume that $Y \leq X + \overline{\lambda}$ for every $\lambda \in \mathbb{R}_{++}$, and consider any real sequence $\{\lambda_n\}$ of positive real numbers converging to 0. Since the vector operation + is continuous, it is obvious that $X + \overline{\lambda_n}$ converges to X. Hence, from continuity of \leq , it is also $Y \leq X$.

In the following theorem we characterize the existence of a positively homogeneous, translation invariant, continuous and strictly monotonic certainty equivalence functional \mathcal{C} for a complete preorder \leq on a real convex cone K of nonnegative real random variables in a topological vector space $(\mathcal{X}, +, \cdot, \tau)$.

Theorem 1. Let \leq be a complete preorder on a real convex cone \mathcal{K} of nonnegative real random variables in a topological real vector space $(\mathcal{X}, +, \cdot, \tau)$, containing the constant $\overline{1}$. Then there exists a positively homogeneous, translation invariant, continuous and strictly monotonic certainty equivalence functional \mathcal{C} for \leq if and only if the following conditions hold:

- (i) \leq satisfies constant relative risk aversion;
- (ii) \leq is translation invariant;
- (iii) \leq is continuous;
- (iv) \leq is strictly monotonic.

Proof. The necessity part is obvious, since a strictly monotonic certainty equivalence functional \mathcal{C} for the complete preorder \leq is also a utility functional for \leq (see lemma 1 and remark 1). So let us prove the sufficiency part. From conditions (i) and (iii), there exists a positively homogeneous continuous utility functional \mathcal{C}' for \leq (see the corollary in Bosi, Candeal and Induráin [3]). Observe that \mathcal{C}' may be chosen so that $\mathcal{C}'(\overline{1}) = 1$. In this case, \mathcal{C}' is a certainty equivalence functional for \leq (see lemma 1). Define a real functional \mathcal{V} on K by

$$\mathcal{C}(X) = \inf \{ \mathcal{C}'(Z) + \lambda : X < Z + \overline{\lambda}, \ \lambda \in \mathbb{R}_{++}, Z \in \mathcal{X} \} \ (X \in \mathcal{X}).$$

Since \leq is strictly monotonic, \mathcal{C} is well defined. Further, it is easily seen that $\mathcal{C}'(X) \leq \mathcal{C}(X)$ for every $X \in \mathcal{K}$.

Let us first show that \mathcal{C} is a utility functional for \leq . Consider $X, Y \in \mathcal{K}$ such that $X \leq Y$. Since $Y < Z + \overline{\lambda}$ entails $X < Z + \overline{\lambda}$, it is clear that $\mathcal{C}(X) \leq \mathcal{C}(Y)$. If Y << X, then from lemma 2 there exists $\lambda \in \mathbb{R}_{++}$ such that $Y < Y + \overline{\lambda} < X$, $\mathcal{C}'(X) < \mathcal{C}'(Y + \overline{\lambda}) < \mathcal{C}'(Y)$. Since there exists $\mu \in \mathbb{R}_{++}$ such that $\mathcal{C}'(Y + \overline{\lambda}) + \mu < \mathcal{C}'(X)$, it is $\mathcal{C}(Y) < \mathcal{C}(X)$ from the definition of \mathcal{C} .

Now, let us show that \mathcal{C} is positively homogeneous. Assume that there exists $X \in K$, and $\lambda' \in \mathbb{R}_{++}$ such that $\mathcal{C}(\lambda'X) < \lambda'\mathcal{C}(X)$. From the definition of \mathcal{C} , there exists $\lambda'' \in \mathbb{R}_{++}$, and $Z \in \mathcal{K}$, with $\mathcal{C}(\lambda'X) < \mathcal{C}'(Z) + \lambda'' < \lambda'\mathcal{C}(X)$, $\lambda'X < Z + \overline{\lambda''}$. Since \leq satisfies constant relative risk aversion, it is $X < \frac{1}{\lambda}Z + \frac{\overline{\lambda''}}{\lambda'}$, and therefore, using the fact that \mathcal{C}' is positively homogeneous, we arrive at the contradiction $\mathcal{C}(X) < \frac{1}{\lambda'}\mathcal{C}'(Z) + \frac{\lambda''}{\lambda'}$. Analogously, it can be shown that for no $X \in K$, and for no $\lambda' \in \mathbb{R}_{++}$ it is $\lambda'\mathcal{C}(X) < \mathcal{C}(\lambda'X)$.

Observe that \mathcal{C} is continuous, since it is a positively homogeneous utility functional for the complete continuous preorder \leq (see Bosi [2, Lemma 1]). Further, since \mathcal{C} is a utility functional for the strictly monotonic com-

plete preorder \leq , it is clear that $\boldsymbol{\mathcal{C}}$ is is strictly monotonic. In order to prove that *C* is translation invariant, assume that there exists $X \in K$, and $\lambda' \in \mathbb{R}_{++}$ such that $\mathcal{C}(X + \overline{\lambda'}) < \mathcal{C}(X) + \lambda'$. From the definition of \mathcal{C} , there exists $\lambda'' \in \mathbb{R}_{++}$, and $Z \in \mathcal{X}$ such that $\mathcal{C}(X + \overline{\lambda'}) < \mathcal{C}'(Z) +$ $+\lambda'' < \mathcal{C}(X) + \lambda', X + \overline{\lambda'} < Z + \overline{\lambda''}.$ If $\lambda'' \geqslant \lambda'$, the $X < Z + \overline{\lambda''}$ $+\frac{\lambda^{\prime\prime}}{\lambda^{\prime\prime}} - \lambda^{\prime\prime}$ since \leq is translation invariant. Hence, $\mathcal{C}(X) <$ $< \mathcal{C}'(Z) + \lambda'' - \lambda'$ from the definition of \mathcal{C} , and this is contradictory. If $\lambda'' < \lambda'$, then $\mathcal{C}'(Z) < \mathcal{C}(X) + \lambda' - \lambda''$, and $X + \overline{\lambda' - \lambda''} < Z$ from translation invariance of \leq . Hecen, there exists $\mu \in \mathbb{R}_{++}$ such that $\mathcal{C}'(Z) + \mu - \lambda' + \lambda'' < \mathcal{C}(X)$. If $\mu \ge \lambda' - \lambda''$, then $Z + \overline{\mu - \lambda' + \lambda''} \le X$ from the definition of \mathcal{C} , and therefore $Z \leq X$. If $\mu < \lambda' - \lambda''$, then $\mathscr{C}'(Z) + \mu < \mathscr{C}(X) + \lambda' - \lambda''$ entails $Z + \bar{\mu} \leq X + \overline{\lambda' - \lambda''}$. So, in both cases $X + \overline{\lambda' - \lambda''} < Z$ is cointradictory by strict monotonicity of ≤. Analogously, it can be shown that for no $X \in K$ and for no $\lambda' \in \mathbb{R}_{++}$ it is $\mathcal{C}(X) + \lambda' < \infty$ $< \mathcal{C}(X + \overline{\lambda'}).$

It remains to show that \mathcal{C} is a certainty equivalence functional for \leq . By lemma 1, it suffices to show that $\mathcal{C}(\overline{1}) = 1$. Observe that $\mathcal{C}(\overline{1}) \geqslant 1 = \mathcal{C}'(\overline{1})$. Assume that $1 < \mathcal{C}(\overline{1})$, and consider any real number $\lambda \in \mathbb{R}_{++}$ such that $1 < \lambda < \mathcal{C}(\overline{1})$. Then $1 < \lambda$ entails $\overline{1} < \overline{\lambda}$ since \leq is strictly monotonic. On the other hand, it is easily seen from the definition of \mathcal{C} that $\lambda < \mathcal{C}(\overline{1})$ entails $\overline{\lambda} \leq \overline{1}$. So the proof is complete.

Finally, let us consider the following example of a continuous, strictly monotonic, positively homogeneous and translation invariant certainty equivalence functional \mathcal{C} which is not additive.

Example 1. [Choquet integral] Consider a real convex cone \mathcal{K} of nonnegative real random variables in $L_p(\Omega, \mathcal{A}, \mathcal{P})$, endowed with the L_p -(pseudo)norm topology (p is any positive real number). Let $g: [0, 1] \to [0, 1]$ be a increasing and concave continuous function such that g(0) = 0, g(1) = 1. It is well known that the Choquet integral of $X \in \mathcal{K}$ with respect to the distorted probability $g \circ \mathcal{P}$ is defined as follows:

$$\mathcal{C}(X) = \int_{\Omega} X \, dg \, o \, \mathcal{P} = \int_{0}^{\infty} g \, o \, \mathcal{P} \{ \omega \in \Omega : X(\omega) > u \} du.$$

 \mathcal{C} is a L_{ρ} -norm continuous (see e.g. Denneberg [6, Proposition 9.4]), strictly monotonic, positively homogeneous and translation invariant real functional on \mathcal{K} . Let \leq be the complete preorder on \mathcal{K} defined by $X \leq Y \Leftrightarrow \mathcal{C}(X) \leq \mathcal{C}(Y)$. Since it is clear that $\mathcal{C}(\overline{1}) = 1$, \mathcal{C} is a certainty equivalence functional for \leq by lemma 1. Nevertheless, \mathcal{C} is not additive, in general.

REFERENCES

- Bosi, G. Continuous certainty equivalence under constant relative risk aversion, preprint.
- Bosi, G. (1998). A note on the existence of continuous representations of homothetic preferences on a topological vector space. Annals of Operations Research 80, 263-268.
- Bosi, G., Candeal, J. C. and Induráin E. Continuous representability of homothetic preferences by means of homogeneous utility functions, to appear in *Journal of Mathematical Economics*.
- **4.** Candeal, J. C. and Induráin, E. (1995). A note on linear utility, *Economic Theory* **6**, 519-522.
- Denneberg, D. (1990). Premium calculation: why standard deviation should be replaced by absolute deviation. Astin Bulletin 20, 181-190.
- **6.** Denneberg, D. (1994). *Non-additive measure and integral.* Kluwer Academic Publishers.
- 7. Epstein, L. G. and Zin, S. E. (1990). «First-order» risk aversion and the equity premium puzzle. *Journal of Monetary Economics* **26**, 387-407.
- 8. Safra, Z. and Segal, U. (1995). How complicated are betweennes preferences. *Journal of Mathematical Economics* 24, 371-381.
- 9. Wang, S., Young, V. and Panjer, H. (1997). Axiomatic characterization of insurance prices. *Insurance: Mathematics and Economics* 21, 173-183.
- Weibull, J. W. (1984). Continuous linear representation of preference orderings in vector spaces, in *Operations* Research and Economic Theory, Springer-Verlag.