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ABSTRACT 

In this paper we propose a Bayesian, information the­
oretic approach to dimensionality reduction. This ap­
proach is formulated as a variational principle on mutual 
information, and seamlessly addresses the notions of suf­
ficiency, relevance, and representation. Maximally in­
formative statistics are shown to minimize a Kullback-
Leibler distance between posterior distributions. To illus­
trate the approach, we derive the maximally informative 
one dimensional statistic for a random sample from a 
Cauchy distribution. 

RESUMEN 

Estadísticos máximo-informativos 

En este trabajo proponemos una aproximación 
Bayesiana, basada en la teoría de la información, al pro­
blema de la reducción de la dimensionalidad. El pro­
cedimiento se formaliza como un principio variacional 
sobre la información mutua, y permite un tratamiento 
adecuado de las nociones de suficiencia, relevancia y 
representatividad. Demostramos que los estadísticos 
máximo-informativos minimizan una distancia de Kull-
back-Leibler entre distribuciones finales. Para ejem­
plificar el procedimiento, desarrollamos el estadístico 
unidimensional máximo-informativo correspondiente a 
una muestra aleatoria de una distribución de Cauchy. 
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1. INTRODUCTION 

Dimensionality reduction is a fundamental goal of tat-
istical science. In a modeling context, this is often facili­
tated by estimating a low dimensional quantity of inter­
est. For example, suppose the quantities of interest are 
the labels of a classification of photographs of objects; of 
trees, children, etc. The data are the photographs, and the 
goal is to infer which of the several classes have been 
presented. In this case the data space often has dimension 
on the order of >10 ,̂ while the parameter space is a small 
discrete set of labels each having much lower dimension. 
A low dimensional summary of the photograph is then 
obtained as the estimate of the classification of the photo­
graph. 

In this paper, we propose a Bayesian approach to di­
mensionality reduction based on maximizing the mutual 
information between a statistic and a quantity of interest. 
This approach is formulated as a variational principle on 
mutual information, and seamlessly addresses the no­
tions of sufficiency, relevance, and representation. We 
refer to statistics which maximize this mutual informa­
tion as maximally informative (MI) statistics. Such statis­
tics are shown to minimize a Kullback-Leibler distance 
between posterior distributions. 

The mutual information between a statistic and a 
quantity of interest is defined in Section 2. The mutual 
information based variational principle for MI statistics 
is utilized in Section 3 to derive non-variational deriva­
tive forms of the principle. In Section 4 several proper­
ties of MI statistics are derived. The important result of 
this section is that MI statistics provide a generalization 
of the notion of sufficiency, because they are sensible 
both when they are not sufficient statistics, and when 
lower-than-data-dimension sufficient statistics do not 
exit. In Section 5 we present the result that in inference 
the Kullback-Leibler (KL) distance is properly a func­
tional of posterior distributions. There we find MI statis-
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tics at functional minima of a KL distance based on pos­
terior distributions of the parameter of interest. The argu­
ments made here suggest that the KL distance derived 
here is preferred to a maximum relative entropy distance, 
a fact which is not discussed in, for example, Kullback 
[1959] or Shore and Johnson (1979), and numerous 
others. In Section 6 the MI static for the location par­
ameter of the Gaussian distribution is derived, and shown 
to be the expected result, since in this case a one-dimen­
sional sufficient statistic exists. In Section 7 we find a 
one-dimensional MI statistic for the Cauchy distribution, 
where a sufficiency reduction does not exist. In Section 8 
we discuss approximating the posterior distribution as a 
Gaussian and apply this technique to show that the MI 
statistics are then Bayes' estimators of the mean and 
standard deviation. There a contrast of the approximate 
MI inference approach with the Maximum Entropy 
method is made, and it is shown that although they agree 
for Gaussian likelihoods, they disagree for other distribu­
tions, with simplicity arguing in favor of the MI statis­
tics. 

A statistic r = ^¡^(x) will be a function of x, a mapping 
from the data space X into some R, ^f^(-): X ^ R. Again 
using the delta notation, the distribution of the statistic is 
represented as 

P{r\x} = ô{r-Ux)) (5) 

(6) 

The joint distribution of the statistc r and the quantity of 
interest, q, conditioned on the data x is 

P{r, q\x) = P{r\x)P{q\x) (7) 

(since r = £,^ix) is specified once x is known, making 
Pir \x,q) = P{r \ x)), and the unconditional joint distribur-
tion is 

P{r, q) = \ P(r\ x)P{q \ x)P{x) dx (8) 

2. THE MUTUAL INFORMATION BETWEEN 
A STATISTIC AND A QUANTITY 
OF INTEREST 

Let the data x e X be drawn according to a par­
ameterized distribution P{x \ 0), with 0 e 0 , the par­
ameter space. 9 itself is distributed according to the prior 
P{0). The marginal distribution of x is obtained from 
P{x) = j P(x I 6)P{6) dO, and the posterior of 0 given x is 
obtained from Bayes Theorem as 

P{d\x) = 
P{x I 0)P(0) 

P W 
(1) 

The quantity of interest q = ¿,Q{0) will be a function of 
B, a mapping from the parameter space 0 into some Q, 
i^g(-):0 -^ Q- It will be useful to use the Dirac delta-
function (5(0 to represent the distribution of q as 

P{q\B) = P{{e:q = ^Q{e)}\B) 

= è{q-^Q{B)) 

= n%,-^e./(0))' 

(2) 

(3) 

where ¿(z(-)) = n-á(z-(-)). Note that (2) may be seen direc­
tly by using Bayes' theorem to expand P{q, 6) as 
P(q I 0)P(9), integrating that over q, which must produce 
P(0), and noting that because the support of P(q \ 6) is the 
unique q such that q = ^Q(0) (9 is specified), P(q \ 0) must 
therefore be the Dirac delta function. The distribution of 
q given the data x, may be written using (1) and (3) as 

P(q\x) P(q\0)P(0\x)de (4) 

Finally, we define the mutual information between a 
statistic and a quantity of intereset as 

M{U-l ^Q(-)) - ^('-'^)log(^5^)^^^'- (9) 

The mutual information is the Kullback-Leibler distance 
between the joint distribution P(r, q) and the marginal 
product P{r)P{q) corresponding to independence be­
tween r and q. 

3. MI STATISTICS AND THE VARIATIONAL 
PRINCIPLE 

We are now ready to define a maximally informative 
(MI) statistic. 

Let S = {^j^(')} be a set of statistics under consider­
ation. A MI statistic for a quantity of interest ^Q{-) is any 
statistic ¿,j^{') from S maximizing the mutual information 
Mi/?(')' ^Q^')) between the statistic and the quantity of 
interest. 

The following variational principle can be used to ob-
Ô 

tain an MI statistic. Let -—— denote the functional de-
àf{') 

rivative with respect to/(-). 

Choose (ir,(-) from S such that ~--^—-— = 0 and 

-——~—- IS negative semidefmite, i.e. so that ç^(-) 

maximizes the information between itself and ^Q{-), the 
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quantity of interest. If possible, choose the global maxi­
mum. 

Note that MI statistics in S may occur on the boundary 
of S. This may be a case of interest, which occurs when 
constraints are imposed on the statistics, and can be han­
dled with a trivial modification. Note that the space 5 of 
statistics can be constrained to contain only low-dimen­
sional statistics to force a dimesionality reduction of the 
data. 

We now demonstrate the variational principle for MI 
statistics. The argument proceeds by varying (see, for 
example, Arfken (1985) for the variational calculus) the 
mutual information of (9) with respect to the statistic 
function (̂ (̂0 of dimension k^, i.e. (̂ (̂0 = ((^ ,̂i(-). •••, 
CAV('))- W ^ ^^W proceed to substitute ^j¿x) = Q¿x) -f-
EY¡(x) in (9), and take the derivative with respecto to s. 

Assuming appropriate regularity conditions, we have 

5, P{r, q) log ( ^^['J\ I + 
P{r)P{q) 

+ P{r)d,P{q\r) dqdr • (10) 

5, P{r, q) log I ' ^ 1 dq dr, (11) 
'• ^ ^ ' P{r)P{q) ' 

where simplification from (10) to (11) occurs because 
probability is conserved. Utilizing (7) we find 

Pir, q) = ô(r-è,(x))P(q\x)P(x)dx (12) 

Taking the derivative of (12) with respecto to s yields 

d,Pir, 9) = X ô'(rj - ^,jix))^j{x) X 

(13) 

Note that because f¡ is arbitrary, we may choose it to sim­
plify as needed. 

We proceed by considering k,. choices of Y¡. Label the 
choices by m G {1,. . . , /:,.}, and on choice m take the com­
ponents of Y] as follows: 

f¡¿x) = e{x-x^X{Í = m) (14) 

n¿x) = 0, ( € / m) (15) 

where x^ is any data point we may choose. The condition 
that the mutual information is extremal then becomes the 
statement that for all x^ and / G {1, ..., /:,.}. 

a/í(^«(0,^e(-))U=o = O (16) 

% , - ^ « , , ( ^ c ) ) n % - í L ( ^ c ) ) x 

X P{q\x^ log ( Z Í ! l A ) dq dr (17) 

Integrating (17) by parts with respecto to r (dropping 
both the «0» superscript and subscript «c», since there is 
no distinction to be made at this point) yields the condi­
tion that for all x 

^<''^'^--(ai)) dq = 0 (18) 
r=çM 

where derivatives with respect to vectors are gradients 
(vectors of derivatives). The form from which the the­
orems of the next section are proven, is found by rewrit­
ing (18) as 

P(q\x) 

P(q\r) 
d,P(q\r)l.,^,dq = 0 (19) 

4. MI STATISTICS AND SUFFICIENCY 

Now we prove several important properties concern­
ing MI statistics. The first property is the intuitively ob­
vious property that data is a MI statistic. The second 
property is that any sufficient statistic is a MI statistic. 
Finally, we note that MI statistics are not necessarily suf­
ficient statistics. 

Theorem 1. Any 1-1 function of data is a MI statistic 
of the quantity of interest. 

Proof: Let (̂ (̂0 be the identity so that ^f^(x) = x in (19). 
The fraction in that equation is then 1, and the derivative 
integrates to zero because probability is conserved. Hav­
ing ^f^(x) any invertible function changes nothing since it 
determines x. 

Theorem 2. Any sufficient statistic for the quantity 
of interest is a MI statistic of the quantity of interest. 

Proof: Note that using the definition of í,¡¿x) being a 
sufficient statistic the ratio in (19) is one - the posterior 
distribution of the quantity of interest given the data x is 
the same as the posterior distribution of the quantity of 
interest given the sufficient statistic ¿.¡¿x). The derivative 
then integrates to zero because probability is conserved. 
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(Note that in both Theorems 1 and 2 the Hessian con­
dition of the MI inference variational principles is easily 
established since then the extremum of the mutual infor­
mation is easily seen to be a local maximum. Otherwise, 
one must check the convexity.) 

Although it is true that any sufficient statistic is a MI 
statistic, the converse is false. In problems where a suffi­
ciency reduction does not exist, there will exist lower di­
mensional MI statistics. Thus, the class of maximally in­
formative statistics contains the sufficient statistics, but 
is broader. MI statistics need not provide all of the avail­
able information about the underlying quantity of inter­
est. For example, as we show in Section 7, such a one-
dimensional MI statistic can be obtained for the Cauchy 
distribution where a sufficiency reduction is unavailable. 
In a sense, MI statistics seamlessly address relevance to 
the consumer of the information because it is about some 
relevant quantity of interest that MI statistics are maxi­
mally informative. 

5. MI STATISTICS AND THE KL DISTANCE 

Equation (19) may be rewritten as 

d,. P{q\x)\og (T;-—-T ]dq p, , . . - . u =0 (20) 

which, along with the curvature condition, states that 

Theorem 3. The Kullback-Leibler distance between 
the posterior distribution conditioned on the statistic and 
the posterior distribution conditioned on the data is mini­
mized by a MI statistic. 

Again, note that MI statistics for the quantity of inter­
est are generally not sufficient statistics for the quantity 
of interest. Indeed, rather than making the Kullback-
Leibler distance zero, as in the case of sufficient statis­
tics, MI statistics are found at local minima of the Kull-
back-Liebler distance-viewed as a functional of the stat­
istic. This demonstrates how the approach of this paper 
generalizes that performed by Lindley (1961). 

P{r\q) P(r I q, x)P{x I q) dx 

P(r\x)P(x\q)dx 

^ ^ - ( A - , - ^ ) 2 / 2 ( 7 2 

2n(T 
(21) 

The ansatz ^j^(x) = Y, r̂̂ / is useful (and not restrictive 
i=\ 

since the 1̂ ^ are implicitly only restricted to be functions 
of x), and making the changes of variables y¡ = lpc¿ fol­
lowed by u¿ = A¿q in (21) yields a form which may im­
mediately be recognized as the convolution of Â  Gaus-
sians with means p¿ = À.q and standard deviations a¿ = Xp 
respectively. 

P{r\q)^ à\r-YX,q-Y.^AX\ 
/ = i / / = i 

Â  -w2/2(,j;c.)2 

l%{lp) 
-du. (22) 

This has the solution 

P(r |^) = 0 ( O , c 7 O ( r - X ^ / ^ (23) 

where o' - o YJ ^^ ^^^ ^ ^̂  ^^^ Gaussian density 

0(A¿, 0") (z) = -iz-uf/la' 

2na 

Finally, inserting this result into Bayes' theorem with 
uniform prior to find the posterior distribution of ^ condi­
tioned on r yields 

F(^ | r ) = 50(O, a') r - I A,̂  (24) 

where 5 = ^ A-. 

The calculation for P(q | x) is similar with the result is 
that 

6. MI STATISTICS FOR THE GAUSSIAN 
DISTRIBUTION 

This section details the inference of the one-dimen­
sional MI statistic for the one-dimensional Gaussian dis­
tribution. We take the position parameter of the Gaussian 
to be q, and the goal is to find ^¡^(x) so that (19) holds. 
From there note that the calculation of P(q | r) and P{q | x) 
is necessary, and by Bayes' theorem therefore it is 
necessary to find P(r \ q), which may be written as 

P{q\x) = 0 (x , —p= l(^) (25) 

1 ^ 
where -̂  = — X -̂ /- From the forms of (24) and (25) it is 

clear that not only will the integrand of (20) (that equa­
tion equivalent to (19)) be minimized, but that it will be 
zero, if all A- = 1/Â  is chosen. This of course is the ex­
pected result since ^j^ = Efl,, x^lN is a sufficient statistic 
for q when a is known. 
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Alternatively, to satisfy that the calculation indicated 
in (19) is successful at finding the expected result, con­
tinue by taking (24) and (25) and substituting them into 
(19) to find after some simplification the equation which 
must be satisfied by (̂ ^ 

0 = -^z / i ; 
~{x-q)^l2{c>l{J,if dq . (26) 

r=çJx) 

This has the unique solution ¿.¡¿x) = x when the arbitrary 
scale of the inferred statistic is fixed by setting 1 = Sf̂ , 
/1-. To conclude this section, the procedure culminating in 
(20) or (19) of finding MI statistics has been shown to 
produce the expected known result for the Gaussian case. 
The next section approaches the Cauchy distribution case 
for lower than data dimension statistics, where there is no 
sufficient statistic available and the result is novel. 

7. MI STATISTICS FOR THE CAUCHY 
DISTRIBUTION 

This section outlines the inference of the one-dimen­
sional MI statistic for the one dimensional Cauchy dis­
tribution. The detailed steps may be taken similarly to 
those of the last section but taking the Cauchy distribu­
tion instead of the Gaussian distribution. Take the posi­
tion parameter of the Cauchy to be q, and the the goal is 
to find ^j^{x) so that (19) holds. As in the last section it is 
necessary to determine both P(q | r) and P{q\x). Assum­
ing the same ansatz that ^^(x) = S. Ape-, the necessary 
convolutions may be carried out with the use of the 
Fourier convolution theorem, with the results that 

127) 

(28) 

and 

P(r 
r\^t 

P(q 

Oír, 1 

q)--

k) = 

^\ rv 

' n{S' 

n{S^ 

n 

S 
+ (r-

S 
+ (r-

-qSf)' 

-qSf)' 

1 
(29) 

where S = Ef̂ , X-. Substituting (27), (28), and (29) into 
(19) yields the equation that must be solved for ^ (̂x) 

0 = n 1 p 
l\n{\+{x,-qf))\ + 

r/S-q 
(rlS-q)-

dq .(30) 
'•=C/?(A") 

Rewriting this equation in more suggestive terms, while 
taking the scale 5=1 , gives the result as an implicit equa­
tion for (̂ /̂ (x). 

U^) = qP{q I (x, ^f^(x))) dq. (31) 

The form of the result (31 ) says that ^f^(x) is the posterior 
mean of q given the data and itself. This form also sug­

gests that ^f^(x) could be the posterior mean of q given the 
data. However, the surprise is that this is not the case, as 
a check using the posterior moment forms derived in [6] 
immediately shows. Further, assuming a value for ^¡^(x) 
on the right-hand side of (31) allows that to be computed 
in closed form using the results of Wolf (1998). This fi­
nally yields that the left-hand side is a rational function 
of the right-band side, a fixed point equation which may 
be solved by standard iterative methods. Other checks 
immediately show that the solution is not the maximum 
likelihood solution, nor the median. 

To conclude this section, the one-dimensional MI stat­
istic for the Cauchy distribution position parameter has 
been found as the posterior mean of the position par­
ameter of the Cauchy distribution given the data and the 
MI statistic, and this statistic is different from the Bayes' 
estimator which is the posterior mean given the data 
only. 

8. APPROXIMATE MI INFERERNCE 
AND BAYES ESTIMATORS 

In many cases of interest, if not in all cases of rel­
evance with high dimensional data, the convolutions that 
appear similarly to those in (27) etc., will be quite im­
possible to do in closed form, and probably in a practical 
sense will even be numerically intractable. However, 
there is an approach that may be taken which does some 
harm to a fully rigorous Bayesian approach, but which 
may be necessary. The idea that is applicable in these 
cases of difficulty is to directly take P(q \ r) in (20) to be 
Gaussian with parameters r = ^¡¿x) = {u(x), a(x)). The 
approximate MI approach just outlined is applied below 
to finding the approximate MI statistics {ii(x), (J(X)). The 
approximate MI approach is then contrasted with an al­
ternative approach using the KL distance inverted from 
that of (20), one that resembles Maximum Entropy infer­
ence. The results of this section hold for any likelihood, 
as will become apparent. 

Take an aribrary one-dimensional parameterized like­
lihood parameterized by q (i.e. with q the parameter of 
interest). Parameterize the inferred distribution P(q \ r) of 
(20) as 

P{q\r=(i^,(j)) = ̂ (in,a)(q) (32) 

Equations (20) and (32) imply that the MI statistic is 

fi = 

u^ = 

qP(q 1 x) dq 

(q - p)^P{q 1 x) dq (33) 

http://Rev.RAcad.Cienc.ExactFis.Nat
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These quantities are the Bayes' estimators for the mean 
and standard deviation of the distribution. 

If, on the other hand, the inverted from of the KL dis­
tance is taken, as it often is in many of the cases we have 
observed, the statistic }i is 

li = 
_ J q(¡){ii, G){q) log {P{q\x))dq 

¡(l){^,G){q) log {P{q\x))dq 
(34) 

which, along with another highly non-linear equation for 
(7, is a highly non-Hnear system to be solved for r = (ju, a). 

Note that when the likelihood P{x \ q) is Gaussian that 
these two approximate approaches produce the same 
statistic, the posterior mean and standard deviation, but 
for the Cauchy likelihood, for example, this is not the 
case with the complex nonlinear system needing to be 
solved. In contrast the approximate MI inferrence tech­
nique always produces the posterior Bayes' moment es­
timators. 

The difference between the forms of the approximate 
MI statistics and the inverted KL statistics appearing in 
(34) and (35) respectively makes it clear that one needs a 
good first-principles approach to the KL distance. 

9. CONCLUSION 

We have formulated the mutual information based 
variational principle for statistical inference, a fully 
Bayesian approach to inference, defined MI statistics for 
a quantity of interest, shown how the principle may be 
reformulated as a minimal KL distance principle based 

on posterior distributions, and demonstrated how infer­
ence proceeds when sufficient statistics are absent using 
the Cauchy distribution. Finally, an approximate ap­
proach to the inference of MI statistics was discussed, 
and the relationship of the resulting statistics to Bayes' 
estimators and the Maximum Entropy version of the 
same approximation was noted. 
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