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ABSTRACT 

A new approach to testing statistical hypothesis is con­
sidered in this paper. The main departure from both clas­
sical and Bayesian testing is that the null and alternative 
hypothesis now refer to observable quantities, i.e. sample 
Statistics, instead of model defining parameters. The idea 
for constructing the new tests for comparing two popula­
tions is based on the agreement between observed data or 
statistics and the corresponding predictive distributions, 
assuming that the resulting join sample, from the combi­
nation of the two samples, is exchangeable. This may re­
sult in that the null hypothesis may be neither rejected 
nor accepted, that is, the test may be inconclusive at 
some specified level or probabilistic content. 

These ideas are illustrated and applied to some classi­
cal two-sample problems, where comparisons with the 
corresponding classical tests are considered, and ext­
ended to the testing of homegeneity of the sample me­
dians of two populations and the classical Behrens-Fisher 
problem. 

RESUMEN 

Una aproximación predictiva para algunos 
problemas de contraste de hipótesis 

En este trabajo se considera un nuevo enfoque al pro­
blema del contraste de hipótesis estadísticas. La diferen­
cia más notable con el enfoque clásico y el bayesiano es 
la de considerar que, tanto la hipótesis nula como la alter­
nativa, hacen referencia a cantidades observables, es de­
cir, estadísticos, en vez de a los parámetros que definen 
un modelo estadístico. La idea para contribuir los nuevos 
contrastes en los problemas de dos muestras se basa en la 
bondad del ajuste o concordancia entre los datos obser­
vados o ciertos estadísticos calculados a partir de estos 

datos y sus correspondientes distribuciones predictivas, 
suponiendo que la muestra resultante de unir la dos 
muestras sea intercambiable. Este procedimiento puede 
producir contrastes que no aceptan ni rechazan la 
hipótesis nula y, por consiguiente pudieran ser no con-
cluyentes a un nivel o contenido probabilístico prefijado. 

Estas ideas se ilustran y se aplican a algunos prob­
lemas de las dos muestras clásicos, estableciéndose com­
paraciones con los contrastes clásicos correspondientes, 
y se extienden al problema de contraste de igualdad de 
medianas y al clásico problema de Behrens-Fisher. 

1. INTRODUCTION 

In this paper we deal with some two sample hypothesis 
testing problems from a new perspective based on the 
concepts of predictive distribution and highest predictive 
density regions. 

It is well known that when testing one-sided hypoth­
esis both classical and Bayesian methods are fairly in 
agreement and that, in this case, /7-values are a fair ap­
proximation to posterior probabilities. However, difficul­
ties appear when sharp or precise hypothesis are con­
sidered from either perspective; and that strong 
disagreement between p-values and posterior probabili­
ties of the null hypothesis are generally expected. Many, 
see Nester (1996), have argued that null sharp hypothesis 
can never be exactly true. 

From a Bayesian viewpoint, at least for exchangeable 
processes, parameters are almost sure limits of sample 
statistics; thus, the establishment of strict sharp hypoth­
esis makes no sense. This simple consideration seems to 
have been overlooked in the large Bayesian literature de­
voted to the problem of testing null sharp hypothesis. 
Nevertheless, in model selection when, for instance, nes­
ted models are assumed, there is a need to formulate 
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simple models within the class of all contemplated 
models as a sharp null hypothesis. 

The approach we adopt in this paper is the following: 
instead of testing hypothesis referring to population par­
ameters we propose to test hypothesis referring to actual 
observable quantities. For testing these sort of hypoth­
esis, which do not involve parameters, a Bayesian predic­
tive perspective, see, e.g. Geisser (1993), is adopted. 
From this viewpoint, the parameters are but mere ve­
hicles for modelling the data and, consequently, for com­
puting predictive distributions involving observables, but 
they have no interest in themselves. Thus, for example, 
when one is trying to test the homogeneity of two 
samples from, say, normal populations, Xj = (Xjj, ..., x,̂  ) 
andx2 = (X21,..., ^2/î,)' respectively, one is not really inter­
ested in testing the" equality of the defining parameters, 
i.e., HQ : (^,, a]) = {ii^, aj) vs. H^ : (//,, a^) / (/i,, al), 
which are in some sense chosen arbitrarily, but on testing 
if the resulting join sample x = (x,, X2) appears in some 
sense homogeneous, i.e., exchangeable. 

An interesting feature of the procedures here proposed 
is that the new tests are based not on a single statistic but 
on two test statistics, thus opening up the possibility of 
neither accepting nor rejecting a null hypothesis, that is, 
of taking no action. This latter characteristic of the new 
approach has some relation —though the approach and 
interpretation are quite different— with the recent condi­
tional tests proposed by Berger, Boukal and Wang 
(1997). 

The main idea of this new approach is to establish an­
other bridge between the classical and Bayesian para­
digms to hypothesis testing problems. 

The paper is divided in sections. In section 2 we give 
some definitions and state the precise meaning given to 
the testing of equality or homogeneity of sample statistics 
under exchangeability assumptions. In section 3 we ana­
lyse the classical problem of testing the equality of the 
means of two normal populations in the homoscedastic 
case from the new perspective and compare the results of 
the new test with that of the classical test. The classical 
Behrens-Fisher problem is analysed in section 4. For this 
problem the definitions given in section 2 do not apply as 
the two samples cannot be regarded as exchangeable, due 
to heteroscedasticity, so that we propose a new approach 
to the Behrens-Fisher problem which, interestingly 
enough, turns out to be equivalent to the well known 
Bayesian solution to the problem. Finally, after a brief 
discussion section, the proof of the lemmas needed to 
prove theorems 1 and 2 are gathered in the Appendix. 

2. DEFINITIONS AND NOTATION 

The following example is aimed at introducing the 
problem of testing the homogeneity of two samples and 

of some sample statistics, and justifying some definitions 
and notation to be used in the sequel. 

SupposeXj = (Xi,, ...,Xj„ )andx2 = (x2i, ...,X2„p aretwo 
independent samples from'Poisson distributions with un­
known parameters À^ and À2, respectively. The usual way 
of testing the homogeneity of the two samples is to test 
the equality of the defining parameters, that is to test HQ : 
/li = I2 vs. H^ : À^ 7̂  A2. From a more realistic Bayesian 
viewpoint the homogeneity of the two samples could be 
assesed by saying that the join sample (Xj, X2) is a realiz­
ation from a exchangeable Poisson process. This implies 
that both samples come from the same Poisson process, a 
statement which could be interpreted as an alternative to 
the classical homogeneity test. From this perspective, 
one way to test the homogeneity of the two samples 
could be to compute the two predictive distributions of 
X, |Xy, for / = 1, 2, J = 1, 2, / 7̂  j and see whether the 
observed data x¿, / = 1,2 conforms or not to these dis­
tributions in a similar way to the one adopted when test­
ing if some set of observations are or are not outliers. 

A second alternative approach to testing homogeneity 
would be to test the equality of some sample statistics 
related to the parameter of the Poisson distribution; for 
example, to test whether the sample means, Xj and X2 are 
homogeneous, in some sense to be made precise later. A 
third alternative could be to test whether the sample vari­
ances, ^̂  and si are also homogeneous, as both pair of 
sequences converge almost surely to A, and /I2, respect­
ively, as 1̂ and 2̂ tend to infinity. The way of testing the 
equality of these statistics is similar to the one described 
above, i.e., to compute the predictive distributions of 
these statistics conditional to the other sample and pon­
der their agreement with the values of the observed stat­
istic. 

In these cases —when comparing, for example, the 
equality of the sample means Xj and X2, or of s] and si, as 
the dimension of the two statistics are the same— an­
other alternative method to construct a test would be to 
compute some distance measure, e.g. the Kullback-Leib-
ler divergence between the predictive distributions Xj |x2 
and X2|Xi and s\\x2 and ^'2|x,, respectively. 

As the solutions we have presented to test the homo­
geneity of two samples are different, we also expect to 
use different tests, accordingly; though one would expect 
that the asymptotic behaviour of the last two tests to be 
the same. Yet, we want to stress that, unlike the tradi­
tional approach to testing the equality of two parameters, 
the different testing problems considered above describe 
quite different statistical problems and, consequently, 
their solutions may be different. 

To clarify this point, note that in the first homogeneity 
test proposed, which involves the computation of two 
predictive distributions, the predictive distribution of 
X • I Xj not only depends on the sufficient statistic E 4̂ , x̂^ 
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but also on iht predictive statistic 11 '̂'̂  j x-̂ !; unlike either 
the classical or the Bayesian parametric tests which only 
depend on the usual sufficient statistics. 

Definition 2.1 makes precise the idea of homogeneity 
of two populations. 

Definition 2.1. Two samples jc, = (Xj,, ..., x,^ ) and 
X2 = (X21, ..., X2n) cire said to be homogeneous, and will 
be denoted byx] = X2, if the resulting join sample (X|, X2) 
is exchangeable. 

Basically, the preceding definition is equivalent to as­
suming that the two populations share the same par­
ameters if it holds true for all sample sizes n, and ^2-

Based on this definition and the preceding comments, 
a procedure for testing homogeneity would consist in de­
riving the predictive distribution of one sample given the 
other one and seeing the agreement between the real data 
and the predictive distribution. This could be done, for 
example, by computing a multivariate highest predictive 
density region of given probabilistic content and seeing 
whether the population belongs to that region. This im­
plies that two comparisons are to be made in order to test 
homogeneity. 

R, = ^y e m : (y - l,x.) /̂„_. + - 1,_. 1, 

(y-lnXj) < «/^/^(.,v,;l-a)k 

where F(„,v ;i_a) denotes the 1 - a fractile of the F dis­
tribution with n- and Vj degrees of freedom. After some 
algebraic manipulation, the homogeneity test becomes: 

Accept (Reject) HQ at level 1 - a if, simultaneously, 
the following inequalities hold 

nM^ 
l - a ) ' 

n n 
v^sl + — J - ^ (̂ 1 -x^f ^(^) n^s\F^^^_,_.,_,), 

Otherwise, the test is inconclusive. 

In Parrado (1996), several homogeneity tests for stan­
dard statistical models, derived from Definition 2.1, are 
given, along with other tests involving just one popula­
tion. 

Thus, the proposed homogeneity test is the following: 
let /?! and R^ be highest predictive regions of x, |x2 and 
X2 |Xi of a given probabilistic content l - a , respectively. 
Accept the null hypothesis of homogeneity of the two 
samples, H^ : x, = X2, at leve l - a if Xj G R^ andx2 6 /?2. 
Reject the homogeneity hypothesis if x, ^R^ and X2 ^ i?2-
Otherwise, the test is inconclusive at the fixed probabil­
ity content l - a , that is, the hypothesis is neither accep­
ted nor rejected. 

Obviously, the preceding test depends on the predic­
tive distributions involved which, in turn, depend on the 
prior distribution assigned to common parameters. To es­
tablish links with the classical and Bayesian tests, we 
will assume throughout this paper the usual reference 
priors for the parameters involved. 

As an application, we derive the following homogene­
ity test for two normal samples. Suppose x, = (x,,, ..., 
Xy„ ) and X2 = (X2,,..., X2„̂ ) are two exchangeable random 
samples from the same normal population Nifi, a^). Now, 
the predictive distribution of x-1 Xp when the reference 
prior on ^, o^ is used, is the following multivariate Stu­
dent t 

XAX; XM„X;, Sñl^ + - \ i 

Even though the two samples cannot be assumend ho­
mogeneous one may be interested in testing whether 
some sample statistics computed from the two samples 
are homogeneous as explained in the introductory 
example. 

For any sample of arbitrary size x = (x,,..., x^), let T(x) 
be any fixed dimension statistic. We want to test if the 
value of this statistic is homogeneous for both samples Xj 
and X2, which will be denoted by HQ : T(x^) = r(x2). Us­
ing the same idea as in the full homogeneity test, let Cj 
and C2 be highest predictive regions of r(Xi)|x2 and 
r(x2) |x, of a given probabilistic content l - a , respect­
ively. Accept the null hypothesis of homogeneity of the 
two sample statistics, H Q : r(Xj) = r(x2), at level 1 - a if 
r(Xi) G Cl and r(x2) G C2. Reject the homogeneity hy­
pothesis if r(Xi) ^ Cj and r(x2) ^ C2. Otherwise, the test is 
inconclusive, and the hypothesis is neither accepted nor 
rejected at the specified level. 

Another possibility, which we do not explore in this 
paper, would consist in computing, for example, the 
Kullback-Leibler divergence between the two predictive 
distributions, r(x,) |X2 and r(x2) | x,, ô{p(T(x^) \X2), 
r(x2) |Xi)), so that the test would become. 

Accept HQ if ô{p(T(x^) IX2), r(x2) |x,)) ^ c; 
otherwise, reject HQ 

where, as usual, v. = n. - 1, njc. v^? = ^ - / V A . ' « , < A . — l { f t , ' A . / 

^'k'= 1 (^ik ~ ^i) ' Then, the highest predictive region is where c is some suitable positive constant. 
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Depending on the chosen statistic T, the tests will dif­
fer accordingly. Thus, for example if one is interested in 
comparing if two (one-dimensional) populations have an 
homogeneous location —that is, both samples are scat­
tered roughly around the same position—, then the ho­
mogeneity of any location statistic, such as the sample 
mean x or the sample median fh could be tested. Note that 
if, for instance, the two statistical models are given by 
fix I /I,) = gix - Ail) and/(x | ¡x^) = gix - ¡LQ, where g(.) is 
symmetric, both parameters represent the population 
mean (assuming it exists) and the median, so that a stan­
dard parametric test of the null hypothesis HQ : ¡Â^ = fi2 
would not distinguish between the two different situ­
ations. 

Suppose now that we want to test the equality of the 
sample medians m^ and m2, that is, now the null hypoth­
esis is HQ : m^ = fñj. Assume that sample sizes n^ and /Î2 
are large enough so that the asymptotic distribution of the 
sample median is approximately normal. Then the pre­
dictive distribution of m • | Xj, when the reference prior for 
fÂ is used, is 

m^\x^.^N[m^\x^,al[^-^^ + -

so that the approximate highest predictive interval C- for 
m, is 

3, TESTING HOMOGENEITY OF THE 
MEAN SAMPLE STATISTIC IN THE 
HOMOSCEDASTIC TWO-SAMPLE 
PROBLEM 

n I 71 I 

Then, the test becomes 

Suppose^! = (x,i,..., X,,, ) andx2 = (x2j, -"^Xj,,) are two 
exchangeable random samples from the same normal 
population Niju, a^). 

Consider first the case where the variance a^ = al is 
known. We want to test, according to the notation of the 
preceding section, the null hypothesis //Q : x, = X2. 

Accept (Reject) HQ at level 1 - a if, simultaneously, 
the following inequalities hold 

\m 

n 1 
< (^)z,/2 and mo 

^ ( ^ ) ^ a / 2 ; 

^ 0 , 
2/Î, /22 V 2'^2 

The predictive distribution of x- |Xy, when the reference 
prior for ¡i is used, is 

1 1 
x.\Xj - N[x.\xj, al[-- + 

n, n^ 

so that the highest predictive interval C- for x¡ is 

otherwise, the test is inconclusive 

Note that the test for sample medians not only depends 
on these statistics but also on the sample means. 

Now suppose the population variance o^ is unknown, 
and we want to test the null hypothesis //Q : x, = X2. 

C, = \x¡- z,,^,J- + - , xj + z^/,a,J- + -
n. Ho 

where ẑ /2 denotes the 1 - a/2 fractile of the standard 
normal distribution. Thus, according to the procedure 
proposed in the preceding section, the new test becomes 

The predictive distribution of x-1 Xj, when the non-in­
formative prior for the pair (/i, a^) is used, is the follow­
ing Student t 

X. I Xj - il X. IX., s¡; Vj 

Accept (Reject) HQ at level 1 - a if, simultaneously, 
the following inequalities hold 

"'' " "'^ ^ (» z.n and J^^l^^JjL ^ ( ^ ) z.,,; 

V n, n-, 

1 1 

otherwise, the test is inconclusive 

Thus, the highest predictive interval C, for x, is 

n, n^ 

where i(̂ , ,,/2) denotes the 1 - a/2 fractile of the Student t 
distribution with v̂  degrees of freedom. Then, the new 
test becomes: 

But as two inequalities are the same, the test cannot be 
inconclusive, and it is identical to the classical test. 

Accept (Reject) H^ at level 1 - a if, simultaneously, 
the following inequalities hold 
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LX1 X'^ 

- + -
^ {^)t, v, ,a/2) 

and (1) 

ío = • 

1 1 
^ ( ^ ) ^ ( v „ a / 2 ) ; 

2̂ — + — 

Otherwise, the test is inconclusive 

It seems interesting to compare this test with either the 
equivalent (parametric) classical test or the Bayesian test 
for the difference between two normal means based on 
the H.P.D. region of fi^ - ¡I2, assuming the reference prior 
for /ip ¡I2, and cf-. 

The classical test is: 

Accept (Reject) HQ at level 1 - a if, 

t = - < i»t, (v. c</2)' (2) 

where v = Vj + V2 and s is the square root of the pooled 
variance estimator s^ = (vjv)s^^ + (v2/v)sl. 

The classical test statistic t is related to the statistics t^ 
and 2̂ by the following simple relations 

r̂  = ^ ^ + ̂ / ^ and/or ^ - ^' ^ ^̂  ^ 
vs^ vs^ 2 - 2 + - ^ ' (3) 

t^ V t\ V t\ 

that is, t^ is, at the same time, an arithmetic and a harmonic 
mean of t\ and t\, with weights depending on their degrees 
of freedom, and/or estimated variances, respectively. 

Theorem 3.1. If test (1) rejects the null hypothesis at 
level I - a, so does test (2) at the same level 

Proof. If test (1) rejects the null hypothesis at level 
1 - a, then t] ^ ^Iv^a/i) ^^^ A ^ ?̂v2,a/2)- But, by lemma 1, 

and /(v, a/2) > ̂ (v,a/2)- TWs implies that ^Vi .a /2) ^ ' (v ,a /2 ) 

1 V, 1 V2 1 Ki 

t^~ V 7? V tl V t^ 

V, 

+ 
M (V, a/2) V t\ (V, a/2) ^ v , a / 2 ) 

That is, t^ > ifv a/2)' îid the classical test rejects the null 
hypothesis at the same level. D 

Remark 1. For very large samples both tests accept 
and reject the null hypothesis at the same level. For if n^ 
and 2̂ are large enough then, for the usual (not too small) 
values of a, the fractiles tl^^^^^) ^ f̂v,:a/2) ^ íL/2) ^ z%2^ 
where Zaj2 denotes the 1 - a/2 fractile of the standard 
normal distribution. This implies that if the new test ac­
cepts the null hypothesis, i.e., t^ ^ zl/2 ^^^ 4 ^ 4/2 then, 
by (3), t^ ^ zl/2^ and the classical test accepts tne null 
hypothesis. 

Furthermore, it can be easily proved that the probabil­
ity that the new test be inconclusive conditional on the 
homoscedasticity of the two populations tend to zero as 
/Zj ^ 00 and n2 ^ co, thus implying that the asymptotic 
behaviour of the new and the classical test are equivalent. 

Next lemma is the same as lemma 3.1 but stated in 
terms of the F distribution. 

Lemma 3.2. For any two positive real degrees of 
freedom v and v' and for every real number x, the follow­
ing holds 

F(jc|l, v )>F(x | l , vO V > V , 

The following theorem shows that whenever the new 
test rejects the null hypothesis so does the classical test, 
but not conversely. This obviously implies that, for small 
or moderate sample sizes, the classical test tends to reject 
the null hypothesis more often than new test as the latter 
may be inconclusive. However, acceptance of the null 
hypothesis by either the new test or the classical test does 
not necessarily imply the acceptance of the other one. 

The proof of the theorem is based on the following 
lemma which states the stochastic dominance ordering of 
Student t distributions with respect to the degress of free­
dom. 

Lemma 3.1. For any two positive real degrees of 
freedom v and v' and for every a e (0, 1), the following 
equivalence holds true 

t, n^ < t, ' n^ o V > V . •̂ (v, a/2) ^ '^(v,a/2) K -- K . 

where F(x\ 1, v) denotes distribution function of the F 
distribution with 1 and v degrees of freedom. 

Next theorem, which obviously implies Theorem 3.1, 
establish the relation between the /7-value of the classical 
test based on the statistc t and the /?-values associated to 
the single statistics ij and 2̂-

Theorem 3.2. Letp, /?,, andp2 be the p-values asso­
ciated to t, ij, respectively, that is, 

p=l- Pr(F(-11, v) ^ t% and p¡=í- Pr(F(-11, v.) < 
< tf), for i = 1, 2; 

then, the following inequality holds 

V,S]\ (V2SI 
P<\ 2 

VS vs 
^P\ •^{—JiPi^ max{/7„/?2}. 
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Proof. From (3) 

2 2 

I — 2 ^ -y ^' 

vs vs" 

Now, for every v the distribution function F(x 11, v) is 
a (strictly) concave function; hence 

freedom Vj, V2, and angle (p G [0, n/2], and will be 
denoted by 

if 

b ^ BeFi(b | ^, a~, v,, V2, 0) , 

b - fi 
bo = BeFi(bQ\v^, V2, 0); 

V,5' v.̂ ^ Fit" 11, V) ^ ^ F ( / f 11, V) + ^ F ( i ^ 11, V). 
vs vs 

But as V > Vj and v > V2, then from Lemma 3.2, 

2 2 

F(i^ 11, V) ^ ^ F ( i ? 11, Vj) + ^F( /^211 . V2), 
v^ vs 

which is equivalent to 

l - / 7 > 
vs' (1-Pl) + YA 

vs' 
(1-P2X 

and the theorem follows. D 

Remark 2. The p-value of the new test (1), say p^^^, 
can be computed from the join sampling distribution of t^ 
and Í2 conditional on the hypothesis of homoscedasticity, 
and is generally smaller than p. In particular —compare 
this result with the statement of theorem 2—, the in­
equality 

follows easily from (1). 

4. A PREDICTIVE APPROACH TO THE 
BEHRENS-FISHER PROBLEM 

The preceding section dealt with the problem of test­
ing the homogeneity of the sample mean statistic of two 
samples of normal populations when they were assumed 
to be exchangeable. On the other hand, the Behrens-
Fisher problem deals with heteroscedastic populations, 
thus ruling out exchangeability and, consequently, the 
possibility of computing, as in the homoscedastic case, 
the predictive distribution of x- give Xj. Instead, we con­
sider eliminating the nuisance parameter a] by comput­
ing the predictive distribution of x, given s], and Xj. This 
predictive distribution turns out to be a generalised Be-
hrens-Fisher distribution as defined in Girón, Martínez 
and Imlahi (1998). 

Definition 4.1. A random variable b is said to be dis­
tributed as a generalised Behrens-Fisher distribution 
with location jj, e (-co, 00), scale a e (0, 00), degrees of 

where BeFiQ^^ | Vj, V2, 0) denotes the standard Behrens-
Fisher distribution, so that standard Behrens-Fisher dis­
tribution has location and scale paramenter fi = 0 and 
a = I, respectively. 

Theorem 4.1. If a priori the parameters ¡a, o\, o\ are 
independent, i.e. \i \. a\ 1_ o\ and follow the usual non 
informative prior, i.e., f^ifi, G\, al) x (T]'(T2^, then for 
i,j= 1,2 i ^ j , we have i): jiÍ-0''\ s', and ii): fil.s'\ Xj. 
Furthermore, 

X. I fi, sf 

fl\Xj,S^ 

t(x. I fi, s^n., V,.), 

tiia\xj, sj/nj, Vj); 

(4) 

(5) 

and the predictive distribution of Xj given s] and Xj is 
given by 

X. I s], Xj - BeFi(x. IXj, :^ +-^, v-, Vj, ^.j), where (f)¡j 

is such that tan' (p-j aid 
nj nj 

Proof. By hypothesis fi 1 a'. Now, it is well known 
from normal sampling theory that s' \fi, a' = s'\ a], that 
is, li Ï. s]\ G]. Using the fundamental property of condi­
tional independence, e.g. see Girón, Kadane and Moreno 
(1997), we obtain pi Ls' and pi Ï.G]\ S], thus proving i). 

By examining the conditional distribution of x¿, Xj 
given pi, that can be easily derived from Box and Tiao 
(1973), which turns out to be improper, it can be proven 
thatX,-1 jc I pi, and this, in turn, impHes s] ï_Xj \ pi. As from 
above ¡1 JL s], then using again the fundamental property 
of conditional independence we get s] kxj and ii), that is, 
pi 1 s]\Xj. From this, it follows that the distribution of 
111 Xj, s] is equal to that of /i | xf, that is, equation (5) holds. 

The computation of (4) is somewhat more involved. 
We first compute the join conditional distribution of the 
pair X,, o] given ¡i, s], and finally the marginal of x, | pi, s'. 
But the join distribution of x-, G] \ ¡1, s' can decomposed in 
that of X-1 ft, a', s] and that of a] | pi, s'. By Fisher's the­
orem 

X: 
7 2 d - I 7 

H, erf, sf = X, I /Í, af N{n, oyni). 
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and by i), 5. DISCUSSION 

2 I 2 d 2 I 2 Ga-^(v,/2, v,5f/2). 

From this, recalling that the marginal of a normal-in­
verted-gamma is a Student, (4) holds. Finally, the predic­
tive distribution of x- given sj, Xj follows directly from 
theorem 2 in Girón, Martínez and Imlahi (1998). D 

As a consequence of this theorem we obtain that the 
highest predictive interval C- for jc- is 

The idea of constructing parametric tests for testing 
sharp null hypothesis by using H.P.D.'s regions of fixed 
probability content has been advocated in the past by 
many authors, mainly Lindley (1970) and Box and Tiao 
(1973), but has been criticized by many authors as a valid 
alternative to hypothesis testing, since the work of Be­
rger and Delampady (1987), Casella and Berger (1987), 
and Berger and Sellke (1987), as addressing a different 
inferential problem, and propose as solutions using lower 
bounds of Bayes factors for some classes of prior dis­
tributions. 

I — 7 / I 2 — 
(v/. ^j^ 4>ij' °^/^\ 

+ b. (v,. v¡. <l>¡j. all) /í.á|. 

where è̂ ^̂ ^̂  ̂ /2)denotes the 1 - a/2 fractile of the stan­
dard Behrens-Fisher distribution with v-, v̂  degrees of 
freedom and angle 0̂ y. Then, the new test becomes: 

Accept (Reject) HQ'.X^^ X2 at level 1 - a if, simulta­
neously, the following inequalities hold 

(V,.V2,<Pi2-«/2) 

and (6) 

be — JC 

^ - I 2 2 ^ * ^ ^ ^ ^(v2,v , .02i .oc/2) ' 

V ^ 1 ^ 2 

However, in this paper we address a different problem 
from that of testing a sharp parametric null hypothesis; 
namely, that of testing hypothesis referring to observable 
statistics, which, in general, cannot be regarded as sharp 
hypothesis. On the other hand, for observable quantities, 
we use the equivalent of paramentric H.P.D.'s regions: 
namely, highest predictive density regions to construct 
our tests, but other different approaches are possible 
though not explored in the paper. One advantage of using 
predictive distributions for testing is that, when no prior 
information is available, there is no need to resort to 
other reference priors —such as intrinsic priors or mixed 
priors when the null hypothesis is sharp—, different from 
those generally used for inference purposes, say point or 
confidence estimation. 

One intriguing consequence of this approach is that the 
resulting tests may be inconclusive, a characteristic 
which is somehow related to the fact that the p-values of 
these tests are generally smaller than the corresponding 
ones of classical tests, a fact which points out at the use 
of smaller values of the p-values than customary in order 
to reject the null hypothesis. This is in agreement with 
the recommendations put forward in the references listed 
in the preceding paragraph. 

otherwise, the test is inconclusive 

But as è(,^.^,^,,/2) = è(v,v,.0,.,a/2) for all V, > 0, V2 > 0, 
012' 021 = ^/2 ~ 012 ^^^ ^ ^ (0, 1), by the properties of the 
standard Behrens-Fisher distribution, then both inequali­
ties are the same, so that the test is always conclusive and 
is identical to the parametric Bayesian test, based 
on H.P.D.'s intervals (see. Box and Tiao (1973), pp. 104-
109), for testing the equality of the two population means 
HQ : fi^ = /Í2 in the heteroscedastic case. 
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Remark 3. The way of eliminating the nuisance par­
ameter o] in order to compute a proper predictive dis­
tribution for Xi\Xj is simplified by the fact that Fisher's 
theorem states the conditional independence of x- and s] 
given ¡x and o]. In more complex situations it is not at all 
clear how to proceed, this being a subject for further re­
search. 
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