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ABSTRACT 

Motivated by problems in near infrared spectroscopy, 
we study the discrimination problem with several groups 
and very many predictor variables. A Bayesian version 
of logistic regression with a ridge-type prior distribution 
on the coefficients is shown to give realistic group mem­
bership probabilities in a spectroscopic example. We com­
pare two versions of these probabilities, one using plug-in 
estimates of regression parameters and the other a Laplace 
approximation to the true predictive probabilities. 

RESUMEN 

Regresión logística con muchas variables 

Motivados por problemas de espectroscopia infraroja, 
estudiamos el problema de discriminación con varios 
grupos y muchas variables predictoras. Demostramos 
que una versión Bayesiana de la regresión logística, con 
una distribución inicial de tipo cresta (ridge), es capaz de 
proporcionar probabilidades realistas de clasificación en 
el ejemplo espectroscópico. Comparamos dos versiones 
de estas probabilidades, las obtenidas mediante sus­
titución de los parámetros por estimadores, y las ob­
tenidas mediante una aproximación de Laplace a las ver­
daderas probabilidades predictivas. 

1. INTRODUCTION 

The problem studied here is discriminant analysis or 
supervized pattern recognition. Given a training set of n 
cases, each with a measured q x I vector of variables Y 
and a known assignment to one of g groups, the aim is to 
derive a rule for assigning future cases to groups on the 
basis of their measured Y. McLachlan (1992) provides a 
comprehensive review of the statistical methodology. 
We are particularly interested in the case where q is not 
small compared to n, which causes problems for most 
approaches. The application that motivated this work, 

and that of some other researchers, was near infrared 
(NIR) spectroscopy, Osborne et al. (1993). NIR spec­
trophotometers measure the transmission or reflectance 
of radiation at multiple wavelengths in the NIR region of 
the spectrum, from around 800 to 2500 nm. This can re­
sult in a ^ = 100 or even 1000 point spectrum per sample. 
Sample here is used in the analytical chemistry sense: 
one sample is one case. Training sets rarely exceed a few 
hundred samples for reasons of cost. NIR spectra are not 
simple to interpret, and it is not usually possible to select 
a small number of relevant wavelengths on a priori 
grounds. The calibration of such instruments to derive 
prediction equations for the sample chemistry from the 
highly multivariate measurement has been extensively 
studied in the chemometric literature, see Stone and 
Jonathan (1994) for a review. NIR spectra have been 
used in a variety of discrimination problems, for example 
to discriminate between orange juice from different sour­
ces, Evans et ai (1993), and to check the identity of raw 
materials or products in the pharmaceutical industry. 

Section 2 describes a Bayesian treatment of logistic 
discrimination for this problem. Bayesian analyses of lo­
gistic regression have recently been presented by Malee 
et al. (1996) and Kahn and Raftery (1997), but with very 
different applications to that considered here. In both 
cases the emphasis was on using hierarchical prior struc­
tures with small numbers of predictor variables and 
structured sampling scheme. In Section 3 we apply our 
methods to an example involving the identification of 
wheat varieties from NIR spectra, and Section 4 contains 
some brief discussion. 

2. LOGISTIC DISCRIMINATION 

Many of the standard approaches to discriminant 
analysis are based, explicitly or implicitly, on a multi­
variate Gaussian model for the distribution of Y condi­
tional on group membership, so that 

F-MiU., Z.) (1) 
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for cases in group j . We have explored this formulation 
with large q in Brown et al. (1996). Here however we 
employ the diagnostic paradigm, Dawid (1976), which 
involves direct modelling of the probability of group 
membership given Y. There is an analogy here with the 
so-called 'classical' and 'inverse' approaches to calibra­
tion, Brown (1982), although there is considerably more 
divergence between the two approaches in the discrimi­
nation context than in regression. In choosing this route 
we trade efficiency for robustness: the multinomial like­
lihood we shall use is more robust since it is valid for a 
range of nonormal distributions for the q responses con­
ditional on group. The drawback is that the multinomial 
likelihood is less efficient if normality really does hold, 
see Efron (1975). 

2.1. Likelihood 

If we define TJ{Y), for j = 1, ..., g, to be the probability 
that a case with observed vector F belongs to group j , then 
the standard approach to logistic discrimination, see An­
derson (1982) or McLachlan (1992), Chapter 8, models 

ln(^) = Poj + PjY j=h...,g-l (2) 

where the gth group has been arbitrarily chosen as the 
reference. One motivation for this form is that for the 
Gaussian model in (1) with equal covariance matrices Ey 
= S Equation (2) holds with 

Pj = ^- ' (M, - /^.)- (3) 

If F- is the observation vector for the ith case in the train­
ing set and we define 

^ij = P^ + PjY. / = i , . . . , ^ ; j = i , . . . , g - i 

with rj¿g = 0 for all /, then straightforward calculations 
give the multinomial log-likelihood for the training set as 

'̂= Z ^iG(i)- Z lnsZ^^P(^//) 
y=i 

(4) 

where G(i) is the index of the correct group for case /. 
The relevance of this likelihood is clear when the training 
set is obtained by sampling cases conditionally on F, or 
by sampling randomly from the mixture of groups. When 
the sampling is conditional on group membership various 
arguments have been put forward to justify the use of the 
same likelihood, see Farewell (1979) and McLachlan 
(1992). The main practical effect of the way the training 
set is sampled concerns the intercepts PQ. The estimate of 
PQJ will reflect the distribution of group membership in 
the training set. Under mixture sampling this will be rel­
evant for prediction. Under other types of sampling it 
may or may not be. 

2.2. Prior and posterior distributions 

With q large the estimation of j8 = (jS[, ..., Pl^y is 
problematic. We overcome this difficulty by putting a 
prior distribution on these parameters in the spirit of the 
Bayesian formulation of ridge regression, see Lindley 
and Smith (1972). 

We take diffuse prior distributions for the intercepts 
I]QJJ =1,..., g - I. The form of the prior distribution for P 
is motivated by (3). If in the Gaussian model 

^j ~ N^i^i, all) 

independently fory = 1, ..., g, and S is proportional to an 
identity matrix then the implied prior distribution for /? 
has the form 

^~iv,(,_,(o,r^(V, + /,_, ) ® /J, (5) 

where /: is a scalar and /„ is an /z x n matrix of I's. 

The log posterior density of PQ and P given the training 
data and the hyperparameter k is (up to an additive con­
stant) 

1 / ^ - l 1 8-^ g-1 

(6) 

Thus the prior distribution adds to the log likelihood a 
quadratic penalty on the coefficients. This penalty is in­
variant to the choice of reference group, something that 
is not true for the more obvious penalty function, used by 
Duffy and Santner (1989) and Le Cessie and Van 
Houwelingen (1992), that omits the cross product terms. 

2.3. Classification probabilities 

To classify a new case on the basis of its observed F 
we can calculate, for given PQ and P, a set of g member­
ship probabilities ij, ..., i^ using (2). In a fully Bayesian 
analysis these probabilities need to be averaged over the 
posterior distribution of PQ and P given the training data. 
The density in (6) is not analytically tractable, so we 
need either to adopt a sampling approach, or to approxi­
mate the expectation. We have looked at two such ap­
proximations: a plug-in version, and a Laplace approxi­
mation. Khan and Raftery (1996) argue for the Laplace 
approximation in preference to Gibbs sampling in an­
other application of logistic regression. 

When g = 2 there is another approximation available, 
see Aitken (1978) or McLachlan (1992), p266. If a probit 
approximation to the logistic form of i is combined with 
a normal approximation to the posterior density in (6) the 
expectation of i can be found analytically. We have not 
been able to generalise this to the case g > 2 and so have 
not studied it further. 
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2.4. Plug-in estimates 

The simplest approach is to maximize (6) to obtain 
posterior modal estimates of PQ and p, and plug these 
estimates into (2) to classify new cases. This corresponds 
closely to the standard non-Bayesian approach of plug­
ging in maximum likelihood estimates. We used the 
MATLAB quasi-Newton routine fminu to carry out the 
maximization for the example reported below. The de­
rivatives of (6) with respect to PQJ and Pj are easily found 
analytically and were used in the maximization. An alter­
native approach to the computations would be to use a 
modification of the iterative scheme for the correspond­
ing generalised linear model. The algebra for this seems 
straightforward, but we have not pursued this option. 

2.5. Predictive probabilities 

Let aj= (Poj, P]\ 0^= (a[,..., a[_,), and let /z(0) be the 
log posterior density given in (6). Then (Bernardo and 
Smith 1994, p. 340) the Laplace approximation to the 
posterior expectation of a scalar function g{d) is 

Ê{g{e)) = e x p | - In det H{ê) - - In det //*(0*) -

- h{d) + /î*(0*) (7) 

where d is the value of 9 that maximizes h{9), 0"̂  is the 
value of e that maximizes h^O) = h(e) + ln(g(0)), H(0) is 
the matrix with ijth element 

and H'\0) is the corresponding matrix for /z*. The for­
mula for H is 

mo) = ¿ r, ® if^]) + fcU _, - ^ /̂ _, j ® l^^, (8) 

where Y] = (1, Ff), 7̂ ^̂ , is the {q •¥ \) x {q + 1) matrix 
obtained by adding an initial row and column of zeros to 
/̂ ,̂ and T¡ is the (g ~ 1) x (g - 1 ) matrix with r^th element 

[T,],., = ¿,,T,(F,) - t,.(i',)t/î'/)-

When g{0) is actually Ty(F), the probability that a new 
case with observation vector Y belongs to group /, the 
change from h to /z'̂ ' is equivalent to adding the new case 
to the training data and assigning it to group j . Using this 
fact the computations are straightforward if rather time 
consuming. After maximizing h and calculating h{0) and 
H{Q) we add each new case in turn to the training data, 
assign it to each group in turn, and repeat the maximiza­
tion and the calculations of h and H. Since the i, must add 

to one over groups we could omit one of these calcula­
tions, although we have deliberately calculated all g in 
the example below as a check on the accuracy of the ap­
proximations and computations. 

3. EXAMPLE 

We have applied the methodology described in Sec­
tion 2 to a spectroscopic example where discrimination is 
quite difficult. 

3.1. Wheat variety data 

The data consist of NIR transmission spectra on 292 
samples of wheat. The spectra were measured on 
samples of unground wheat using a Tecator Infratec 
Grain Analyzer which measures transmission through the 
wheat sample of radiation at <7 = 100 wavelengths from 
850 to 1048 nm in steps of 2 nm. Each wheat sample was 
classified into one of g = 9 named varieties, on the basis 
of known provenance. One of the aims of the experiment 
was to investigate whether the NIR spectra could be used 
to assign unknown samples from one of these varieties to 
the correct variety. Of course if such a system were to be 
used in practice it would need to cope with the possibility 
that the new sample belonged to none of the 9 groups, but 
we have avoided such complications. The 292 samples 
were split, randomly within groups, into training, tuning 
and validation sets containing as close to 60 %, 20 % and 
20 % as possible. The resulting numbers of samples are 
shown in Table 1 and graphs of the training spectra for all 
nine varieties are given in Figure 1. Given the overlaps, it 
is perhaps remarkable that one can discriminate at all. In 
fact there is relevant information in the shapes of the 
curves as well as in their overall levels so the picture is 
not as bad as it looks. 

3.2. Application of logistic methodology 

With 9 groups and 100 variables the dimension of Q 
would be 8 X 101 = 808. With a proper prior for P there is 
no reason in principle why we should not proceed even 
though there are only 176 training samples. However a 
singular value decomposition of the 176 x 100 data 
matrix shows that 20 principal components account for 
all but 2 X 10"^ % of the variability. Thus it is possible to 

Table 1. Wheat data: numbers of samples in the training, tu­
ning and validation sets by variety 

Variety 

Training 
Tuning 
Validation 

1 2 

32 8 
10 3 
10 3 

3 

22 
7 
7 

4 5 6 

17 40 7 
6 14 3 
6 14 3 

7 8 

10 23 
3 7 
3 7 

9 

17 
5 
5 

Total 

176 
58 
58 
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Figure 1. Transmission spectra of nine wheat varieties in the training data. 

save a considerable amount of computation, essentially 
without losing any information, by reducing the data to 
scores on the first 20 principal components, and we have 
done this. Because the transformation to principal com­
ponent scores using orthonormal eigenvectors is a rota­
tion, it is appropriate to keep the same form (5) for the 
prior distribution for j8. Since this argument ignores the 
fact that the transformation is data dependent it is less 
than wholly rigorous, but it seems good enough to justify 
using the same form of shrinkage in the transformed 
space. Even with only 20 variables, we still have 8x21 = 
168 parameters for 176 cases, and several of the groups 
have fewer than 20 cases in the training set. 

The parameter k in the prior distribution for ^ in (5) 
needs either to be specified or given a prior distribution. 

We have adopted the pragmatic approach of selecting a 
value for k that gives good performance on the tuning set 
of 58 samples, using a geometrically spaced series of 
values for k and the number of correct assignments out of 
58 (using the plug-in classifier) as the performance cri­
terion. Thus the overall scheme was to fit the model to 
the training set, use the tuning set to select a value of k, 
and then, having fixed the value of k, assess the perform­
ance of both plug-in and predictive versions on the vali­
dation set. 

The computation of the Laplace approximation may 
be prone to rounding errors as it involves differencing 
similar sized quantities. To compute In det H which is the 
most likely source of errors in (7) we summed the logs of 
the eigenvalues of E as given by the MATLAB routine 

http://Rev.RAcad.Cienc.Exact.Fis.Nat
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eig. The g = 9 predictive probabilities as computed typi­
cally summed to 1 ± 0.02. They were then normalized to 
add to 1. 

3,3. Results 

The chosen value of ^ gave 36/58 correct assignments 
on the tuning set; not by any means perfect discrimina­
tion but in line with what was expected for this problem. 
Some feel for the size of k can be obtained by comparing 
the two parts of H{0) in (8). Since H{d) is an inverse 
variance matrix it corresponds to the familiar X^X + kl in 
ordinary ridge regression. The chosen value of k is the 
same size as the 79th largest out of the 168 eigenvalues 
of the first, summed, term in (8), so there is substantial 
shrinkage in at least half of the dimensions involved. 

Using the plug-in and the predictive classifiers on the 
validation samples, each with the chosen value of k, gave 
38/58 and 37/58 correct respectively. Only one case is 
classified differently, and that is the result of very small 
changes in two almost equal probabilities. In fact the two 
approximations give quite similar probabilities through­
out, and other measures of success, such as Brier score, 
also fail to differentiate between their performances. Fig­
ure 2 shows the two sets of probabilities plotted against 
each other. The predictive probabilities are noticeably 
less extreme than the plug-in ones, but the effect is not 
large. 

Since there is a good deal of residual uncertainty about 
group membership even after conditioning on F, it is im­
portant that the membership probabilities are well calib­
rated. Put another way, it is bad enough not knowing 
which group many of the samples belong to, but it would 
be even worse if we thought we did know. 

Table 2 is an attempt to examine this calibration. For 
each method the 58 x 9 = 522 group membership prob­
abilities have been put into bins of width 0.2. Then the 
number of correct groups in each bin is compared with its 
expected number, the sum of the probabilities. From the 
table, the probabilities produced by either approach do 
seem to be realistic. The only sign of poor calibration is 
that it appears that some of the smallest probabilities are 
rather too small, but the agreement in general is good. 

0.4 0.6 

plug-in probability 

Figure 2. Comparison of plug-in and predictive group membership 
probabilities for validation samples. 

cation success rates on these data. The approach de­
scribed here gives useful probabilities as well. 

Table 2. Assessing the calibration of the probabilities of 
group membership. For each method n is the number of proba­
bilities in the given range, c is the number and e the expected 
number of correct groups 

T 

0.0-0.2 
0.2-0.4 
0.4-0.6 
0.6-0.8 
0.8-1.0 

n 

439 
29 
14 
21 
19 

plug-in 

c 

17 
4 
6 

15 
16 

e 

10.4 
8.1 
7.0 

14.9 
17.6 

predictive 

n e e 

439 17 12.2 
30 5 8.9 
15 7 7.2 
23 16 16.9 
15 13 13.7 
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4. DISCUSSION 

For this example at least the predictive probabilities 
are very similar to the plug-in ones. However, more 
examples need to be studied before any general con­
clusions can be reached on this front. What is very en­
couraging is that the group membership probabilities 
produced by this approach do seem to be realistic ones. 
Many approaches to discrimination give similar classifi-
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