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ABSTRACT 

Bassist is a simulation tool for Bayesian analysis. 
Given a high-level specification of a full probability 
model, Bassist generates a simulator for sampling from 
the joint posterior distribution of the model parameters 
and data. The Bassist simulator uses Markov chain 
Monte Carlo (MCMC) techniques, especially the Me­
tropolis-Hastings-Green method. 

General purpose MCMC simulation software has been 
almost non-existent, except for the BUGS system. Simu­
lator programs have been written specifically for each 
model, either from scratch or by reusing previous code. 
In either case, the task is tedious and error-prone. Bassist 
aims at helping modelers at implementing and analyzing 
their models. 

A difference between BUGS and Bassist is that Bassist 
is developed especially for the analysis of nonparametric 
models: the system supports the use of piecewise con­
stant functions with a varying number of pieces. More­
over, Bassist supports the modeling of event sequences 
and intensity models, especially with piecewise constant 
functions. This makes the tool quite useful for modeling 
event data ubiquitous in epidemiology, fault manage­
ment, and quality control. 

The model specification language of Bassist is declar­
ative, the design of the language emphasizes clarity in 
the model description by separating between the model 
specification, the simulation details, and the particulars 
of the data. Within the Bassist system, the model specifi­
cations are first compiled into a C++ program, which 
then reads the data and performs the actual simulation. 

Bassist has been used in paleoecological reconstruc­
tion tasks, in epidemiology, and in the modeling of biodi­
versity. A limited, public version of Bassist is available 
at www. mi. helsinki.fi les I bassist. 

RESUMEN 

Especificación y simulación de modelos 
complejos utilizando Bassist 

Bassist es una herramienta de simulación en análisis 
bayesiano. Dado un modelo probabilístico complejo. 
Bassist genera un simulador para obtener muestras de la 
distribución conjunta de los parámetros de modelos y de 
los datos. El simulador Bassist utiliza técnicas de ca­
denas markovianas de Monte Cario (MCMC), especial­
mente las asociadas al método de Metropolis-Hastings. 

El único programa general disponible para simulación 
por MCMC es BUGS. Los programas de simulación 
suelen escribirse específicamente para cada modelo, un 
trabajo tedioso en la que es fácil cometer errores. Bassist 
se propone facilitar la tarea del sieño y análisis de 
modelos probabilísticos complejos. Una diferencia entre 
BUGS y Bassist es que Bassist está específicamente de­
sarrollado para el análisis de modelos no paramétricos: el 
sistema soporta el uso de funciones constantes a trozos 
con un número variable de elementos, lo que le hace es­
pecialmente apropiado en epidemiología y en control de 
calidad. Bassist ha sido utilizado en paleontología, epi­
demiología y modelización de la biodiversidad. Una ver­
sión limitada de acceso público de Bassist es accesible en 
la red en www.rni.helsinki.fi/es/bassist. 

1. INTRODUCTION 

Bassist is a system for the analysis of Bayesian statisti­
cal models. It compiles a high-level specification of a full 
probability model to an executable simulator: given data, 
the simulator generates an approximate sample from the 
posterior distribution of the model parameters. 

Models are specified using the Bassist language. At 
the basic level, a model consists of a number of variables 
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such as model and hyper parameters, covariates, and the 
data. The joint density of a model is specified as a prod­
uct of densities of all variables in the model. These speci­
fied densities may be conditional on other variables. 

More formally, a model is defined by a directed acyc­
lic dependency graph where the set of nodes is the set V 
of variables. The model specification is completed by de­
fining the conditional probability Pr{y \pred(v)) for all v 
G y, where pred(v) is the set of immediate predecessors 
of variable v. The joint probability distribution of the 
model is then n^^^ Pr{v\pred(v)). 

In Bayesian analysis some variables are given as the 
observed data, and the task is to compute the (posterior) 
distribution of the remaining variables. Bassist applies 
MCMC, in particular the Metropolis-Hastings-Green 
methods, for solving this task: the MCMC simulator gen­
erated by Bassist outputs a sample that approximates the 
desired posterior distribution. 

Bassist is domain independent, and it aims at being a 
general purpose tool for Bayesian analysis. Thanks to the 
flexibility of the Metropolis-Hastings method, models 
with arbitrary probability distributions can be simulated, 
at least in principle, as long as the user is able to specify 
the density functions as C++ functions, for instance. 

This paper is organized as follows. We first describe 
the goals and design of the Bassist system in Section 2 
and the main features of the system architecture in Sec­
tion 3. In Section 4 we give several examples that illus­
trate the use of Bassist in practical modeling tasks. 

2. BASSIST GOALS AND DESIGN 

We aim at a system and a modeling language that (1) 
is easy and natural to use; (2) contains a useful set of 
basic features; (3) does not require complex program­
ming for features not directly supported; (4) allows easy 
modification of models, and (5) runs in a reasonable 
time. In contrast to BUGS (Spiegelhalter et al, 1996), a 
special emphasis is given at nonparametric and intensity 
models. Using Bassist requires, of course, a good under­
standing of statistical modeling and MCMC simulation. 

More direct goals for Bassist are set by its actual appli­
cations in joint research with modelers. Preliminary ver­
sions of Bassist have been used in modeling tasks, e.g., in 
epidemiology, paleoecology, and biodiversity. 

Bassist has been designed to support structured and 
clear model specifications. The Bassist language is dec­
larative, and it separates the model specification from the 
simulation details and from the particulars of the data. In 
the following, we point out some important design deci­
sions behind Bassist. 

Structured models. Bassist supports user-defined 
records as a means of structuring data. A number of simi­
lar objects, e.g., patients in an epidemiological model, 
are handled by defining a record type for them and ex­
pressing patients as instances of that record type. 

References between record instances allow expressing 
interdependencies between objects. For instance, in epi­
demiology, a child record might refer to a family record 
for a frailty parameter common to the whole family. 

Distributions. In addition to standard library dis­
tributions, the user can specify arbitrary distributions for 
variables simply by defining the density function of the 
distribution in C+-h. 

The user must also specify the proposal method for the 
Metropolis-Hastings method, and the user remains re­
sponsible for the convergence. 

Piecewise constant functions. Bassist contains special 
constructs for defining nonparametric piecewise constant 
functions. Distributions are given for the number of 
pieces, the jump points, and the levels of the pieces in the 
model specification. All these parameters are simulated 
automatically according to the specified distributions. 

Event sequences and intensity models. There are 
special primitives also for the specification and use of 
event sequences in models. Unobserved events can also 
be modeled within Bassist. 

Intensity models can be defined: the intensity of an 
event sequence can be defined as piecewise constant 
function. Likelihoods are automatically computed for 
such intensities. 

Separation of model, data, and simulation. The 
model specification only fixes the model, i.e., the vari­
ables and their dependencies. The modeling language 
makes no distinction between parameters (simulated 
variables) and data (variables with given, fixed values). 
The data files are specified at run-time, and they first 
define which variables are data and which are par­
ameters. The number of record instances may also de­
pend on the actual data given to the simulator. This flex­
ible organization is especially useful when there is no 
clear data-parameter separation, e.g., when some data is 
missing. 

The user can, and sometimes must, specify the propo­
sal distributions for the parameters of the model. The 
user can request any library distribution to be used as the 
proposal distribution, including the random walk case. 

Issues concerning a single simulation run are given as 
parameters to the simulator program at run time. These 
parameters include the data files, the number of sweeps 
and burn-in sweeps, and the sampling frequency. 
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3. BASSIST ARCHITECTURE 

Bassist itself is a compiler: given a model specifica­
tion, it produces an executable simulator for the given 
model. In more detail, the Bassist compiler generates a 
number of model specific C++ files, compiles them with 
a standard C++ compiler and links the results with the 
generic, model-independent Bassist files to an execut­
able simulation program. 

Bassist thus consists of a compiler for the modeling 
language and of libraries for the generic parts of simula­
tors. These libraries obviously contain classes for the li­
brary distributions, but also a large fraction of simulation 
structures and algorithms and some simple data manipu­
lation tools. 

The system is implemented with standard C++, yace, 
and lex tools, and simulation programs produced by the 
compiler are in standard C++. 

4. EXAMPLES 

We now give three examples to illustrate the use of 
Bassist in practical modeling tasks. The first example is a 
simple hierarchical model. We then continue with two 
more subtle cases with nonparametric intensity functions 
and hierarchical frailty structures. 

4.1. Example: pumps 

The following example was presented by George et al. 
(1993) and was also used by the BUGS group (Spiegel-
halter et al., 1996) as a simple example of a conjugate 
gamma-Poisson hierarchical model. The example con­
cerns with the operation of 10 power plant pumps. The 
lengths of the operation times (i-) and the corresponding 
numbers of failures {x^ for each pump are given in the 
data. The failure rate 0^ for pump / is given a gamma prior 
distribution. Prior distributions for the hyperparameters a 
and (i are Exp{\) and Gamma(OA,l), respectively. 

Following is a Bassist definition of the model. 

var alpha 
var beta -

- exp(1); 
gamma(0.1,1); 

record pump { 
var theta ~ gamma(alpha,beta); 
var t ; 
var lambda = theta*t; 
var X ~ poisson(lambda); 

}; 

The variables in the model are indicated by the re­
served word var. The record pump ties together all the 
parameters associated only with a single pump. These 
parameters are defined inside the record. The hyper­

parameters alpha and beta, which are common to all 
pumps, are defined separately but can be referred to any­
where in the model description. The variable lambda is 
not a random variable but is determined functionally 
from the values of theta and t. 

4.2. Example: rats 

The next animal carcinogenesis data was described by 
Mantel and Ciminera (1979) and it was also used by 
Clayton (1991). Following Clayton in broad outline, we 
model the problem using the Bassist description language. 

In the experiment of Mantel and Ciminera, 50 litters of 
rats were followed. One rat from each litter was treated 
with carcinogen, while two others were chosen for con­
trols. Clayton illustrates the Bayesian frailty modeling 
with this data using frailty factors shared by the members 
of the same litter. 

The model is of the form: 

A,(0 = Ao(0(^zexp(i5^z,), 

where the frailty factors ^¡ were assumed to be i.i.d. 
gamma variables with mean 1 and variance y, i.e., ^i ~ 
Gamma(l/y, l/y). The hyperparameter y was given a 
prior distribution and was estimated from the data. The 
parameter ¡3 describes the influence of the treatment and 
Zi is the indicator of belonging to the treatment group. 

A piece-wise constant function is used to represent the 
baseline hazard ÀQ. In contrast to Clayton's model, in our 
model the change points of the function are not deter­
mined in advance. We also let the number of pieces in the 
model be one of the parameters, using the ideas of vari­
able dimension MCMC (Green 1995). The intensity 
values in each piece are assumed to be i.i.d. The model 
description is as follows. 

var g ~ gamma(0.00001,0.00001) ; 
var beta ~ unif (-10,10); 

record litter { 
var frailty 

}; 
gamma(1/g,1/g ) 

record rat { 
ref litter; 
var time - Poisson process( 

lambda(time,carcinogen, 
litter.frailty)); 

var carcinogen; 

function lambda(time,carcinogen,frailty) { 
return lambdaO(time) * frailty 
* exp(beta*carcinogen); 

}; 

var pwcf lambdaO(time) { 
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pieces ~ geom(0.5); 
levels ~ unif(0.005,0.1); 
jump_points ~ unif(0,104); 

}; 

The variables in this example are either global par­
ameters (beta and hyperparameter g), parameters asso­
ciated with a rat (time, carcinogen) or parameters asso­
ciated with a litter (frailty). 

Consequently, records for rats and litters need to be 
defined. It is also necessary to know which litter each rat 
belongs to; references (indicated by the keyword ref in 
record rat) are used to express connections between a rat 
and the corresponding litter. 

The specification of the Poisson intensity lambda for 
the death time of a rat is given as a separate function 
definition. As a function argument, the value of the 
frailty factor of the corresponding litter is needed. 

Here the function lambda contains a single statement 
to return the value of lambda determined by the com-
mom time-dependent baseline hazard lambdaO, the 
frailty factor of the litter of the rat, the covariate value 
carcinogen and the variable beta expressing the influ­
ence of the carcinogen treatment. 

The piece-wise constant function (pwcf) lambdaO is 
defined by giving the name and arguments of the func­
tion and specifying the distributions for the components 
of the function: the number of pieces, function values in 
each piece (levels) and the jump points. 

4.3. Example: Ear infections in children 

As the final example, we take a brief look at a relative­
ly complex modeling task, occurrences of middle ear in­
fections (acute otitis media). For more details of the 
problem background, data, modeling, computation and 
results, see Eerola et al. 1998. 

In this study, 329 children were followed from the age 
of 2 to 24 months in Tampere region, Finland. In addition 
to the occurrences of ear infection episodes, changes in 
several risk factors were recorded during the follow-up. 
A lag time of 30 days was used to distinguish between 
episodes. 

For simplicity, we only consider here the effect of one 
risk factor, daycare attendance. We distinguish between 
the risk factor for the first and recurrent episodes follow­
ing the parameterisation in Eerola (1989). 

The intensity for individual / is of the form: 

A,(o = m íi y lit) yxo m ym. 

where AQ is the age-dependent baseline hazard, ^¡ is an 
individual frailty factor and Y¿(t) an indicator function of 
being at risk at time t. The function a-(0 separates be­
tween the first and recurrent infections: before the first 
infection it is defined to be 1, after that it is a constant to 
be estimated. 

The time-dependent functions y¡(t) and yf(t) indicate 
the influence of daycare attendance. Their values are de­
fined to be 1 before daycare attendance, otherwise they 
are parameters to be estimated. The values <1 correspond 
to protective effect and the values >1 to increased risk. 
Before the first infection the influence of daycare attend­
ance only consist of the value of y-(t). After the first in­
fection the additional coefficient yf(t) is included and 
thus the total effect is y¡(t)/yf(t). We ignore the seasonal 
effect in this example. 

We now describe the model in the Bassist language; 
the variable cdaycare in the following description corre­
sponds to y. above and cdaycare_star similarly to yf. 

var cdaycare ~ unif(0.0001,10); 
var cdaycare_star ~ unif(0.0001,10); 
var alpha ~ unif(0.001,10); 
var eta ~ unif(0.0001,100); 

record child { 
var frailty ~ gamma(eta,eta); 
event sequence of infection ~ Poisson 

process(lambda( 
infection.daycare,frailty)); 

}; 

event infection { 
ref child; 

var daycare; 
}; 

function lambda(time, daycare, frailty) { 
float dc_multiplier = 1; 
float dc_star_multiplier = 1; 
if (daycare = = 1 ) { 

dc_multiplier = cdaycare; 
dc_star_multiplier = cdaycare_star; 

}; 
if (time < first(infections)) 

return frailty * dc_multiplier 
* lambdaO(time) 

else if (time < prev(infections)+1) 
return 0 ; 

else 
return frailty * alpha 
* dc_multiplier 
* dc_star_multiplier 
* lambdaO(time); 

}; 

var pwcf lambdaO(time) { 
pieces - poisson(5); 
levels ~ unif(0.00001,0.15); 
jump_points - unif(1.5,24.89); 

}; 
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Figure 1. Posterior baseline intensity curves XQ{() (mean and 95 % 
credible intervals). 

The essential additional feature in this example com­
pared with the previous one is the introduction of event 
sequences. A sequence of infections is associated with 
each child and Poisson intensity for the sequence is spe­
cified. The event type infection is defined in a separate 
record. 

As in the previous example the Poisson intensity 
lambda is defined in a separate function. The argument 
daycare is tested to set the multipliers corresponding to 
daycare attendance to the right values. The intensity 
value at a given time instant also depends on the instant 
of the first infection, which is tested in the next if-state-
ment. The lag time of 30 days is taken account of in the 
last if-statement by testing the distance from the previous 
infection. The functions first and prev used in the tests 
are special library functions of the Bassist system return­
ing the first or previous event of the given sequence. 

Finally, we show some results from the simulation of 
the posterior distribution of the described model and 

data. Figure 1 shows the posterior expectation and the 
95 % credible intervals of the piecewise constant base­
line function lambdaO. The risk seems to increase 
sharply at the age of five months, maintain relatively 
stable until the age of 12 months, and decrease again 
after that. 

The posterior distributions of the parameters y¡ and yf 
are shown in Figure 2. Daycare attendance significantly 
increases the risk for the children who had no infections 
before the daycare attendance. After the first infection 
the influence seems to be less clear, indicated by the 
lower values of the product y¡y^. 

5. CONCLUSION 

We described Bassist, a simulation tool for Bayesian 
analysis. Bassist generates MCMC simulators from high 
level model definitions. Bassist is currently under devel­
opment. Preliminary versions have been used, e.g., in 
epidemiological modeling tasks where event sequences 
and intensity functions are material. Experiences have 
been encouraging: availability of an automatic simulator 
generator can cut down the programming effort signifi­
cantly. 

A publicly available version of Bassist can be found in 
www.rni.helsinki.fi/cs/bassist. The public version does 
not yet offer support for nonparametric intensity func­
tions and the modeling of event sequences. 
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Figure 2. Posterior distributions of y¡ (right) and the product y¡yf 
(left). Distributions are not in the same scale. 
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