
Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp) 
Vol. 93, N." 3, pp 357-366, 1999 
Monográfico: Métodos Bayesicmos en las Ciencias 

HETEROGENEITY AND MODEL UNCERTAINTY IN BAYESIAN 
REGRESSION MODELS 

(Cluster analysis/influential data/masking/mixture model/outliers/preditive distributions/robust estimation) 

ANA JUSTEL* AND DANIEL PEÑA** 

* Departamento de Matemáticas. Universidad Autónoma de Madrid. Spain ana.justel@uam. es 
** Departamento de Estadística y Econometría. Universidad Carlos III de Madrid, Spain dpena(a)est-econ.vc3m.es 

ABSTRACT 

Data heterogeneity appears when the sample comes 
from at least two different populations. We analyze three 
types of situations. In the first and simplest case the ma­
jority of the data come from a central model and a few 
isolated observations come from a contaminating dis­
tribution. The data from the contaminating distribution 
are called outliers and they have been studied in depth in 
the statistical literature. In the second case we still have a 
central model but the heterogeneous data may appear in 
clusters of outliers which mask each other. This is the 
multiple outlier problem which is much more difficult to 
handle and it has been analyzed and understood in the 
last few years. The few Bayesian contributions to this 
problem are presented. In the third case we do not have a 
central model but instead different groups of data have 
been generated by different models. For multivariate nor­
mal this problem has been analyzed by mixture models 
under the name of cluster analysis, but a challenging area 
of research is to develop a general methodology for ap­
plying this multiple model approach to other statistical 
problems. Heterogeneity implies in general an increase 
in the uncertainty of predictions, and we present in this 
paper a procedure to measure this effect. 

RESUMEN 

Heterogeneidad e incertidumbre sobre el modelo en 
análisis Bayesianos de regresión 

La heterogeneidad en los datos aparece cuando la 
muestra procede de más de una población. Analizamos 
tres tipos de situaciones. En el primer caso, el más sen­
cillo, la mayor parte de los datos proceden de un modelo 
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central, y unas pocas observaciones proceden de una dis­
tribución contaminante; los datos procedentes de la dis­
tribución contaminante reciben el nombre de obser­
vaciones atípicas y su estudio ha recibido mucha 
atención en la literatura estadística. En el segundo caso 
todavía existe un modelo central, pero los datos hetero­
géneos pueden aparecer en conglomerados de obser­
vaciones atípicas que se enmascaran mutuamente; se 
trata del problema de observaciones atípicas múltiples, 
mucho más difícil de tratar, que ha sido objeto de aten­
ción en los últimos años. En el tercer caso, no existe un 
modelo central sino distintos grupos de datos generados 
por distintos modelos; para el caso normal multivariante, 
el problema ha sido analizado con modelos de mixtura 
bajo el nombre de análisis de conglomerados, pero su 
extensión a otros modelos es una área de investigación 
abierta. En general, la heterogeneidad en los datos im­
plica un aumento de la incertidumbre de las predic­
ciones; en este trabajo proponemos un procedimiento 
para medir este efecto. 

1. INTRODUCTION 

Since the beginning of data analysis it was found that 
real data are often contaminated by heterogeneous obser­
vations or outliers. Outliers have been found even in a 
small set of data coming from controlled experiments 
(see for instance Stigler, 1973, 1986). It is well known 
that the presence of a few extreme outliers can distort 
completely the result of the statistical analysis and make 
the Bayesian inference very inefficient. In spite of the 
seminal paper by Box and Tiao (1968), the study of out­
liers has not attracted many interest in the Bayesian lit­
erature. For instance in the 1977 Current index of statis­
tics (CIS) out of 1151 references leading with outliers 
only 67 (5.8 %) either use Bayesian methods or refer to 
them. 
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In the last ten years in which large data sets are becom­
ing more common due to the increasing computer power 
available, it has been found that outliers appear often in 
clusters, and then the methods derived to deal with a few 
isolated outliers are unable to detect them. This problem 
is called masking and again it has been mainley studied 
from the frequentist approach. For instance, going again 
to the 1997 CIS, out of the 22 papers leading with mask­
ing only two use the Bayesian approach. 

Today many data sets are huge and heterogeneous: the 
computer has made possible to take measurements of 
many variables with almost no cost at short intervals in 
an automatic way. For instance, we find data sets of thou­
sands of variables and millions of observations in astron­
omy (see Fayyad et al., 1996 for a description of some of 
these huge data sets), quality control (in many chemical 
processes data are recorded every second or ten seconds 
of many production variables), finance (the stock trans­
actions are collected at each pulse), business (all the pur­
chases made in some period of time by millions of credit 
car users), and so on. These huge data sets create new 
problems for statistical analysis, because none of the 
usual textbook hypothesis are expected to be true. We 
expect clustering of outliers and masking, nonstationar-
ity, dependency among observations, selection bias, er­
rors in variables, as well as other measurement problems 
(see Hand, 1998 for and excellent description of these 
problems). A consequence of this is that different models 
are supposed to hold in different regions of the parameter 
space and also at each point we have several different 
models which can generate the data. The Bayesian para­
digm is a flexible tool in order to model this type of situ­
ations although it may require some adjustment in order 
to represent some of the complicated and messy data set 
which we will be dealing with in the next future. 

An important consequence of heterogeneity is model 
uncertainty. If the observations in the sample can be gen­
erated by different models, this will increase the uncer­
tainty of the forecast of a future observation. To be speci­
fic, suppose that we assume that future data can be 
generated by a set of models Mj,..., M,,̂  with probabilities 
w,,..., w,,̂ . Then the forecast of a new observation will be 
given by 

p(y) = T^iP(y\Mi) 

and the variability in the mixture distribution p( y) will be 
in general larger than the variability of a central single 
distribution p( y \ M), which is usually considered in stan­
dard statistical applications. 

In this work we review the Bayesian contributions to 
deal with heterogeneity in the linear regression model. 
Bernardo and Smith (1994) and O'Hagan (1994) are gen­
eral references and good introductions to this problem. 
The paper is organized as follows. In section 2 we review 
briefly the methods developed for dealing with isolated 

outliers in linear models; in section 3 we discuss masking 
in regression and in section 4 we introduce the general 
heterogeneity problem and its relationship to Bayesian 
clustering. Finally, in section 5 we comment on the impli­
cation of heterogeneity in increasing model uncertainty for 
forecasting, and we suggest a statistic to measure this effect. 

SINGLE OUTLIERS AND INFLUENTIAL 
DATA 

We consider the usual regression model 

y¡ = x¡P -\- u¡ / = 1, ..., n, (2.1) 

where J = (y,,..., j„)' is a vector of responses, X = (x,,..., 
xj' is a full rank nxp matrix of independent variables, j5 
is a /7-vector of unknown parameters and w is a vector of 
non observable random perturbations. 

The Bayesian methods for outlier and influential data 
identification can be classified into two groups: i) diag­
nostic methods; and ii) robust methods. These two ap­
proaches differ in the way they assume that the data have 
been generated. The diagnostic methods consider a cen­
tral model and try to find observations which have a 
small probability of being generated by it. They do not 
establish the outlier generation mechanism. The robust 
methods incorporate an alternative model which can gen­
erate aberrant observations; for instance, the usual hy­
pothesis of normality assumed in regression is changed 
to the assumption of a heavy tail error distribution. 

2.1. Diagnostic metiiods 

The diagnostic methods assume a central model for the 
data generation and the outliers are considered as obser­
vations with small probability of being generated by this 
central model. Therefore they are identified by looking at 
the predictive densities p(y/|j(/)), where j(,) means the 
data point y¡ is deleted from the sample and analyzed as a 
new observation. lfy¿ is a single outlier, the probability to 
predict y¡ given the rest of the sample is very low. This 
procedure for outlier detection is known as the ordinate 
of the conditional predictive density method, and was in­
troduced by Geisser (1980). 

The conditional predictive density can be seen as the 
ratio of two predictive densities. 

P(J/|J(/)) 
P(y) 

/XJ(/)) ' 

and involves the predictive distribution p(y) that was 
suggested by Box (1980) as a general diagnostic tool for 
any statistical model. This idea has been also explored by 
Pettit and Smith (1985) and Pettit (1990). 
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The conditional predictive ordinate is connected with 
the classical studentized residual test for outlier detec­
tion. With non informative priors, Pettit (1990) shows 
that 

p{}-\y,,)^s-\{\-h,rH\ + 

where i, is the studentized residual 

• p - \ 

2 

(2,2) 

t: = 

P = (X'Xy^X'y is the least squares estimate, sl^ = E (yj -
x'jPç^^^l{n -/? - 1) is the unbiased residual variance esti­
mate when y¡ is deleted, and ft, is the leverage of the ob­
servation, that is, the / - th diagonal element of the 
matrix H = X(X'X)-'X\ given by h. = x;(X'Xy'x.. Then 
data with large studentized residual will have a small 
conditional predictive ordinate (2.2) and will be detected 
as outliers. An advantage of the conditional predictive 
ordinate method is that observations with high leverage 
(h¡ is bounded by 1) will have small conditional predic­
tive ordinate (2.2), independently that they are outliers or 
not. This is deduced from the studentized residual ex­
pression 

( 1 - A , ) ' % , 

where .̂(.̂  = y. - x¡^^¡^ is the least square residual after 
deleting y¡ in the regression estimation. When ft- goes to 
1, the studentized residual goes to zero, independently 
that the / - th data is an outlier (̂ -(.̂  is large) or a good 
data (e-(-) is small). In this case, the / - th data point is 
very far from the rest in the independent variables space, 
and it is called an influential data. Note that the Bayesian 
measure is able to detect both outliers and influential 
points whereas the studentized residual will be unable to 
detect high leverage outliers. 

The Bayesian approach for the identification of influ­
ential points is to measure the change of a relevant dis­
tribution when the point under consideration is deleted. 
Johnson and Geisser (1983, 1985) and Geisser (1985) 
proposed the Kullback-Leibler divergence (Kullback and 
Leibler, 1951) to measure the distance between the pre­
dictive distribution when deleting one data, p(j(/)), and 
the predictive with all the sample, p(y), and proved that 
their measure is asymptotically equivalent to the sum of 
the Cook's statistic (Cook, 1977) and a convex function 
of the studentized residuals. The relationship between the 
Cook's statistic and the studentized residual (2.3) is 
given by the formula 

A = 
(n-p) h.. 

Then it is easy to see that the Cook's statistic will be 
large for influential outliers and smal for good data. An­
other approach is proposed by Pettit and Smith (1985) 
and by Guttman and Peña (1988, 1993). The last two 
authors proposed to compare the posterior parameter dis­
tributions, with and without the observations, by the 
Kullback-Leibler divergence. They proved that changes 
in the posterior distribution of jS are also a function of the 
Cook's statistic, as are derived from the expression of the 
Kullback-Leibler divergence 

M ^b()8|^,,),Mi5l3'))=^ + | | ( p + Y ^ ) 

{n-p-\+ tf) 1 - h. 

where pZ),, = (p- ^^^,yX[,,X,,0 - P,,)/sl,, and s' is the 
unbiased residual variance estimate. These authors also 
proved that changes in the posterior distribution of cr̂  can 
be interpreted as an outlier measure depending on the 
studentized residuals t- and the standardized residuals r.. 
Finally, the changes in the joint posterior distribution of 
the two parameters are combinations of the influence 
measures on the posterior distribution of P and of the out­
lier measure. Girón, Martínez and Morcillo (1992) pro­
posed to consider an observation as influential when it 
does not belong to the highest predictive density region 
/?(y |j(-P, and estimation influential with respect to a set 
of parameters when it does not belong to the highest pos­
terior distribution region. They applied these ideas to re­
gression models and showed the relationship of the pro­
posed procedure with the Kalman Filter. Kass, Tierney 
and Kadane (1989) also suggested some influence 
measures based on deleting one observation. They use 
asymptotic methods to study the changes in some func­
tions of interest. Using Decision Theory ideas Kem-
pthorne (1986) and Carlin and Poison (1991) analyzed 
changes in the Bayes risk to identify influential points. 

Note that all the proposals mentioned for the single 
outlier and influential data identification can be easily 
extended to the problem of group identification, but they 
require that the number and the position of the outliers 
are known. 

2.2. Robust methods 

Robust methods propose a model for the generation of 
all the data, including possible outliers. Then the estima­
tion is carried out using all the sample, but in such a way 
that the weight of the outliers in the estimation is reduc­
ed. There are two ways to obtain this effect. The first one 
is to assume a heavy tail distribution. The second is to 
assume a mixture of distributions: a central one, which 
generates the good points, and an alternative one, which 
is responsible for the outliers. In practice, both ap-
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proaches lead to similar results because when the central 
model is contaminated by an unspecified distribution 
with heavy tails, this property is transmitted to the final 
mixture distribution. 

Several heavy tail distributions have been suggested 
for regression problems. Box and Tiao (1973) proposed 
the power exponential family. West (1984) suggested to 
use heavy tail distributions that can be decomposed in a 
mixture of normals with different scales. It includes 
some well known families like the Student-i, the stables, 
the logistic and the double exponential. This family has 
the advantage of making possible to study the posterior 
parameter distributions by exploring some properties of 
the errors, which is not always the case with general 
heavy tail distributions. Fernández and Steel (1998) have 
proposed skewed student distributions which can also be 
used for this purpose. 

The second way is to accept the normality assumption 
for most of the data and assume an alternative distribu­
tion for the outliers. Then the lack of homogeneity in the 
sample is modeled with a mixture of distributions. In this 
model, it is assumed that the data may come from a cen­
tral distribution with high probability, (1 - a), and from a 
contaminated distribution with low probability, a. Two 
main outlier identification tools are used: 1) the posterior 
distribution for each point coming from the alternative 
distribution, given a particular generation mechanism for 
the rest of the sample; and 2) the Bayes factor to compare 
predictive distributions with different models. The most 
studied cases are those introduced by Tukey (1960) of 
mixtures of normals for the error distribution. The first 
one is the normal scale contamination model. Box and 
Tiao (1968) (SC model), where the data follow a model 
with error distributions 

u. - (1 - a)A (̂0, 0-2) + a^O, fcV^) / = 1, ..., n. 

The second one is the normal level-shift model, by Gutt-
man (1973) and Abraham and Box (1978) (LS model), 
where the error distributions are 

u. - (1 - a)A (̂0, G^) + (xN{X, 0-2) / = 1, ..., n. 

The third is the additive model with m outliers, by Gutt-
man, Dutter and Freeman (1978) (AD model). It sup­
poses that there' are m outliers in the sample (m is fixed 
by analyzing the model for m = 0, 1, ...) and the error 
distributions are u- ^ N{Xj, CT"), for j = 1,..., m, and u- ^ 
^ N(0, (7̂ ), otherwise. These models can be combined 
and, for instance, Eddy (1980) has proposed a combina­
tion of the Box and Tiao (1968) and Abraham and Box 
(1978) models. 

In general, such proposals assume that the regression 
model is written as 

y.\x. - (1 - oc)f\(y.) + af^iyil 

where /, is the central model and /2 is a contaminating 
one. If we assume that a is known, the ML estimation of 
this model can be carried out by the EM algorithm, as 
shown by Aitkin and Tunnicliffe-Wilson (1980). The 
EM algorithm can be seen as introducing a set of unob­
served classification variables ¿ = (¿,,..., ôj\ defined as 
(5 • = 1 when y¡ is generated by the alternative distribution, 
otherwise as ¿. = 0. Then we substitute these variables for 
their expectations and estimate the parameters given the 
values of these variables. 

In the Bayesian approach we want to compute the pos­
terior distribution of the parameters given the data. This 
is also simplified if we introduce the classification vari­
ables and compute the posterior distribution/?(^, a^, ô \y). 
The data y¡ will be called an outlier when the marginal 
probabiUty p¡ = p(S¡ = l\y)is greater than 0,5. Thus, a is 
the prior probability that any observation is a outlier. 
Calling A(r) to the event «r particular o¡ variables are 
equal to one and the remaining /i - r are zero», the pos­
terior distribution of P is 

p(P\y) = Y.p{A(r)\y)piP\A(r),y), 
r 

where the weights p{A(r) \y) are the posterior probabili­
ties of all the possible configurations A(r). With the usual 
reference priors for /5 and a ,̂ p(P, a^) oc a~^, and assum­
ing that k and a in the SC model or a and X in the LS 
model, are known, these probabilities can be found in 
Freeman (1980). Eddy (1980) indicated that the mean of 
the distribution of p{P\A(r),y) in the three models can be 
seen as weighted least squares estimates. 

To identify the outliers we can use the weights 
p{A(r) \y). In the particular case of a single outlier in the 
sample, the probabilities are 

p{A^(l)\u)^w\XT,,,X\-'^\ 
(/)' 

(2.4) 

where A¡(r) means that o¡ is equal to one, that is, y¡ is one 
of the r contaminated data. The matrix F̂ ,) and the values 
of V and w depend on the model (see Eddy, 1980). In the 
general case the probability of an observation to be an 
outlier is given by p¡ = Ẑ . p{A¡(r)\y). This probability 
requires to compute the probabilities for all the 2" poss­
ible combinations. We will see in the next subsection an 
alternative and feasible way to compute these probabili­
ties by using MCMC methods. 

The second method to identify outliers is to use Bayes 
factors. With the Bayes factor, and applying the Jeffreys 
rule (Jeffreys, 1961), it is possible to compare the predic­
tive distribution for a model with only one outlier with 
the predictive distribution for an outlier free model. In 
this case the Bayes factor can be expressed as 

^,«(0 = 
p(y\A^W) 
p(y\AiO))' 
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Pettit (1992) extended the use of the Bayes factor to im­
proper prior distributions by using the Spiegelhalter and 
Smith (1982) method of finding imaginary observations 
subsets of minimum size. 

Peña and Guttman (1993) compared these approaches 
and showed that the posterior probability of a particular 
set of data to be outlier with the LS or AD model is in­
versely proportional to the ordinate of the predictive den­
sity, so that both approaches can be considered as equiv­
alent. 

2.3. Outlier detection witti Gibbs Sampling 

Bayesian analysis of outlier problems using the Gibbs 
sampler was initialized by Verdinelli and Wasserman 
(1991) for i.i.d. data. Their procedure was generalized by 
Justel and Peña (1996) to the case of outliers in re­
gression models. They considered the Box and Tiao 
(1968) model with the reference priors mentioned before, 
but assume that the contamination parameter a is un­
known and use a Beta(y^, y2) as a prior distribution for 
this parameter. Gibbs sampling avoids the 2" necessary 
computations to obtain the marginal posterior probabili­
ties p^. 

The application of the Gibbs sampling (see Gelfand 
and Smith, 1990) is carried out by augmenting the par­
ameter vector with a set of latent (unobserved) classifica­
tion variables ((5,, ..., ôj. Then the objective of the pro­
cedure is to obtain samples from the joint posterior p0, 
¿, (7 ,̂ a I j ) . Starting from and arbitrary vector of initial 
values, the Gibbs sampler provides a sample of the pos­
terior distribution for all the parameters in the model. It 
means that when the algorithm converges a sample will 
be obtained to be used for the computation of an estimate 
of p(ô. = 11 j ) , for / = 1, ..., n. The basic requirement for 
the Gibbs sampler is to be able to draw samples from all 
the conditional parameter distributions, conditional to 
the sample and to the other parameters. Justel and Peña 
(1996) computed all the necessary conditionals and 
showed that generation from these distributions is very 
easy by using random number generators, as the ones de­
scribed in Devroye (1986) or Ripley (1987). 

The full conditional distributions are: 

i) The conditional distribution of the vector j8 is 
N^{P, (j2(ZT-'X)-'), where P= (Xy-'Xr'XT~'y 
and F is a diagonal matrix with elements v-- = 1 + 
+ ô^ik' - 1). 

ii) The conditional distribution of a^ is Inverted-
Gamma (n/2, Z M-72), where w- = (3̂ , ~ ^!P)/ 
( l + ¿ , ( ^ - l ) ) . 

iii) The conditional distribution of a is Beta (y, + 
+ Z ó-, 72 + n - E o¡). 

iv) The conditional probability of o¡ = 1 is 

P(¿, = 11 J, p, G\ a) = f 1 + ( i^V,o(/) ) , (2.5) 

where F^Q = k - exp {-u^Jlcj) 'cr^) is the Bayes 
factor and (p = I - k-. 

Note that the conditional probability that observation 
i-th is an outlier depends only on the standardized resid­
ual u^/a^. If the residual is small, F^Q{Í) will be large and 
the probability (2.5) will be small. The opposite occurs 
when uj/a^ is large. 

Although the Gibbs sampler allows for easy computa­
tions of the marginal probabilities for each data to be an 
outlier, Justel and Peña (1996) showed in several 
examples that Gibbs sampling fails for outlier detection 
in some data sets with multiple outliers. This case will be 
discussed in the next section. 

3. MULTIPLE OUTLIERS 

The formulas (2.2) and (2.4) can be easily used for 
single outlier detection, as well as generalized for check­
ing the presence of a particular group of outliers (i.e., see 
Peña and Guttman, 1993). However, the most relevant 
problem appears when the number and the position of the 
outliers are unknown, as it is the usual case with real 
data. Then, two procedures may be considered: (1) to de­
tect multiple outliers one by one, by using single outlier 
detection procedures; and (2) to identify multiple outliers 
by computing all the probabilities for the possible outlier 
groups. 

These two possibilities present serious problems in 
some particular, but not unusual, situations. In one hand, 
the deleting one by one observation procedures with 
multiple outliers can be subject to masking. Masking oc­
curs when one outlier observation is not detected because 
of the presence of other outliers. Also, one good point 
can be wrongly identified as outlier due to the effect of 
the outliers, and this is called the swamping problem. 
The masking appears when there are several very similar 
outliers, which are algo high leverage data. In this case, 
the studentized residuals tend to be small when they are 
not all deleted at the same time. Moreover, when the size 
of the outlier group is large the leverages of these data 
tend to be small, although they are very far away. Then 
the conditional predictive ordinate is large and the out­
liers are not identified. Peña and Yohai (1995) proved 
this fact in the limit case of a group / of n^ outliers, ( j ^ , , 
x'^X where h^^ = x'^^iXl^yX^^^Yx'^. Then the residuals are 

e.. = 
ya-KP^ (I) 

1 + n,/i. 
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If h^^ is large, the residuals are small and they do not 
change if only one data is deleted (n^ is substituted by 
/Zj - 1). The leverages for all the data in the group / are 
hj(l + n^hj, that tend to be small when n^ increases. 

On the other hand, the generalization of (2.4) for a par­
ticular group of outliers may avoid masking, but it in­
volves the extensive computations of the 2" posterior 
probabilities which correspond to all the possible con­
figurations for the generation of the data. 

Some proposals have been suggested to solve the 
masking problem from a Classical point of view, as the 
LMS of Rousseeuw (1984), or the methods of Rous-
seeuw and Zomeren (1990), Hadi and Simonoff (1993), 
Atkinson (1994), and Peña and Yohai (1995, 1999). 
However, the masking problem has received little atten­
tion in the Bayesian literature. We only have found the 
works of Peña and Tiao (1992) and Justel and Peña 
(2000). 

3.1. Bayesian robustness curves 

Peña and Tiao (1992) proposed a method based on 
stratified sampling to reduce the heavy computations on 
the multiple outlier detection problem. They suggested 
two new diagnostic tools: the Bayesian robustness curves 
BROC and SEBROC. Using the SC model, these curves 
compare the model with h outliers (M,J with the outlier 
free model (MQ). The BROC is defined as the ratio of the 
posterior probabilities of model M,̂  and MQ, for different 
values of the number of outliers h, that is 

P -
-* /70 ~ 

P(M,\y) 

P{M,\y) 1 - a / . , o ' 

where the Bayes factor is 

F -
^ h,o — 

r"Z 
\X'X\ 1/2 

X'X - (PXI,,X„,\ 

in-p)/2 

(3.1) 

The sum in (3.1) is over the {'l) possible configurations of 
h outliers and n-h good data, and sl.^ is a residual sum of 
squares given in Box and Tiao (1968). The BROC curve 
provides information about the number of outliers, how­
ever it is not able to identify masked outliers. The alter­
native in these cases is to use the Sequential Bayesian 
Robustness Curve (SEBROC) that is, for each h, the ratio 

/7 - I , 0 

The key point of the proposal in Peña and Tiao (1992) 
is to use stratified sampling ideas to reduce the [l) com­
putations for P/̂  Q, or the (,,!, ) + {'l) for S/,,,_,, without loss 
of efficiency. The method consists on: 

If the / - th observation is an outlier, all the el­
ements 

d(i, j) = 
p{A,j{2)\y) p{A^{l)\y)p{Aj(l)\y) 

p{A(0)\y) p{A(0)\y) p{A(0)\y) 

will take high values. Divide the sample in two 
parts, one of size n^ that holds the potential out­
liers and another of size n-n^ that holds the poss­
ible good data. 

2. Using that 

= z 
r = 0 

n- n^ 

h- r 

compute the ()j) combinations in which h of the n 
data are deleted by computing all the combina­
tions on the group of size n,, but only a small 
sample on the group of size n-n^. For instance, if 
Hj = 10, ^2 = 20 and /z = 3, compute the (•^) com­
binations in which three data are deleted from the 
^ j , the ( 2°) combinations in which two data are de­
leted from the n, and one randomly selected from 
the ^2, the (̂ ,°) combinations in which one data is 
deleted from the n, combined with a random 
sample of the (̂ 2̂ ) combinations of good data, and 
one small random sample of the {^^) possibilities 
of deleting good data. 

3.2. Adaptive Gibbs Sampling 

The proposal of Justel and Peña (2000) is based on an 
adaptive Gibbs sampling algorithm (AGSA). When the 
outliers are isolated the Gibbs sampler works very well, 
however in strong masking cases the algorithm fails and 
outliers may not be detected when the convergence 
seems to be reached. A key factor to explain the lack of 
convergence in these cases seems to be the effect of the 
leverage in the estimation of linear regression models. 
When high leverage outliers which cause masking are 
classified as good data in the initial vector ô^^\ the prob­
abilities that these points are identified as outliers depend 
on the initial residuals wp = y¡ - x¡P^^\ where j8̂ °̂  is the 
mean of the conditional distribution given ô^^\ For large 
k, the residuals uf^ will be small if the leverages are high, 
and these decrease with the number of outliers. There­
fore, for high leverage outliers the residuals uf"^ will be 
else to zero and the probabilities (2.5) will also be close 
to zero. On the other hand, when the masked outliers are 
not classified as good data in the initial vector ô^^^\ the 
out-of-sample residuals uf"^ will be large and the prob­
ability (2.5) will be close to one. Therefore, the set of 
outliers will be detected in the next iteration only when 
all of them are classified as such in the drawing from the 
conditional distribution (2.5). 
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The solution to this problem begins with the correct 
initial classification of the group of masked outliers. Jus­
tel and Peña (2000) proposed to compute the posterior 
probabilities of each observation being an outlier with 
the AGSA. The idea is to use the Gibbs sampler to find 
an outlier free subset. Then to split the sample and adapt 
the initial conditions to incorporate this information 
about possible outliers. When running the Gibbs samp­
ling with these initial conditions it converges very quick­
ly to the posterior distributions. The spitting mechanism 
is based on the eigenstructure of the á's covariance 
matrix estimated with the Gibbs sampler output. This 
matrix exploits the dependency structure among the ob­
servations generated by masking. The eigenvectors asso­
ciated to the non zero eigenvalues provide information 
about which data are outlier candidates. The result is an 
adaptive method divided in three stages: 

i) Standard Gibbs sampler: The Gibbs sampling is 
initialized by classifying a few data as good ob­
servations. Then the algorithm is run until the 
outlier probability series are stable. 

ii) Outlier free subset identification: The covariance 
matrix of the classification variables is estimated 
with the Gibbs output from the first stage. The 
outlier free subset contains the observations with 
non null coefficients on the eigenvectors asso­
ciated to the non zero eigenvalues and the obser­
vations with high marginal probability. 

iii) Estimation: The Gibbs sampling is initialized by 
classifying the data in the outlier free subset as 
good data. Then the algorithm is run until the 
outlier probability series are stable and all the 
posterior distributions are estimated with the 
Gibbs sampling output. 

The procedure can be used automatically and includes: 
(1) a criterion for initial conditions selection without any 
prior information; and (2) a method to be used for group­
ing data based on the covariance matrix. Its application 
to some of the most frequently used examples in multiple 
outlier detection shows that it is able to unmask outliers 
in samples where other methods fail. 

equations are zero, we have the seemingly unrelated re­
gression of Zellner (1971). When the prior covariance 
matrix is not block diagonal, then we have the shrinkage 
estimates by Lindley and Smith (1972). 

Model heterogeneity may seem to be related to the 
problem of model selection, where we have a set (M,, M2, 
..., M J of possible models and we want to select the one 
which is the most compatible with the data. The problem 
has a straighforward solution achieved by computing the 
posterior probabilities 

p(M,\D) = 
p{D\MMM^) 

XpiDlMMM^ 

where D is the sample data. The specification of p(M.) 
requieres that we have a partition of the model space, that 
is, models must be incompatible, and this is not so in 
general. This is obvious when some models are nested, as 
when selecting between a linear or a quadratic re­
gression. In general, the alternative non nested models 
that we are considering have some degree of overlap­
ping, because they have been chosen to explain the same 
data set. However, the problem of overlapping models 
does not appear in the heterogeneity case in which we do 
not intend to select a model, rather we assume that we 
have several models and the problem is to identify the 
observations generated from each model and to use this 
information for estimation and forecasting. 

A particular case of model heterogeneity is the one in 
which the responde y is a r-dimensional vector, we do 
not have explanatory variables in the model, and the dis­
tributions F are known or are known up to a parameter 
vector 6. This is the standard clustering problem. The 
application of mixture models to clustering has a long 
tradition. See Binder (1978), Titterington et al. (1985), 
McLachlan and Basford (1998), Bernardo and Girón 
(1988, 1989), Lavine and West (1992) and Bernardo 
(1994). In the standard application of cluster analysis the 
number of components in the mixture, m, is assumed to 
be known. Then the model can be estimated by MCMC 
by introducing latent (unobserved) variables ôj(l ^7 ^ n) 
which indicate the label of the group from which obser­
vation j is drawn. Of course, a priori 

4. THE GENERAL CASE 

The general heterogeneity case corresponds to a situ­
ation in which each point can be generated by a different 
model. To be specific, suppose that we have a set of 
models M,, ..., M,,, such that Mj implies that F(y\x) is 
N(P'jX, of), that is, the data come from different re­
gression models with different regression parameters and 
error variances. Associated with each of these models are 
prior probabilities cOy, where 2 o;̂  = 1. When we know 
which model generates each observation, and we assume 
the prior covariances between coefficients of different 

p{dj = /) = CD^, for / = 1, m. 

This model has been studied by Diebolt and Robert 
(1994) who proposed a data augmentation algorithm to 
carry out the estimation and proved that it converges geo­
metrically. They also studied the convergence of Gibbs 
sampling. 

In practice the number of components in the mixture is 
unknown. Then we have four possible approaches. The 
first one estimates m by a Schwarz criterion (Raftery, 
1996). The second one use a KuUback-Leibler estimate 



364 Ana Justel et al. Rev.RAcad.Cienc.Exact.Fis.Nat (Esp), 1999; 93 

(Mengersen and Robert, 1996). The third one (Mobile, 
1994) assumes a prior distribution for m, evaluates the 
likelihood of the data under each mixture model p(y \ m) 
and then uses Bayes Theorem to compute the posterior 
p{m \y). Finally, the fourth and more direct approach is to 
assume that the value of m is unknown and so it is in­
cluded as an additional parameter to be estimated: we 
have a problem of Bayesian analysis of mixtures with 
and unknown number of components. A problem recent­
ly analyzed by Richardson and Green (1997). These 
authors proposed a model in which the joint distribution 
of all the variables of interest is given by 

p{m, Ô, (Ú, 0,y) =p(m)p(co \ m)p(ô | to, m)p(0 \ m)p(y 15, 0), 

which is similar to the model considered by Binder 
(1978). Briefly, we have a hierarchical model in which 
first we specify the number of components, m, then the 
probability of each component, C9, then we decide how 
many observations we take from each component by 
specifying the values of the latent variables, ô, then we 
fix the values of the parameters, 0, given the model m 
and finally we set the values of the sample given the 
model from which they are generated. 

The authors apply this model to univariate normal 
mixtures. The prior distribution for the number of com­
ponents is assumed to be uniform between 1 and a given 
value m^.^^. The prior probabilities for co and the par­
ameters 6 = (//, a) are the usual ones: for o a Dirichlet 
distribution, for the mean a normal prior and an inverted 
gamma for the variance. 

The estimation of this model is carried out by a revers­
ible jump MCMC, (Green, 1995) which is a MetropoHs-
Hasting algorithm in which, in addition to the usual 
Gibbs sampling updating of the parameters á, m, 6, two 
further moves are introduced. 

1. Splitting one mixture component into two, or 
merging two mixture components into one; 

2. The birth or death of an empty component. 

At each step a random choice is made between at­
tempting to split or combine. This is done with equal 
probabilities unless we have just one group (then we al­
ways split) or we have reached the maximum number of 
groups (then we always combine). The combining is car­
ried out by choosing at random two adjacent groups in 
terms of the current value of their means and merging the 
observations of both groups into a new group. Splitting is 
made by random selection of a group and splitting it into 
two, also at random. The decision between birth and 
death is also taken randomly with equal probabilities and 
either a new group is created by sampling the parameters 
from the prior distribution or it is deleted. 

The application of this scheme to the regression case 
presents several problems. First, as in the normal mean 
case there is an identification problem, because the 
whole model is invariant to the permutation of the level 
of the groups. For univariate data this is solved by using 
an increasing order for the means, but in the regression 
case it is not obvious how to order the regression par­
ameter vectors j?̂ , j = 1, ..., m. Second, the splitting and 
merging of the groups use the natural adjacent idea in the 
univariate case, but there is not a clear way to extend this 
approach to the vector case in regression. Third we won­
der if the same type of problems of convergence for the 
Gibbs Sampling that we have found in the multiple out­
lier case can appear here again. In the univariate case 
strong masking for leverage effects cannot appear, but in 
the regression set up the algorithm may fail for the same 
reasons shown in Justel and Peña (1996). Further re­
search is needed to discover if the reversible jump 
MCMC algorithm can be used with success in regression 
problems. 

5. HETEROGENEITY AND MODEL 
UNCERTAINTY 

Model heterogeneity implies that if we want to fore­
cast the value of a future observation y and: (1) we know 
that it can be generated by a set of models Mj,..., M,„ with 
probabiUties Wj, ..., w„,, (2) we do not know which one 
will be the correct model, then we have to use the mar­
ginal predictive density given by 

/7(3;|Z)) = Xvv,P()'|M,,Z)), 

where D stands for data. In standard statistical applica­
tions either we have a central model or a model is se­
lected from the sample. Let us call MQ to this central 
model and p(y \ MQ, D) to the predictive distribution de­
rived from it. \]úngp{y \ MQ, D) instead of p{y\D) will in 
general underestimate the uncertainty in the forecast. We 
define the increase in uncertainty due to model hetero­
geneity by the Kullblack-Leibler distance between the 
distributions p{y\D) and p{y \ MQ, D) 

U = log 
p(y\D. MQ) 

Piy\D) 
p(y\D,MQ)dy. 

This measure is positive if both distribution are different 
and will be equal to zero if they are equal. For instance, 
let us consider the simplest case of isolated outliers in the 
Box and Tiao (1968) regression model. Then if we want 
to forecast the value of a new response variable, y, given 
the values of the explanatory variables x, the predictive 
distribution p(y\D, MQ) is a Student t distribution with 
mean rriQ and variance VQ. The distribution p(y\D) will be 
a mixture of two Student t distributions with the same 
mean, MQ, variances VQ and y, = VQ/̂ ^ and mixing propor­
tions (1 - a), and a. In order to compute the KL distance 
we can approximate these distributions by normals with 
the same mean and variance to obtain 
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-K'-fthS-
where Vj is the variance of the mixture distribution 
p(y\D). Note that as both distributions have the same 
mean, the KL distance is just the average of the two 
measures of the relative change in the variances, 
log (V2/V0) and (VQ - V2)/v2. Using that in this model V2 = 
= Vo(l + a(k- - 1)) we obtain that 

1 / o x oi(k^ • 1) 
2 ( l + a ( ) t ^ - l ) ) 

and so the increase in uncertainty in the forecast is a 
monotonie increasing function in a and k^. We see that 
the increase in uncertainty depends on the parameter 
A = a(k^ - 1). The first derívate of U with respect to À is 

dU _ X 

J I ~ 2 ( 1 +Xf 

which is always positive and is zero at A = 0, indicating 
that a small model heterogeneity has no effect on the un­
certainty of the prediction. The inflexion point of the 
U{X) function can be obtained from 

d^U _ l-X 

^ " 2 ( 1 + A ) ' 

and it is reached for A = 1 which corresponds, for in­
stance, to the case a = .05 and k ^ 4.6. From this point, 
increasing k and/or a by a fixed amount will produce 
smaller increases in the uncertainty of the prediction. 

In the general heterogeneity case, the mean of the dis­
tributions p(y\D) and p(y | MQ, D) will also be different 
and the KL distance will depends on the standardized 
mean difference as well as on the variance changes. An 
approximation to the KL measure can be computed in 
closed form by approximating the Student t distributions 
by normal distributions. 
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