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ABSTRACT

For regular exponential families, Diaconis and Ylvisa-
ker (1979) have shown that the posterior expectation of
the mean parameter p is linear in the canonical statistic,
provided that a conjugate prior is used on the correspon-
ding canonical parameter. In particular, the hyper-
parameters of the prior can be chosen so that this pos-
terior expectation corresponds to an unbiased estimator
of . In this paper we explore an analogue of this latter
property for certain other parametrisations for which an
unbiased estimator exists. The result is then used to find
Bayes estimates under quadratic loss for such paramet-
risations.

RESUMEN

Estimadores Bayes para familias
exponenciales

Diaconis e Ylvisaker (1979) han demostrado que, en
el caso de las familias exponenciales regulares, el valor
esperado final del pardmetro medio p es lineal como
funcién de la estadistica candénica siempre y cuando se
utilice una distribucién inicial conjugada realtiva al
pardmetro candnico. En particular, los hiperpardmetros
de esta distribucién pueden seleccionarse de manera
que el valor esperado final de p corresponda a un es-
timador insesgado. En este articulo se explora una
propiedad andloga de ciertas parametrizaciones alter-
nativas para las que existe un estimador insesgado. El
resultado obtenido es usado entonces para encontrar es-
timadores de Bayes (bajo pérdida cuadritica) para
dichas parametrizaciones.

1. INTRODUCTION

We first review some basic results concerning exponen-
tial families. See Barndorff-Nielsen (1978) for a compre-
hensive account of the properties of these models. Let #
be a o-finite positive measure on the Borel sets of R, and
consider the family %7 of probability measures whose
density with respect to # is of the form

p(x|0)=b(x)exp {x0 — M)}, 00O (1)

for some function b(-), where M(0) = log f b(x) exp
(x0)n(dx) and ® =int E, withE= {0 e R : M(0) < +o0}.
We assume that ® is not empty. The family 7 is called a
natural exponential family (NEF), and is said two be
regular if = is an open subset of R. The function M(0),
called the cumulant transform of %, is convex and ana-
lytic. A well-known result then states that

dm(0)

. 2
E[Xi 0] = W and Var [XI 0] = d M(O)

do?

0
) is one-to-one and dif-

. aM
The mapping u = p(0) =

ferentiable, with inverse 0 = 0(u), and provides an alter-
native parametrisation of 7, called the mean parametrisa-
tion. The set Q = w(®) is termed the mean parameter
space. The function

I"M{0(w)}

10 eQ

V) =

is called the variance function of 7. An important prop-
erty of V(-) is that the pair (V(-), Q) characterises 7 (see,
for example, Morris, 1982).

Consider now a sample X = (X, ..., X,) of independent
observations from (1) and let § = 2.X;. Let 1, denote the
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n-fold convolution of the measure #. Then the distribu-
tion of S has a density with respect to #, of the form

0e®

pn(sle) = b(s7 n) exp {SH - nM(e)}7

where b (-, n) denotes the n-fold convolution of b(-).

In this paper we shall only be concerned with natural
exponential families having a quadratic variance func-
tion (QVF), i.e. such that V(u) = Ap® + Bu + C(u € Q) for
some real constants A, B and C. Morris (1982) has shown
that there exist only six different types of NEF-QVF
models. Specifically, any real natural exponential family
having a quadratic variance function can be obtained, via
a nonsingular affine transformation and a power of con-
volution, from one of the following six basic families:
Normal: V(u) = 1, with Q = R; Poisson: V(i) = p, with
Q = R,; Binomial: V(u) = u(1 — w), with Q = (0, 1);
Negative-Binomial: V() = (1 + w), with Q = R;
Gamma: V(u) = 1%, with Q = R_; and Hyperbolic-Secant:
V() = (1 + p?), with Q = R. Thus, the NEF-QVF class
includes some of the most widely used families of dis-
tributions. These families are all regular. See Morris
(1982, 1983) for a thorough discussion of the properties
of these models.

Consider the family €,(7) of probability measures on
® whose density function with respect to Lebesgue
measure takes the form

(0|35, i) = h(s, i) exp {50 — AiM(0)}, (5, 7A) € #

where §e R, i e R,
(s, i) = { [ exp {50 — AM(0)} dO}™

and # =int {(§, 1) e R? : h(§, )" < o0}.

The family €,(7) is essentially characterised by the
property that the posterior expected value of the mean
parameter p is linear in the canonical sufficient statistic
s (Diaconis and Ylvisaker, 1979), and is closed under
sampling. We shall refer to €,(7) as DY-conjugate to 7
with respect to 0. Provided 7 is not empty, €,7) is a
2-parameter exponential family with canonical «statis-
tic» 7(0) = (0, —M(0)) and canonical (hyper-)parameter
7 =(§, ). Note that h(3, /1) defines the normalising con-
stant of the densities in €,(7). We note in passing that
Theorem 1 of Diaconis and Ylvisaker (1970) implies
that %, = {(5, 7) e R*: e R, and § € AQ} is contained in
#. For a recent review of the theory of conjugate fami-
lies for exponential family likelihoods, the reader is re-
ferred to Gutiérrez-Pefia and Smith (1997).

Suppose now that 0 has a standard conjugate distribu-
tion in €,(7). It follows from the theorem in Section 5 of
Jorgensen, Letac and Seshadri (1989) that the corre-
sponding normalising constant can be written as

h(s, ii) = Ab(§, M)V (§/i), (8§, i) € # 2)

Let A = A(0) be a one to one transformation of 6 defin-
ing a reparametrisation of 7. Then €,(7) induces a fam-
ily of distributions on 4. We shall denote this family by
() and call it DY-conjugate to 7 with respect to /.
Note that 6"(7) C,(?). The densities in €Y(7) will be
denoted by ©(1|3, 7).

We now give the definition of a conjugate paramet-
risation for natural exponential families, as this will be
used in the sequel. A thorough account of the concept
and properties of conjugate parametrisations can be
found in Gutiérrez-Pefia and Smith (1995).

Let L,(0|s, n) denote the likelihood function for 0
given a sample of size n yielding the value s for the ca-
nonical statistic. Now consider an alternative paramet-
risation A = A(0). The likelihood for 4 is then given by
L,(X|s,n)=Ly0(1)|s, n), where 0(-) is the inverse of the
transformation A(-). A new parametrisation ¢ = ¢(4) is
said to be conjugate for 4, denoted ¢ — 4, if and only if

lp(D)| oc L(A|s,, n)

for some real constants s, and n., where the dot denotes
differentiation. In other words, ¢ ~— A if and only if the
Jacobian of the transformation ¢ = ¢ (4) has the form of
the likelihood of 4 for some «canonical statistic» s, and
come «sample size» n.. Further, the relation «—» is an
equivalence relation. Consonni and Veronese (1992)
have proved that the mean parametrisation is conjugate
for the canonical parameter if and only if the natural ex-
ponential family (1) has a quadratic variance function.

2. UNBIASED ESTIMATORS

2.1. Posterior Unbiasedness. Let 7 be a regular
natural exponential family on R. Suppose X, ..., X, is a
sample of independent observations from %7 and recall
S = XX.. It is well-known that the canonical sufficient
statistic S is complete (see, for example, Barndorff-Niel-
sen 1978, Lemma 8.2). Let 7 be indexed by A = A(0) and
suppose there exists an unbiased estimator A=A, n) of
A, where /1( n) is a one to one transformation of s for all
n. It then follows from the Rao-Blackwell theorem that 1
is the minimum variance unbiased estimator of A (see, for
example, Cox and Hinkley 1974, Chapter 8). We shall
call 4 the sufficient unbiased estimator of 1. In the par-
ticular case of the mean parameter y, such an estimator
not only exists but also attains the Cramer-Rao lower
bound for the variance of unbiased estimators, u being
the only parametrisation with this property (up to affine
transformations).

Recall that the sufficient unbiased estimator of u is
given by
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Thus, for a DY-conjugate prior nz(,u |'s’, n'), we can write
the posterior expected value of i as

Elulx] = fi(s+ s, n+n') (3)
Note that ji corresponds to the case s’ = 0. We shall show
that a condition analogous to (3) holds for other paramet-

risations of the family 7 for which an unbiased estimator
exists. Consider the following example.

Example 1. Let X, ..., X, be an i.i.d. random sample
from a negative exponential distribution with mean g,
and let S = 2.X,. Then S follows a gamma distribution
with density Ga(s|n, u™").

Consider the class of transformations 4,(t) = ', where
t is a nonzero real constant, and let 4 = A,(u). It is then
easy to see that the sufficient unbiased estimator of 4 is
given by

I'(n)
Th+o)

o3
Do

t

A=A, n) =

provided that » > max {0, —t}. The DY-conjugate prior
for u is inverse-gamma, with density IGa(u|n’ + 1, s).
Thus, the posterior expected value of 4 is

L' —t+1)
Bl ==y
=", n" —t+1)

wheres =s+s" and n”’ =n + »n'. Note that if we set s’ =0
and n’ =t — 1, then the posterior expected value of 1 is
precisely /, the sufficient unbiased estimator of 1. More-
over, the kernel of this prior densny is then proportional

to V()™ |A(w)|™", where A(u) = =" is the Jacobian of
the transformation A = 1,(1). We note that A~ p in this
case. O

The phenomenon shown in the previous example
holds for many of the most common exponential families
and parametrisations for which a sufficient unbiased es-
timator exists. Whenever it occurs we shall say that the
DY-conjugate family attains posterior unbiasedness. In
Section 2.2 we show how to find unbiased estimators for
certain parametrisations of an exponential family. Then,
in Section 3, we explore conditions under which the cor-
responding posterior expectations coincide with these es-
timators.

2.2. Unbiased estimators for certain parametrisa-
tions of an exponential family. Here we briefly re-
view a simple method for obtaining sufficient unbiased
estimators for certain parametrisations of a given prob-
ability model (Guenther, 1978). As we shall see, such a
mwethod is particularly fruitful when applied to ex-
ponential family models.

By deninition, X(s, n) is an unbiased estimator of
A= A(0) if

f (s, m)p,(s| 0)n,(ds) = A(0)

This identity can be rewritten in the form

. 0
J i, m 2 ;‘(‘ (L) ) n.(ds) = 1 (4)

The method discussed by Guenther (1978) is based on
inspection of (4). Specifically, if (4) can be written as

J A(s, m)p(s, m)p,s|0.)m,(ds) = 1

where p,.(s|0.) is a density from the same family as
p.(s|8), 0. is some value in the parameter space ® and n*
€ R,, then, by virtue of the completeness of the sufficient
statlstlc S, [A(s, n)p(s, n) — 11 = 0 for all 6. and
i(s, n) = 1/p(s, n)
We now apply this idea to the exponential family den-
sity (1). Consider transformations of the form

2(0) = exp {r0 — gM(0)) 5)

for some real constants r and ¢ such that |r| + |g| # O.
For (3) to be a reparametrlsatmn of model (1), we require
that 1(0) does not change sign as 0 varies across ©. In
other words, r and g must be such that [r - qM M #0
for all 0 € ®. In particular, since M(0) = p, it follows that
g must be equal to zero if Q = R.

Now, the sufficient unbiased estimator A(s, n) is such
that

J A(s, n)b(s, n) exp {s0 — nM(0)}n,(ds) = A(0)
s

where S denotes the support of the distribution of S. Let
7. = (S +r) n S and suppose 7, # 0. Then

"

1= | A(s,m)b(s,n) exp {(s — 0 - (n — @)M(0)}n,(ds)
JS
_ [ . b(s, n) B B
= 1, A(s, n) ———————————b(s =) b(s —r,n—q)
exp {(s = N0 - (n - qyM(0)}n,(ds)
= I, A +r, n) bzu’+ r n)) bn )

exp {ul — (n — @)y M(0)}v(du)
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where the convolution operator b(-, -) is considered in
the generalised version described in Section 3.5 of
Gutiérrez-Pefia and Smith (1997), v is the dominating
measure with respect to which the density of u is defined,
and A(s, n) is set to zero for s ¢ 7. Thus, provided
max {0, g} < n,

o b(u+r, n)
J'?'_r Au+r, n) m P | O)v(du)=1

from which if follows that

~ _ b(u, n - q)
Au +r,n) = —————b(u T 1, _ (u)
Therefore
o _b(s-r,n—-gq)
Hoom) === o = () ©6)

where /() denotes the indicator function of the set 7,,
is the sufficient unbiased estimator of A.

3. MAIN RESULT

Proposition 1. Let 7 be a natural exponential family
on R having a quadratic variance function, and let A =
A(0) be a reparemetrisation of the form (5) for the family
7. Suppose that . ~— 0 and that 0 has the (improper)
prior distribution

1(0) oc |40 A0 ™)
Then the posterior expected value of 1 is given by
E[A|x] = A(s, n)

Proof. Since the variance function is quadratic, we
have

111(0)] oc exp {BO + 2AM(0))

(This follows from Example 3.5 of Gutiérrez-Peiia
and Smith, 1997). Similarly, since A~ 0, then
A(0) oc exp {k,0 — k,M(0)} for some real constants k,
and k,. Hence the posterior distribution of 0 under the
prior (7) is given by

n(0)=h(s+B—-k,n—-2A-k,)
exp {(s + B—k,)0 — (n - 24 - k,)M(0)}

Now,
E[A|x]=h(s+B—k,n—-24 -k %

X j exp {(s+B -k, +r0—(n—-2A -k, +q)M(0)} do
[C]

In other words,

h(S+B—k1,I’l—2A—k2)

B = Bk s n-2A~k+ 9

®)

The proof now proceeds by direct comparison of (8)
with (6) for each of the six natural exponential families
having a quadratic variance function. Equation (2) and
Table 1 are useful for carrying out such comparisons.

Table 1. Propierties of the NEF-QVF class

Admisible values

Family M(0) A|B of r and ¢ k, | k,
Normal 02 0|0 reR,g=0 r|o0
Poisson el 0|1{r=0,max {0,q})<n| 1 | ¢
reN,g=0 r|0
Gamma | -log (-0) [1|0|r=0, max {0, g} <n| 0 g-1
reR,,¢g=0 r| o0
Binomial|log (1 + e%) |~1| 1 r=0,q9¢eJ,_, 1 jg+1

re‘]n—l’q:r r q+1

Negative [-log (1+er®)| 1 |1 r=0,qeJ,_, 1 g-1
Binomial red,_,q=0 r |0
Hyperbolict-log {cos (§)}| 1 |0 reR,g=0 r|lo
Secant
J,={12, .., n}
Normal.

p(x| ) = 2n)"? exp {—% (x - /,1)2}, xeR; ueR

Writen in terms of the usual parametrisation, , the trans-
formation (5) takes the form A = exp (ru}. In this case,

2
b(s, n) = h(s, n) = (2n) ™" exp {_;_n}

Therefore
(s, n) = E[A]x]
rs P
=exp{— — —
P n 2n
Poisson.
X =i
plx|p = v x=0,1,.; ueR,

x!



Eduardo Gutiérrez-Peiia et al.

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93 355

Written in terms of the usual parametrisation, g, the trans-
formation (5) takes the form A = p'e™*. Here b(s, n) =
=n/T'(s + 1) and h(s, n) = n*/I'(s), whence

A(s, n) = E[1]x]

(niq) I,(s) if r=0and max {0, g} <n
p :
= I'(s+1) :
2T 1.(s) ifreNandg=0
TTG—ran 2 ifreNandg
Gamma.

pxlw=pw'e™, xeR;uelR,

Writen in terms of the usual parametrisation, u, the
transformation (5) takes the form A = p%~"*. In this
case b(s, n) = 5" '/I'(n) and h(s, n) = s"*"/T'(n + 1).
Therefore

A(s, n) = E[A]x]

['(n) .
s—"l"(n_—q)17r(s) if r=0and max {0, g} <n
- (S— r)n—l )
— =7 I;(s) ifreR,andg=0
S r
Binomial.

px|w = w1 - ', x=0,1;1€(0, 1)

Written in terms of the usual parametrisation, , the
transformation (5) takes the form A = p/(1 — p)?~". Here

B Cn+ 1)
b m = T D = s+ 1)
and
B I'(n)
" For =9
Therefore

A(s, n) = E[A]x]
I'n-g+DI'(n-s+1)
Fn—qg-s+DHI'(n+1)
IF'n-r+DI'(s+1)
I'G-r+DI'(n+1)

I,(s) ifr=0andgeJ,_,

I,(s) ifreJd, jandg=r

Negative Binomial.

pxlvy=vi(l-v), x=0,1,..;ve (0, 1)

Written in terms of the usual parametrisation, v, the tran-
formation (5) takes the form A = v'(1 — v)?. Here

_ I'(n + )
b m) = FoarGs + 1)
and
I'n+s+1)
h(s, n) =

I'(n + DI'(s)

from which it follows that

A(s, n) = E[A]x]
I'n—g+sI(n)
I'n-g)I'(n+5s)
I'n+s—-nl(s+1)
I's—r+DI'(n+s)

I;(s) ifr=0andgeJ,_,

I;(s) ifreJ,_,andg=0

Hyperbolic Secant.

p(x|0)={2 cosh (mx/2)}~" cos (0) exp {x0},
xeR;-n2<0<mn/2

Written in terms of the parametrisation 6, the transform-
ation (5) takes the form A = exp {r0}. Here

2

n-2 nois
P61 = F ) ‘r<§ " E)

27+ 5Y) nois
Rl A ) \F(E " §>

where i = \/jl

Therefore

and

2

A(s, n) = E[A]x]
noi(s—r
Hﬁ* =)
2}
22

since |T(u + iv + D)* = (® + v)|T'(u + iv)|* (see Ab-
ramowitz and Stegun, 1965). O

2

4. BAYES ESTIMATES UNDER QUADRATIC
LOSS

It is well known that the Bayes estimate of a parameter
A under a quadratic loss function is given by the posterior
expected value of A. Proposition 1 therefore allows us to
easily find Bayes estimates for parametrisations of the
form (5), provided a DY-conjugate prior is used.
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Corollary 1. Let 1 = A(0) be a parametrisation of
the form (5) for the exponential family (1), and suppose 1
has a distribution ©)(1|s', n’) in the DY-conjugate family

E(P). Then
EMx]=A(s+s —B+k,n+n +2A+k) (9

where A(s, n) is the sufficient unbiased estimator of 4. O

Note that (9) generalises expression (3) to other par-
ametrisations for which a sufficient unbiased estimator
exist.

Example 2. With the aid of Table 1, we now apply
Corollary 1 to the class of transformations of a gamma
mean considered in Example 1, to get

E[/llx]:}:(s+s/,n+n’+q+ 1)

Recall that the DY-conjugate prior for p is IGa(u|n' +
+1,5"). Writing t=—¢, s" =s+s and n' = n + n’, we get

E[Mx]=A(¢s", n" —t+1)

3 I'n" —t+1) ,

TTTw e
as obtain in Example 1 by a direct method. ad
Acknowledgements. The authors are indebted to

Raiil Rueda for his comments. This work was partially
supported by the Sistema Nacional de Investigadores,
Mexico.

REFERENCES

10.
11.

Barndorff-Nielsen, O. (1978). Information and Exponen-
tial Families in Statistical Theory. Wiley, Chichester.
Morris, C. N. (1982). Natural Exponential Families with
Quadratic Variance Functions. The Annals of Statistics,
10, 65-80.

Morris, C. N. (1983). Natural Exponential Families with
Quadratic Variance Functions: Statistical Theory. The
Annals of Statistics, 11, 515-529.

Diaconis, P. and Ylvisaker, D. (1979). Conjugate Priors
for Exponential Families. The Annals of Statistics, 7, 269-
281.

Gutiérrez-Pefia, E. and Smith, A. F. M. (1997). Exponen-
tial and Bayesian Conjugate Families: Review and Exten-
sions (with discussion). Test, 6, 1-90.

Jorgensen, B., Letac, G. and Seshadri, V. (1989). Sur une
Propiété des Families Exponentialles Naturelles de Vari-
ance Quadratique. Canadian Journal of Statistics, 17, 1-8.
Gutiérrez-Peiia, E. and Smith, A. F. M. (1995). Conjugate
Parametrizations for Natural Exponential Families. Jour-
nal of the American Statistical Association, 90, 1347-
1356.

Consonni, G. and Veronese, P. (1992). Conjugate Priors
for Exponential Families Having Quadratic Variance
Functions. Journal of the American Statistical Associ-
ation, 87, 1123-1127.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statis-
tics. Chapman and Hall, London.

Guenther, W. C. (1978). Some Easily Found Minimun
Variance Estimators. The American Statistician, 32, 29-34.
Abramowitz, M. and Stegun, I. A. (1965). Handbook of
Mathematical Functions. Dover Publications, New York.



