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ABSTRACT 

This paper considers a perfection refinement of the 
concept of equihbrium for multiple objective non-zero 
sum games. Based on the ideas of van Damme (1991) on 
perturbed games and stability the concept of perfect 
equilibrium is extended to a class of continuous games 
with multiple objetives. Existence is shown and several 
relationships that exist with the corresponding concept of 
scalar games are stated. 

1. INTRODUCTION 

Although nearly 40 years have passed the publication 
of Blackwell's paper (see Blackwell (1956)) which is the 
first known reference on Multiple Objetive Games 
(MOG) only a few papers have been devoed to this par­
ticular field among the wide literature of Game Theory. 
However, in recent years there has been some increasing 
interest in studying games with vector payoff. One of the 
reasons is that this approach represents better real-world 
situations of game theory. In fact, each competitive situ­
ation that can be moedeled as a scalar game has its 
counterpart as a multiple objective game when more than 
one scenario has to be compared simultaneously (see 
Fernández and Puerto (1996)). 

Hash's (1951) concept of equilibrium is probably the 
most important solution concept in non-cooperative 
game theory. The notion of equilibrium in MOG was in­
troduced and its existence proved by Shapley (1959) un­
der restrictive hypotheses. The foundation behind this 
concept is that if one player does not specify an equilib­
rium as his strategy, then some player could gain by 
changing his strategy to something other than what was 

specified for him. Hence, no reason exists for players to 
play strategies that are not Nash's equilibrium. However, 
it is also well-known that any particular equilibrium does 
not have to be a reasonable prediction of reasonable be­
havior. We only can argue that any outcome that is not an 
equilibrium would necessarily be unreasonable as a de­
scription of how a player should behave. This fact leads 
several authors to considero refinements of Nash's equi­
librium concept. 

In recent years, some research has been devoted to 
study solution structures and algorithms for multicriteria 
games (see e.g. Bergstresser and Yu (1977) or Borm et 
al. (1988)). However, little attention has been focussed 
on the fundamental problem of existence of solutions. 
Wang (1993) dealt with this problem. In that paper, 
fixed-point theorems and other techniques are used to de­
rive conditions for the existence of equilibria in games 
with vector payoffs. Novertheless, these equilibria are 
still not stable against small perturbations of all players' 
strategies. 

Here we are interested in a class of n-person non-
cooperative MOG with uncountable set of strategies. We 
propose a refinement of the concept of equilibrium for 
those MOG based on the notion of perfectness. This re­
finement has been already proposed by Mendez-Naya et 
al. (1995) for Nash's equilibria in continuous scalar 
games. Moreover, Van Megen et al (1999) and Puerto 
and Fernández (1995,1999) consider similar refinements 
for Nash equilibria of finite multiobjective games. By de­
veloping a solution theory that is based on such refine­
ment we require the verification of some properties that 
would be theoretically desirable and, what is equally im­
portant, that the refined concept select a nonempty set of 
equilibria for any continuous MOG. 
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The paper is organized as follows. Section 2 is devoted 
to state the general setting where we formulate the MOG 
and introduces the concept of equilibrium for those 
games. Section 3 proposes the refinement of the concept 
of equilibrium. Section 4 presents some conclusions and 
the paper ends with an appendix where technical tools 
used in the paper are described. 

2. THE CONCEPT OF EQUILIBRIUM 
IN MULTIPLE OBJETIVE GAMES 

A continuous multiple objective game (MOG) in nor­
mal form is defined as a triplet T = {N, Y', w'} where 
Â = {1,..., n] is the set of players. For each / e Â, F = [0, 
1] is the set of pure strategies for player /. The player i's 
vector payoff u' is a continuous function defined from u': 
F = nf^ 1 r -^ R"'^'^ where m(i) is the number of objec­
tives of this player. 

It is clear the MOG differs from single criterion (scal­
ar) games only in the payoff functions. In MOG, each 
player has a vector payoffs to optimize, while in classical 
games they have scalar payoffs. In particular, if 
m(l) = ••• = m(n) = 1 our game T becomes a n-person 
game in normal form. 

00 Now, let us introduce the solution concept for a 
MOG problem. Let P(N) be the family of all non empty 
subset of Â , i.e. the different coalitions of players in Â . 

For any y = {y\ ..., / } G F and w = {u\ ..., u"} e IR'"̂ '̂  
where y e F and u' = (w'„ ..., ŵ .̂ ) e W^'^'K let j ^ = [Y -i^C} 
be the strategies of coalition C and y_c = y^/^ the stra­
tegies of players not in C. In the same way, let u^ = {u' : / 
G C] and u_c = {u' : ̂  C} be the projections of u into U^ 
and IR"̂  respectively. 

For each player / its set of mixed strategies S' is the 
set of all the Borel-probability measures on [0, 1]. This 
is a subset of M the locally convex linear space of all 
the signed measured on [0, 1]. M is the dual of C[0, 1] 
the space of all the continuous functions from [0, 1] into 
U. 5' is a weakly* compact subset of M, hence compact 
in its weak* topology. As it is usual one can identify 
each measure jneM with the continuous linear functional 
</!,/> = J/d|i V / G C[0 , 1] (see the Appendix for more 
details on the weak* topology.) 

A mixed strategy for the MOG F is a combination s = 
(s\ ..., '̂') G 5 = (5^ X ••• X 5"). In the usual way, we can 
consider Y' imbedded in S' for all / because each y' G Y' 
corresponds to the mixed strategy which assigns prob­
ability 1 to y' and 0 anywhere else. In the same way, any 
game with a finite number of strategies is also included 
in this framework. Once we have defined the mixed strat­
egy space, we can extend the payoff functions. 

uKs\ ..., '̂0 = {u\(s\ ..., s-l ..., <,,(^', ..., n) (1) 

where u'j(s\ ..., s") = J u'jds^ ... ds'' for y = 1, ... m{í) is the 
integral with respect to the product measure generated by 
s\ ..., s". It is worth noting that u' is a weakly* continuous 
function because the payoff functions u' are continuous. 

Let us introduce the concept of equilibrium point of 
the MOG F. We will use the notation x = (y^, y_c) for 
every coalition C e P(N). 

Definition 1. A strategy s = (s\ ...,s") e S is an equi­
librium point ofr = (N, Y', u'), if for each i e N, s' is a 
weakly efficient solution of the vector maximum problem 

VM.{sJ : max {u\ (s\ 5_,), ..., ^ .̂̂  (s\ sj) (2) 

Hence, it is easy to understand that s is an equilibrium 
point if each player / chooses s' as the best response to the 
strategy s¿. 

The above definition coincides with the conventional 
definition of continuous Nash equilibrium when m(i) = 1 
for all /, i.e. in the particular case of scalar games. The 
interested reader can see the papers of Burger (1959) and 
Parthasaraty and Raghavan (1971) for further details and 
existence results in the scalar case and the paper of Wang 
(1993) for the multiobjective case. 

For the purpose of the introduction of the idea of equi­
librium in MOG any concept of efficiency would be 
valid. However, weak-efficiency induces the strongest 
dominance relation and therefore a player would only 
agree on deviation if the payoff in all the criteria in­
creases (see e.g. Van Megen et al (1999)). In addition, to 
extend the concepts of stable equilibria of MOG we will 
need some topological properties as closedness of the 
whole set of equilibria that requires the use of weak effi­
ciency rather than other efficiency concept. 

Our first result states the existence of equilibrium 
points under general hypotheses. Let Â^̂-̂  = {1 G IR'''̂ '̂  : 
Àj ^ 0, i:;"i'] Â. = 1} / = 1,..., n be a set of weights. Let us 
consider then n-person unicriterion gam r(/l), where X = 
(À\ ..., r), À' G A,„(,.) with the payoff functions uV) = IJÍ] 
ÀjUj(s',. s_¡) for a s_¿ fixed and / = 1, ..., n. 

We state in the following lemma an straightforward 
result which is a consequence of the general theory of 
vector optimization. 

Lemma 1. Let F be a n-person MOG with continu­
ous payoff functions u'for all / = 1,..., n and strategy sets 
S' i = 1, ..., n. Then s = (s\ ..., s") is an equilibrium strat-
egy of F iff there exists A = (A',..., A") G A,„(,) X • • • X Â  
so that for all i 
problem 

I, ..., n s' is an optimal solution of the 
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m(/) 

max y Xiu](s', s ,) 
s'eS' 

(3) 
; = i 

Proof. Since each u' is a continuous multi-linear func­
tion it is also concave in s' whenever s_¡ is fixed. Hence 
the result follows. D 

The following theorem whose proof is direct from 
Lemma 1 characterizes the set of equilibrium points in 
MOG. 

Theorem 1. The set of equilibrium points of a MOG 
r in the conditions above coincides with the set of all 
Nash equilibria of games T{X) when X varies in Â ĵ̂ ^ x • • • 

Notice that this result is well-known and it already ap­
pears suggested in the paper of Shapley (1959)) although 
for finite two-person games. 

A mixed strategy 5̂  G 5 is an equilibrium in an //-pertur­
bed game if for all / = 1, ..., n, 5' is a weakly efficient 
solution of 

P.{^[¿, 's) : max {u\{s\ is.,), ..., u'^^^{s\ ~s_^) (5) 

With these préliminaires we are in position to intro­
duce the concept of perfect equilibrium in MOG. 

Definition 2. We say that s = (s\ ..., s'') G S is a per­
fect strategy combination of the MOG T if there exists a 
sequence {pj} of perturbation vectors and a sequence 
{S]^} of strategies with Sf^ = (si, ..., s^) such that: 

1. Pk ^ 0; 

2. Sj^ is an equilibrium in an pj^-perturbed game for 
all k: 

3. A REFINEMENT OF THE CONCEPT 
OF EQUILIBRIUM 

In order to introduce the refinement of the concept of 
equilibria of continuous MOG we use the technique of 
perturbing the set of admissible strategies and define the 
refined equilibria as limits of sequences of equilibria in 
the modified games. It should be noted that these ideas 
were firstly applied by Selten (1975) when he defined the 
concept of perfect equilibria in scalar games. The goal of 
this section is to extend the above mentioned concept of 
perfectness to continuous MOG. 

In an equilibrium, each player's equilibrium strategy is 
an efficient response to the other players' equilibrium 
strategies. In a perfect equilibrium, there must also be 
arbitrarily small perturbations of all players' strategies 
such tha every pure strategy gets strictly positive prob­
ability and each player's equilibrium is still an efficient 
response to the other players' perturbed strategies. Thus, 
as in Selten's perfect equilibrium we discriminate sol­
utions which are not stable against any arbitrarily slight 
perturbation of the game strategies. 

A perturbation or error vector is a measure p = (p\ ..., 
p'') E W;^ I 5", satisfying for all /: 

1. p'{(a, b]) > 0 for any interval (a, b] ^ [0, 1] with 
a< b. 

2. A^m 1 ] ) < 1 . 

The trembling-hand strategies associated to a per­
turbation vector p are the probability measures in 
X\p^)x ••• x Z V O where 

3. 4 ^ s\ V/= 1, ..., n. 

It should be noticed that when m(i) = 1 for all / = 1,..., 
n our perfect equilibrium reduces to the concept of per­
fect equilibrium for continuous games as introduced in 
Mendez-Naya et al (1995). 

First of all, we prove that every perfect equilibrium is 
also an equilibrium. Then, we show that the converse is 
not true. To prove the inclusion we need some technical 
results. 

Let YXp', s_¡) be the set of all the values of the payoff 
function u'(s, s_¡) whenever s' e X\p'). This is 

r{p\ s_¡) = {j G R'"̂ '̂  :}; = u\s, 5_.), s e X'(p)}. 

This family of sets induces a point-to-set map: 

p^ - np\ s J 
(6) 

This application is continuous in the sense of Hogan 
(1973) (see the Appendix for details). Continuity of F is 
used to prove the existence of perfect equilibria as it will 
be shown in the following. To prove this property we 
need to prove previously the continuity of the map X de­
fined by (4). 

Lemma 2. The point-to-set map X defined by 

X:M ^ 2^ 

p ^ X(p) 
(7) 

X'ip) = {F" G S' : F'(I) ^ PXI) V/ = (a, è] ç [0, 1]} (4) is continuous. 
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Proof. First, we prove that S is upper semicontinuous 
(u.s.c). Indeed, let {/î } ^ M be a sequence which con­
verges in the weak* topology to //, this is ju ,^^ ju, and let 
F^ e X{fi^) for all k satisfying F^ ^ F. Consider the weak* 
continuous function g defined by: 

g:M X M > M 

il^, F) > p-F 
(8) 

Then, g{pf^, F,) ^ g{p, F) = p- F. Moreover, since F^ e 
X(PJ) for all k then (p^ - Fj)(I) ^ 0 for all / = (a, b] ^ [0, 
1]. Hence (p-F)U) < Ofor a l l /= (a, b] ^ [0, 1] a n d F e 
X(p) which proves that X is u.s.c. 

Now, we prove that X is lower semicontinuous (l.s.c). 
We have to prove that given {p/} ^ M a sequence which 
satisfies p j ^ ^ p, and F e X(p) then there exists F^ G X(pj) 
except for a finite number of k, satisfying F^ ^ F. We 
distinguish two cases. 

1) 

2) 

F(T) = p(I) for any / = (a, è] ^ [0, 1]. In this case, 
we can take F^ = pj^ and the result follows. 

F / ju. Since /i is a finite measure,^here exists a 
measure F e M such that F(/) > F(/) > p(I) if 
F(/) > p(I) and F(/) > p(I) if F{I) = p{I). Consider 
the sequence F^ = (1 - Xj)F + XJ^ with Â  G [0, 1]. 
It is clear that F^ ^ F if Â  - ^ 0. On the other 
hand, F^ G X{pj) if F^ - /i^ ̂  0 which is equivalent 
to 4 ( F - F) + F - ^^ ^ 0. Now, for any / = {a, b] 
^ [0, 1] if F(7) > p(I) then (F, - p,) (I) ^ 0 if 4 is 
small enough. Otherwise, this is if F(/) = p(I) 
then (F^ - pj) (I) ^ 0 for any Â . Hence, if Â  ^ 0 
then: 

and the proof is complete. D 

Lemma 3. The point-to-set map F defined by (6) is 
continuous at pfor any i = 1, ..., n. 

Proof. Let {p,} a M, pj^ ^ p and ŷ  e Y'\p,^, s_¿) for 
all k, ŷ  -^ y. From the definition of Y'(pf^, s_- there exists 
{Fj} cz X' such that F^ G X'(JU^) and ŷ  = w(F^, 5_.). Since 
S' is weak* compact the sequence [Fj^ (or some sub­
sequence) converges in the weak* topology to some F. 
Then, F belongs to X\p) because X' is^u.s.c... Now, since 
u is weak* continuous w(F ,̂ 5_-) -^ u(F, 5_-). This implies 
that y = M(F, 5_,) G F'(/Î , ^_.). Hence F is u.s.c. 

Let {/î } cz M,ji¡^ ^ p and y G F(/î, 5_,). By definition of 
F' there exists F G X' ( / Î ) such that y = u{p, 5_.). Now, 
since X' is l.s.c. there exists a sequence {F^} with F ^ ^ 
X\pj^) except for a finite number of k such that Fj. ^ F. 
Take ŷ  = u(p,^, s), then ŷ  G Y'ip,^, s¡). Moreover, the con­

tinuity of u implies that ŷ  -^ y. This proves that F is 
l.s.c. at p. D 

Let N'ip, s_¡) be the set of weakly efficient solutions of 
P-(p, s) on the image space. This is 

NXP, S J = {ye Tip, s J : ^y' e Tip,, s J 

with y' > y componentwise}. 

Now, we consider the point-to-set map defined by the 
bove introduced family of sets. 

p - N\p\ s_¡) 

Lemma 4. The point-to-set map N' is u.s.c. at p. 

(9) 

Proof. Apply Theorem 4.2.1 in Sawaragy et al. 
(1985) taking into account that in our case the domina­
tion structure D = R'̂ '̂̂  is constant and convex and that by 
Lemma 3 F is a continuous point-to-set map. D 

Let us consider the point-to-set map M' defined as 

M'\p, 5_,) = [s^ G r{p) : u\s\ sj G N\p, 5_,)} (10) 

We state the following lemma which is used in the 
next theorem. This is a consequence of the previous re­
sults. However, for the sake of completeness a proof is 
given. 

Lemma 5. The point-to-set map M' defined in (10) is 
an upper semicontinuous map at p, for any i = 1, ..., n. 

Proof. Let 

{p,} ^ S, p,^ p, F, G M'(p,. ~s_.), and F, ^ F 

Since X' is u.s.c. 3.t p, F e X\p). From the definition of 
M{p, 5=_-), w(F ,̂ ^_.) G N\pj^, s_¡). From the weak* conti­
nuity of u: 

u(F,^, s_.) > u{F, ~s_¡). 

Hence, w(F, s_^^ N\p, s_¡), since the map Â ' is u.s.c. 
at p. Therefore, F G M\p, s_¡), and so the map M is u.s.c. 
at p. D 

Let us assume the hypothesis of Lemma 5 then we 
have the following result which states the relation be­
tween the set of equilibria and perfect equilibria of a 
MOG. 

Theorem 2. For any continuous MOG in normal 
form, the set of perfect strategy combinations is a subset 
of the set of equilibria. 
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Proof. Let us consider a perfect equilibrium s and let 
{5̂ } and [jij] be two sequences such that ^̂  is an equilib­
rium in an /i^-perturbed game for all k and verifying that 
{sj^, fii) ^ (s, 0). Hence, we have for all / = 1, ..., n that s[ 
e M\fi[ (s_.),^) then the u.s.c. of M' impUes that 
s' G M'(0, s_¡) for all / = 1, ..., n. That is, s' is a weakly 
efficient solution of the problem VM¿(s_¿) for all z = 1, ..., 
n what by Definition 1 implies that 5" is an equilibrium 
point. D 

In the following, we provide an example which shows 
that the concept of perfect equilibrium is a strict refine­
ment of the concept of equilibrium in continuous multi-
objective games. 

Example 1. Let us consider tha two-persons two ob­
jectives continuous game F with vector payoffs given by: 

u\x, y) = u\x, y) = (xy, x^y) for all (x, y) e [0, 1] x [0, 1]. 

The game T induces two continuous single objective 
games T. with i = 1,2 with the payoff functions u¡, u] 
defined on [0, 1] x [0, 1] by: 

u\{x, y) = u]{x, y) = xy 

^li^i y) = ^\{^y y) = ^y-

It is clear that any equilibrium (F, G) in T is also an 
equilibrium in F- / = 1, 2. Indeed, if we assume that (F, 
G) is not an equilibrium in F, then it must exist F* such 
that: 

xy dF*(x)dG(y) < xy dF(x)dGCy). (11) 

Now, since for any (Xj, ji), (̂ 2, ^2) ^ [0' 1] ^ [0' 1] we 
have thatXjji 
implies that: 

< x^2 if î̂ d only if Xjjj ^ x^2 then (11) 

xVdF*(x)dGCy)< x'y àF{x)àG{y). (12) 

Thus, 

u\F'',G) = (J xy dF*(x)dG(j), J x^y dF*(jc)dG(j)) 

< (J xy dF(x)dGCy), J ^y dF(x)dGCy)) = 

= w'(F, G). 

This last inequality means that (F, G) would not be an 
equilibrium in F because F* is a better response to G 
than F This contradiction proves that any equilibrium in 
F is also an equilibrium in the associated single objective 
games F,, F2. Notice that the same argument can be ap­
plied to the //^-perturbed games. 

Let us denote by è{x) the degenerate probability 
measure which assigns probability 1 to JC and 0 every­
where else. It is clear that (¿(0), <5(0)) is a multiobjective 
equilibrium of the game F. Assume that it is perfect. 
Then, there exists a sequence {(F^ G^)}^^ j of Nash equi­
libria of the corresponding sequence of /¿^-perturbed 
games, converging in the weak* topology to (¿(0), <5(0)). 
It is clear that u\è{l), G )̂ > w(F, G )̂ (componentwise) 
for all k^ I (provided that F 7̂  ô(l)). Then, by applica­
tion of Theorem 3 in Mendez-Naya et al. (1995) to the 
single objective games F. / = 1, 2, it follows that F^ co­
incides with jJ" on [0, 1). Therefore, since F^ is a prob­
ability measure, when pa goes to zero F^ converges to 
(5(1). This contradicts that (¿(0), ¿(0)) is the limit of the 
sequence {(F^ G^)}^^i. Hence (¿(0), ¿(0)) is an equilib­
rium which is no perfect. A 

Finally, the existence of such perfect equilibrium 
points is stated in the following theorem. 

Theorem 3. For any continuous MOG in normal 
form F, there exists at least one perfect equilibrium. 

Proof. Since each XXiij) is a weak* compact, convex 
set and the objective functions M'(-, S_¡) are linear for any 
s_¿ fixed then there exists 5*̂  being an equilibrium of the 
^^-perturbed 
(1993)). 

game (see e.g. Corollary 3.2 in Wang 

Now, {si}¡^^ 1 is a sequence in 5^ x ••• x 5^ which is a 
weak* compact set. Then, there exists a weak* conver­
gent subsequence {s^ }^^ j included in {s,}¡^^ j . Hence, ap­
plying the upper semicontinuity of M' for all z = 1, ..., n 
the result follows. D 

4. CONCLUDING REMARKS 

In this paper the concept of perfect equilibrium in con­
tinuous MOG is introduced as a refinement of the con­
cept of equilibrium in MOG. To this end, we have used 
the approaches followed by van Damme (1991) and 
Mendez-Naya et al. (1995) based on prtubed games. 

Our first remark is on the developement of procedures 
that compute these kinds of equilibria. At first sight, it 
seems to be a hard task because it is even harder than in 
the scalar case. Thus, more research should be directed 
towards this particular point. 

Secondly, we would point out that the basic rationale 
for considering perturbed model with small probability 
of errors is that they give us a way to test the principle 
that an equilibrium does not depend on the unreasonable 
assumption that players ignore the pure strategies of the 
game having zero probability in the equilibrium. Hence, 
when we use this approach we are only using part of the 
basic rationality principles about players' rational behav­
ior in a multiple objective game. Unfortunately, we think 



462 J. Puerto et al. Rev.RAcad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93 

that as it happens in the scalar case there is no solution 
concept that verifies all the rationality principles of intel­
ligent behavior in MOG. 

APPENDIX 

An interestig and important notion that arises naturally 
when we consider the mixed strategies in the continuous 
games is the weak* topology. Starting with C[0, 1] the 
normed space of the continuous functions in [0, 1] we 
form its topological dual M the set of all the Borel signed 
measures on [0, 1]. 

Definition 3. A sequence [s^ a M is said to be weak^ 
convergent to an element s e M if for every fe C[0, 1] 
< / s,^y - ^ {x, s}. In this case we write s^^ ^ s. 

Based on this convergence it is possible to consider a 
notion of compactness (less severe than the usual one) 
but still sufficient to provide alternative explanation for 
the existence of solutions to optimization problems. 

Definition 4. A set K ^ M is said to be weak^ com­
pact if every infinite sequence from K contains a weak"^ 
convergent subsequence. 

Separable normed linear spaces posses an important 
propertyu characterizing this kind of compactness. 

Lemma 6. Let Xbe a seprable, normed linear vector 
space and X^^ its topological dual. Every bounded se­
quence inX^ contains a weak^ convergent subsequence. 

A well-known consequence of this result is that the 
closed bounded sets in X* are weak* compact. Since 
C[0, 1] is a separable space these results apply. 

Definition 5. A functional L defined on M is said to 
be weak^ continuous at s^e M if given e > 0 and a finite 
collection {/i,/2, ...,f,} from C[0, 1] sduch that \L(s) -
L(SQ)\ < 8 for all s e M such that \{s - SQ,f}\ < ô for all 
i - 1, ..., n. 

In the following, we recall some results concerning the 
stability of optimal solution sets of multiobjective opti­
mization problems regarding perturbations of feasible 
solution sets. A point-to-set map or multimapping F from 
a set X into a set F is a map that associates a subset of F 
with each point of X. 

In what follows, we introduce several concepts with 
regards to the continuity of these maps. We follow the 
definitions of Hogan (1973). For additional details on 
this and other subjects we refer the interested readers to 
the book of Sawaragi et al. (1985). 

Let F be a point-to-set map from a set X into a set F. 

Definition 6. F is said to be. 

1. lower semicontinuous (l.s.c.) a point x e X if 
{x }̂ c: X, x^ ^^ X, and y G F(x) all imply the exist­
ence of an integer m and a sequence {y^} Œ Y 
such that y^ e Fix'') for k^m and j ^ -^ y; 

2. upper semicontinuous (u.s.c.) at point x e X if 
{x^} c: X, x̂  ^ X, y^ G F(x^) and y'' -^ y all imply 
that y e F(x); 

3. continuous at point x e X if it is both l.s.c. and 
u.s.c. at X. 
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