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ABSTRACT 

Bayes linear methods are based on second order belief 
specifications and Bayes linear rules for belief adjust
ment. That is we elicit means, variances and covariances, 
rather than a complete probability specification, and ad
just our expectations directly when data are observed. 
This approach, combined with graphical modelling, has 
been successfully applied to complex belief structures, 
for example in a user-friendly decision support system 
for management. In some applications it is convenient to 
express expectations about some unknowns on one scale 
and about others on another with a nonlinear transform
ation between the scales. For example, in a stock control 
system we might think in terms of the logarithms of sales 
for the sales-forecasting part of our belief specification. 
However, to handle the relationships between past and 
present stocks etc., we need to work directly in terms of 
the quantities themselves. A nonlinear link is thus 
necessary somewhere between sales and stocks. This pa
per describes work on an approach to constructing belief 
structures containing such nonlinearities and updating 
beliefs in them, while keeping, as far as possible, to the 
principle of only specifying a limited number of mo
ments. The approach depends upon forms of weak condi
tional independence typically found in applications. 
Bayes-linear belief adjustment is used within subsets of 
the unknowns but stronger specifications are required at 
the boundaries. The extent to which known results in 
conditional independence and in Bayes-linear methods 
can be extended to this situation is discussed. 

RESUMEN 

Redes Bayesianas lineales y transformaciones 
no-lineales 

en 
as 

Los métodos Bayesianos lineales se basan . 
especificación de primeros momentos y en el uso regLo 
Bayes lineales para su ajuste, de forma que se especifican 
medias, varianzas y covarianzas, en lugar de una 

distribución compelta, y se actualizan directamente los 
valores esperados de interés una vez observados los 
datos. Esta metodología, combinada con el uso de 
modelos gráficos, ha sido aplicada con éxito en la 
especificación de estructuras de información complejas 
como, por ejemplo, en la construcción de sistemas de 
soporte para decisiones empresariales. En algunas 
aplicaciones es conveniente expresar unos valores 
esperados en una escala y otros en otra escala que es una 
transformación no lineal de la primera. En este trabajo 
describe una forma de construir estructuras de 
información que contengan tal tipo de transformaciones 
no lineales y permita actualizar valores esperados de 
interés una vez observados los datos manteniendo, dentro 
de lo posible, el principio de especificar únicamente un 
número limitado de momentos. El método sólo requiere 
unas condiciones débiles de independencia condicional 
que son generalmente satisfechas en las aplicaciones. 

1. INTRODUCTION 

1.1. Bayes linear methods 

Provided we can actually develop and analyse such 
specification, a standard Bayesian approach, involving a 
coherent belief specification in the form of a joint prob
ability distribution over all of the unknowns, enables us 
to find the answers to questions of interest involving, for 
example, revised beliefs given information on the values 
of some of the unknowns. However the specification of a 
complete joint probability distribution might be an un
reasonable demand. Even if we first identify a condi
tional independence structure, perhaps using an influence 
diagram, the conditional distributions which are still re
quired will be extremely difficult to specify realistically. 
Secondly the computational problems involved in using 
such a belief specification, for example in evaluating high-
dimensional conditional distributions, may be severe. 

In the Bayes-linear approach, only prior means, vari
ances and covariances, rather than complete probability 

mailto:CSOmfa@ISIS.sund.ac.uk


330 Malcolm Farrow Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93 

distributions, need to be specified. These expectations re
late directly to the quantities of interest and their asso
ciated uncertainties and are therefore more likely to rep
resent genuinely held beliefs. The values are specified 
directly. We elicit subjective expectations of unknown 
quantities, variances which quantify the uncertainties in 
the values of the unknowns and covariances which de
scribe the associations in the sense that learning the value 
of one quantity would cause a revision in the expectation 
of another. 

When the values of some quantities become known, 
the expectations of the others can be adjusted according 
to the linear rule which minimises expected quadratic 
loss. The calculation of adjusted beliefs is computation
ally undemanding and is analogous to finding condi
tional expectations. However, we are not necessarily re
stricted to working with linear functions of the quantities 
of interest. Provided we are willing to specify the required 
mean, variance and covariances, we can include in the 
prior specification any function of any unknown as an
other unknown. 

A recent case study in the application of Bayes linear 
methods is given in Farrow, Goldstein and Spiropoulos 
(1997). 

1.2. Influence Diagrams 

Even with only the first two moments required, mak
ing a genuine and coherent belief specification for a set 
of unknowns with complex interrelationships may not be 
easy. The task can by made easier by graphical 
modelling. Smith (1989) has shown that influence dia
grams can be used to represent general relationships such 
as Bayes-linear structures where the usual conditional in
dependence of probabilistic structures is replaced by 
weak conditional independence. Thus our influence dia
grams differ from the more usual type. Each node repre
sents a vector of quantities. Consider Figure 1 and sup
pose that the arc is directed from L^ to L .̂ In the usual 
type of influence diagram, the quantities represented by 
nodes X and L^ would be conditionally independent 
given the value at L^- The Bayes-linear interpretation of 
the diagram is that, in our adjusted beliefs, after linear 
fitting on the value of the vector at L^, the correlations 
between the quantities at X and those at L̂  are zero. Also, 

Figure 1. Basic structure. 

once we know L^ we would regard X and L^ as irrelevant 
to the linear prediction of Z. In what follows in this paper it 
will be necessary to modify both the notion of weak condi
tional independence and the interpretation of the diagrams. 

1.3. Nonlinearities 

The case study in Farrow, Goldstein and Spiropoulos 
(1997) concerns the production, stocks, distribution and 
sales of several brands of beer from a brewery. It in
volves a large and complicated Bayes-linear influence 
diagram. On one side of the diagram are production, 
stocks, etc. On the other side is a time-series model of 
beer sales. The two sides are linked since the brewery 
supplied the beer for the sales and the sales created the 
demand for the production. On the sales-forecasting side 
it might have been preferred to work in terms of the log
arithms of sales. However the simple additive relation
ships on the production and stock side dictate working 
directly in terms of volume of beer. Thus we appear to 
need a nonlinear link between two collections of quanti
ties, within each one of which we are content to use a 
Bayes-linear belief structure. 

Consideration of the wide variety of models used in 
Bayesian analysis today shows that there are many situ
ations where a nonlinear link of this type may be required. 

In this paper I consider the possibility of an updating 
method, in the spirit of the Bayes-linear method, which 
can deal with such cases. Apart from Section 2, the 
methods considered will not actually be Bayes linear, 
since nonlinearities are explicitly involved. However the 
aim is to continue to require only a limited number of 
moments, generally only first and second, to be speci
fied. Departure from Bayes linear updating means that 
the interpretations of weak conditional independence and 
of the influence diagrams will change. However, with 
this proviso, it remains the case that, in Figure 1, for 
example, once we know L^ we would regard X and L^ as 
irrelevant to the prediction, by our chosen means, of Z. 

In the brewery example, and in many other applica
tions, the following conditional independence property 
may be exploited and, in the rest of this paper, I assume 
that this property holds. We can partition the unknowns 
into three subsets. The stocks, etc., in volume of beer, 
form one. The sales model, in log. volume, forms an
other. These are separated by a set of quantities which 
will be represented in the diagrams by link nodes which 
are considered with respect to both scales. 

In general there is a structure as shown in Figure 1. 
The unknowns on the two scales are represented by X = 
(x,,..., x^)' and Z= (z,,..., z,)' respectively. The undireted 
arc between L^ = (l^i,..., IxgY and L^ = (/^i,..., IzJ' repre
sents a deterministic relationship with l¿¡ = g(lxi), for / = 
1, ..., q, for some specified, strictly monotonie, function 
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g. The arc is undirected since it is assumed that the condi
tional independences implied by a directed arc in either 
direction hold. Note that, with this condition, if we 
started with a diagram where either one (but not both) of 
the outer arcs was directed towards L, rather than away 
from L, it could be reversed to obtain Figure 1. That is the 
following weak conditional independences hold. 

XIL^,Z\L^, ZkL^,X\ 

2. FULLY BAYES-LINEAR APPROACH 

The Bayes-linear method depends only on our ability 
to specify means, variances and covariances for the un
knowns. Therefore, provided we are prepared to specifify 
the necessary moments we can include X, L^, L^ and Z in 
one Bayes-linear structure. However this will not be sat
isfactory to a user who wishes to make explicit use of his 
or her belief in a nonlinear relationship. In particular, 
when some data have been observed, the user's actual 
variances and covariances for the remaining unknowns 
are likely to be different from those predicted by Bayes-
linear updating. 

Nevertheless, consideration of how information is 
propagated in the Bayes-linear case may give insight into 
how the nonlinear case might be handled. If we interpret 
Figure 1 in the Bayes-linear sense then we can, for 
example, represent Z as 

Z = M, + K,,(L^-M,^) + U, (1) 

where M^ and M^^ are the prior expectation vectors for Z 
and L^ respectively, K^^ is a r x q matrix and [/̂  î  ^ 
vector of zero-mean quantities, uncorrelated with L^, L^ 
or X, The variance matrix, V^, of U^ is called a specific 
variance (see Farrow, Goldstein and Spiropoulos, 1997). 
Thus the variance of Z can be separated into that part 
associated with L ,̂ i.e. Ki^¿^dir{L¿K'i^^, and the unex
plained variance V^. Further, if we observe X then the 
mean and variance of Z change in the way indicated sim
ply by adjusting the mean and variance of L^ by X and 
applying (1). In fact, if we partition each of X, L^.L^.Z 
into two parts, one of which, Z,, L^j, L^j, Z,, is observed, 
we can adjust our beliefs, in the Bayes-linear context, 
about the remainder, X2, L^2^ ¿^2' ̂ 2' by adjusting by each 
of X,, L;̂ j, L ,̂ in any order and, for example, if we start 
with X,, then we can adjust X2, L̂ ĵ, L^2 by ^1 and calcu
late, stepwise, using relations similar to (1), how this 
propagates through to L^ and Z. 

3. GENERALISING THE BAYES-LINEAR IDEA 

3.1. Features desirable in an inference system 

In this section I outline the features which it would 
seem desirable to have if we are to generalise the Bayes-

Figure 2. Unknowns in three parts. 

linear approach to cope with non-linear links. I will refer 
to the quantities in Figure 2 in which each of X, L^, L^, 
Z is partitioned so that, for example, X' = (X\, X'2, X3). 
While X. and Z- need not contain the same number of 
elements, clearly L^- and L^- must contain corresponding 
elements. This partition allows us to consider the effects 
of stepwise observation of groups of unknowns and the 
related conditional independence properties. Consider
ation of the effect of observing Y'- = (ZJ, L^., L^,, Z-) 
includes cases such as observing some of X and some 
of the link nodes but none of Z since this would have 
the same effect as the case where Z- is uncorrelated with 
L^ and with the rest of Z. To clarify how the link nodes 
are related, I have introduced L- between L^- and L -̂. 
There are deterministic, possibly nonlinear, relationships 
between L- and each of L^i and L^- but often, in practice, 
we would either have L^i = L- or L^i = L-. Clearly, ob
serving any one of L^^, L-, L^- implies observing all of 
them and, of course, if this were a conventional prob
abilistic influence diagram then we would not need to 
show L^ or L^. 

The underlying principle is that, with the exception of 
the link nodes, we only require specification of first and 
second moments. At the link nodes we require only those 
specifications which are necessary to relate the first and 
second moments on the two sides. In a full probabilistic 
specification, all moments are given and these higher or
der relationships can be exploited in updating. Since 
these higher moments are not specified here, knowledge 
of them is not used in updating. 

R-1. If we observe all of the link nodes, L, then be
liefs about unknown elements of X and Z should be up
dated by Bayes-linear updating by L^ and L^ respective
ly. Subsequent observation of elements of X should result 
in Bayes-linear adjustment of beliefs about the remaining 
unknown elements of X (similarly Z). Once L is known, X 
is uninformative about Z and Z is uninformative about X. 
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Specifically, we can represent our beliefs about Z 
given L by writing 

3 

Z,=M^, + X ^L/z2(^z,-^m)+^2,z2(Z, -M^,) + U^„ (2) 

^3 = M^3+Z ^L/Z3az/-M,z,)+Z ^ZiZ3Í2^-M,) + U,, (3) 

were the K's are appropriate matrices and Í/^P ^Z2' ^Z3 
are uncorrected with each other. 

R-2. We need to declare some beliefs about the rela
tionship between L^ and L^. Ideally this will only involve 
the first and second moments of each. In this case we 
need a 1-1 maping between (M¿^^, V^^) and (M^^, Vj^^) 
where M^^^, M^^ are the mean vectors and Vjr^^, V^^ are the 
variance matrices for L^, L^ respectively. To gain some 
guidance as to the sort of relationship which we might 
use, we might consider some probabilistic examples. 
However we are not supposing that such full probabilis
tic relationships are actually specified. We only specify 
the relationships among the first two moments and do not 
exploit other relationships which would be available if 
we did give a full probabilistic specification. 

R-3. If information is only ever propagated in one 
direction, for example if we can observe some or all of X 
but never observe any of Z, then updating on the unobser
ved side takes place through the link nodes and the rela
tionship in R-2. From (1) we see that E{Z\X^) = M^ + 

R-5. Related to R-4 is the issue of stepwise updating. 
That is, updating our beliefs about Y^ by both Fj and Y2 
should result in the same adjusted beliefs about F3 as we 
would obtain by updating, stepwise, Yj and F3 by F, then 
F3 by Yj. Of course this is satisfied by any system of in
ference in which, when new information is received, we 
incorporate its effect by returning to the original state and 
adjusting by all of the information now available. How
ever, in itself, this is not entirely satisfactory. We would 
like to be able to express our intermediate state in the 
same form as the initial and final states and not have to 
return to the original state for updating. 

R-6. In the Bayes-linear method, adjusted expecta
tions are calculated according to the linear rule which 
minimises expected quadratic loss. Doing this requires 
specification of just the first and second moments. By 
analogy, what is required here is a rule which minimises 
expected quadratic loss within some class of rules and 
which requires specification of just the moments and re
lationships described above, that is the first and second 
moments of X given L^ and Z given L^, the relationship in 
R-2 and an appropriate relationship among the elements 
of L^ and of L^. 

As an illustrative example of the kind of relationship 
which might be used at R-2, suppose that g(x) = e". We 
can construct the first two moments of l^i, Ixj by writing 
ki = ^v + ^xij and l^j = u^jj + w,,̂ . where K u^j, u^.j are 
independent. (It is sufficient that, within each of the sets 

{exp(M„,), expiu^,j), expiuj, exp(2M_̂ ,̂ )}, 
{exp(2M^„), exp(2M ,̂y), exp(2M .)}, the elements are uncor-
related.) Write A,„ X A,, for £ [ < , ] , ^ [ 4 , ] , ^ [ < , ] 
and /x,„,, fi,^j, iu,^,j for È[exp(^w,,)], E[exp(nu^jj)l 
E[exp(nu^¿j)]. Let m .̂, m,- be the means and v̂ .,-, v,-- be the 

K^¿E(L2^\X¿) -Mj^^] andYSír(Z\X¿) = K¿^zYai(L^\X¡)K'^^+ variances of l^i, Izi respectively and v,.,--, v^¿j be the 
V^. By R-2 we can obtain EiL^ \ X¡) and varCL^ | X¿) from 
E(L^ IX.) and var(L;^ | X¡) and by R-1 it would appear that 
these latter quantities are obtained by Bayes-linear ad
justment of ¿x by X-, but see Section 3.2 below. 

R-4. We should be able to use a suitably defined 
form of generalised conditional independence satisfying 
the three properties below established by Dawid (1979). 

CI-1 For all subsets F„ Y^, F3, we have F31 F21 F, u Y^. 

CI-2 For all subsets F„ Y^, F3, we have F21 F31 F, «^ F31 

CI-3 For all subsets F,, Yj, F3, we have 

F4 1 F3IF2 u F, 

covariances of Ixi, Ixi and Ẑ ,, lz¡ respectively. Then 

^xi = Ki + ^ 1 / / ' 

i ; i F 3 u F2IF 
F. 1 YJY, 

For the moment we interpret X 1 Z | F as «X is uninfor-
mative about Z, within our system of inference, given 
knowledge of F». 

^xii = Kii ~ Kú + hij ~ ^hy' 

^xi] ~ ^lij ~ ^\ij^ 

^zii = ^llif^lij - l^liÂip 

^zij = l^UiNMlij- P^i)' 

The specification of the link is then completed by giv
ing a relationship between the X and ¡1 moments. Ideally 
this would be elicited directly but, in practice, we might 
be guided by the relationships in well known two-par
ameter distibutions. For example we might use an anal
ogy with the normal distribution, in which case we obtain 
the following. 

m .̂ = exp[m^. + vjll 

m,, = ln(m^.) - ln[l + v,,,.//4]/2, 

V.J. = exp[2m^, + vj(exp[v,,] - 1), 
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V,., = ln[l + vjmll 

v^j = exp[m,, + m,. + (v̂ ,, + v,̂ .)/2](exp[v ,̂̂ ] - 1), 

v.,y = ln[l + v.^/K,m^-)]. 

Note, however, that even if we use an analogy with a 
probability distribution we do not use other features of 
such distributions. In particular, our belief specification 
is not sufficiently detailed to allow us to update the rela
tionship as a result of observing data. Such a change can 
occur in a full probabilistic analysis because the form of 
the distribution might be altered. 

3.2. The problem of updating the link nodes 

Suppose we have observed Y\ = {X\, L^,, L ,̂, Z\). 
From (2) we see that 

E{Z, I Y,) = M,, + K,,,,(L^, - M,^,) + K^,,,(Z, - M^,) 

and 

var(Z21 y,) = Vz2 + X K,,^^ var(L ,̂ | Y,)K'^^^ + 

i=2 

+ K^2Z2^0War{Lz2, L^3 I ̂ l)^l3Z2 

+ ^L3Z2COVar(L23, L^2 I ̂ l)^l2Z3 

Similarly, using (3), we can find the adjusted mean 
and variance of Z3 given Fj and the adjusted covariance 
of Z2, Z3 given Fj, all in terms of the adjusted means, 
variances and covariances of L22, ̂ ^3 given 7,. Thus the 
key to further progress lies in determining how to adjust 
beliefs about ¿^2' ̂ zs-

Consider only Y\ = (Xj, L;̂ ,, Lj, L^p Zj) and L^2^ L2, L^^ 
in Figure 2. We need to consider what happens to the first 
two moments of Lŷ , L 'X2' L22 when we observe Y\. 

In standard Bayes-linear work, updating is analogous 
to the case of multivariate normality with known second 
order moments. An attempt to find a probabilistic anal
ogy for guidance here is unlikely to be fruitful because of 
the need to find distributions for X and Z which would be 
conjugate across the nonlinear link and yet such that each 
would lead to Bayes-linear updating on its own. We 
could suppose, for example, that X is normal given L^ 
and Z is normal given L^ and perhaps that L^ is itself 
normal. However, once some of Z became known, this 
normality would be lost. 

A second difficulty concerns the relationships within L^^ 
and L .̂ Learning the value of L;̂ , would imply also learn
ing the value of L ,̂ but we can not relate our beliefs 
about L^2 to L^\ by a linear rule and relate our beliefs 
about L22 to L21 by a linear rule and expect to obtain up

dated beliefs about Lx2 ^^^ ^zi which «match» each 
other. Thus, if we are to use a Bayes-linear style specifi
cation for the relationship among the link nodes then it 
should be through L. In practice this presents little diffi
culty as far as the specification of initial beliefs goes 
since, in applications, it will usually be more natural to 
have the linear relationship on one side, e.g. L = L^^. It 
does, however, present us with another difficulty. 

From R-3 we see how we might update beliefs about 
the link nodes given observation of either some of X or 
some of Z but not both. Two questions are raised. Firstly, 
what happens if we observe both some of X and some of 
Z? We would require, of course, that observing some of 
X and then some of Z would give the same result as ob
serving the same data in the other order or simultaneous
ly. Secondly, in view of the comments in the preceding 
paragraph, if L = L;̂ , can we really use Bayes-linear up
dating of ¿2 by Z data or does the updating have to be 
referred to Ly^l 

4. SPECIAL CASES 

4.1. Introduction 

The apparently simple approach of Section 3 has 
raised some awkward questions to which it appears we 
do not yet have completely satisfactory answers. In Sec
tion 5 below I will attempt to set the scene for investiga
tion of a more general framework. Before that, in the rest 
of Section 4,1 will describe some special cases where we 
might usefully apply the ideas already discussed. One of 
these illustrates the difficulty in trying to apply them. 

4.2. Inventory prediction systems 

In Section 1 I referred to the system described by Far
row, Goldstein and Spiropoulos (1997). Consider what 

Figura 3. Inventory Forecasting. 



334 Malcolm Farrow Rev.RAcad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93 

actually happens here if we do indeed forecast the sales 
on a logarithmic scale. We can simplify the situation in 
Figure 2 to that shown in Figure 3. Here L = L^. We 
have a sequence of time steps, say weeks. At time t we 
know the values of all data up to and including time t. 
The unknowns on the left, X^, L^^, constitute the sales-
forecasting part of the system. The logarithms of the 
sales of the various beers in week t are in L^^ while X^ 
might contain lagged values of L^^, trend and seasonal 
terms and other relevant variables. The non-logarithmic 
quantities, such as depot and brewery stocks, production, 
deliveries etc. are in Ẑ  which is influenced by the non-
logarithmic sales L̂ .̂ 

At time t our task is to forecast future values, all of 
which are unknown. Given X^ and L^t, all future sales 
values, Z^^ ,̂ L^^^t+k)^ ^z{t+ky for ̂  > 0, are conditionally 
independent of past and present Z values. We can fore
cast the sales, giving means, variances and covariances 
for L;̂ (,+ ,̂ , ^x(r+2)' ••• These are converted, using R-2, into 
means, variances and covariances for L^^^+x), ^zit+i)^ •••' 
which are in turn fed into the forecasting of Z^+j, Z^̂ 2' ••• 
using (2), (3) etc., with K^.^j only nonzero when i ^j. 

In this case we do not encounter difficulties because, 
in all situations which actually occur, we know how to 
update the link nodes. 

4.3. Dynamic linear model v̂ îth nonlinear link 

Consider the structure of Section 4.2 with the follow
ing differences. Firstly, at time t, we know just the values 
of Z^_/^ for k = 0,1 , 2, ... That is we do not observe the 
unknowns on the left. Secondly, Z ,̂ L̂ ^ 1 Ẑ ^̂ , L^^^^t+j) I ^t 
for J 7̂  0. That is, we delete all of the non-horizontal arcs 
on the right hand side of Figure 3. 

This situation is rather similar to the dynamic general
ised linear models of West, Harrison and Migon (1985), 
although we have not specified a probability distribution 
for Z- and we have not restricted Z. or, for the moment, L^. 
to be a scalar. Situations of this sort might arise, for 
example, if we have a multivariate time series where the 
underlying state is evolving linearly on a logarithmic 
scale but the observations are subject to possibly corre
lated errors with variances which do not depend on the 
means. This is also a step on the way towards being able 
to handle, for 'example, Poisson-like observations, al
though, for this, we would also need to be able to deal 
with the implied mean-variance relationship. 

The idea is that we proceed as follows but see section 
5.4 below. At time t we observe Z .̂ This leads to Bayes-
linear updating of the mean and variance of L̂ .̂ This, in 
turn, causes revision of the mean and variance of L^f, 
using R-2. This information is easily propagated through 
the linear structure to Z ,̂ L^^f+i^ >Z,+ p ¿x(r + 2)' ^t+i t̂̂ -
We can then use R-2 to calculate new means and vari

ances for 2̂(̂ +1), Z^^,, L^^f_^2)^^t+2 ^tc- Then, at time t+ I, 
we observe Ẑ î and so on. 

The importance of the conditional independence struc
ture and the difficulty in attempting to apply the ideas 
more generally are illustrated by considering updating 
simultaneously by Ẑ  and Ẑ ^ j . In this case we might im
agine that we could treat the data at times t and r H- 1 as a 
single set and update the means, variances and covarian
ces of L̂ ,̂ 2̂(̂ +1) directly, by Bayes-linear adjustment. 
However this would lead to a different (though, perhaps, 
only slightly different) mean and variance for L̂ ^ com
pared to that obtained by stepwise updating and propaga
tion through Lj^. This difference would then be passed on 
through L^ t+i- In fact this problem suggests that, if we 
are to be able to handle more general situations, for 
example observing only some of Z ,̂ then we will need to 
restrict L̂ ^ to be a scalar. 

5. TOWARDS A MORE GENERAL INFERENCE 
METHOD 

5.1. Direction of information flow 

First consider straightforward Bayes-linear updating. 
Suppose we have just two vectors of unknowns, X, Y, 
with prior means M^, My, prior variances V^x, Vyy ^^^ 
prior covariance V^y = V'yx- Suppose that the joint vari
ance matrix is of full rank. Then we can always express 
the relationship as either Y = MY + K^yiX - M^) + Uy^x or 
X = Mx-^Kyx{Y-My)-^Ux^ 
= VxyV~yy^nàUy^X^ 

V^\\QXtKxy=VyxyxX^ Ky 

Í7;̂ iy.are vectors of zero-mean quanti
ties, uncorrelated with X, Y respectively and with vari
ances Vy^x = ^YY - ^Yx^'xx^xY and yx\Y = yxx -
VxyVyyVyx. Chauglug between the two representations 
corresponds to reversing the arc between X and Y in an 
influence diagram. Let us introduce the notation X —> F 
to denote that there is a directed arc from X to F. Note 
that, if there is a third quantity Z and Z ̂  X or Z —> F but 
not both, then, in order to reverse the arc between X and 
F, we will need to add an extra arc so that Z-^X and Z -^ 
F. (See, e.g.. Smith, 1989). 

Although the nonlinear links are shown as undirected 
arcs, the present formulation does not yet provide for bi
directional information flow across them. It is therefore 
necessary to treat them as directed, in effect considering 
moments on the «receiving» side to be conditional on the 
quantities on the «transmitting» side. We can then apply 
the normal rules for arc reversal. 

5.2. Conditions for propagation 

Now let us consider Figure 2 but focusing our atten
tion on the top row, i.e. Fj, and Lx2. ^2' ^zi- The key issue 
is how we update beliefs about ¿2 if ^^ observe F,. Once 
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this updating is done, propagation through the rest of the 
structure is straightforward. At present I know of no gen
eral method for updating L2, although an approach slight
ly different to that of this paper is being investigated, but 
it is instructive to see how far we can get with what is 
known. What we can do is propagate information in the 
direction of the arcs. Thus we can make inferences pro
vided that the arcs can be rearranged so that information 
flows in the «right» direction, without violating the basic 
conditions that X and Z are separated by L and that, as
suming either L^. = L- or L .̂ = L,, L^i is not directly 
connected to Z or to L^j for / ^ j and L^- is not directly 
connected to X or to L^j for / 7̂  j . 

L^2 and Zj If two of the arcs were reversed so that Xj 
-^ L22 then we might suppose that we could write L̂  = 

- M î)] + C/¿2' where h^, h^ are appropriate, possibly 
nonlinear, functions, with the mean and variance of h^{X) 
specified in terms of those of X etc. We might even sup
pose that the prior specification is elicited directly in this 
form. However this would simply transfer the problem to 
the propagation outwards again to Xj, Z^. 

The more natural form of prior specification is that 
shown in Figures 1, 2, with arcs directed outwards. Since 
L^2^ L2, Lj2 are deterministically related we can, for this 
purpose, treat them as a single node. We can then see that 
we can reverse one of the arcs so that, say, X^ —> L^2' 
Unfortunately it is not then generally possible to reverse 
the other, so that Zj -^ L22, without adding an extra arc 
from Xj to ZJ which would violate the separation of X and 
Z by L. Fortunately, consideration of the special cases 
shows that it is sufficient in some practical problems to 
be able to reverse one of the arcs. 

5.3. Inventory prediction systems 

Here the crucial conditions are that X^̂ ,̂ L̂ ^̂  1 
Ẑ  I Xj, Lj for all /:> 0 and j ^ 0, that Ẑ  is never observed 
before X^ and L^ and that L^ = L^^. Thus information 
flows only in the direction X to Z, with Bayes linear up
dating of L;̂ (̂ +̂ ) and updated moments of L^^^^^j^^ fed into 
the formulae for Ẑ ^̂  etc. 

5.4. Dynamic linear model with nonlinear link 

In this case the observations are made on the Z side 
and information must cross the nonlinear links in both 
directions. We can see whether this works as follows. 
First assume L^,^ —> L^j, for all k. Then do any rearrange
ments necessary so that no arc is directed into L, = L^^. 
This is straightforward. Having done this we can reverse 
the nonlinear link at time t so that Ly This 
amounts to thinking about our marginal beliefs about L^ 
in terms of L^j. Observing Z^ or even just some of Z,, 

then leads to Bayes linear updating of L̂ ^ and straightfor
ward propagation, in the direction of the arcs, to the other 
unknowns, including Ẑ ĵ etc. 

Notice however that simultaneous reversal of two non
linear links would cause unresolved complications. An 
extra arc would be required which violated the separation 
condition. Thus we are not able to update simultaneously 
by both Ẑ  and Z^ ĵ. It is easily confirmed that, if we at
tempt to do this stepwise, the results depend on the order 
of updating. Indeed, this argument can be applied to the 
links connecting the individual elements of L ,̂ and L^^ 
leading to the conclusion that, if we are to allow the pos
sibility of observing some, but not all, of Ẑ , L̂ ^ for a 
given Í, we must restrict L ,̂ to be a scalar, though Ẑ  need 
not be so restricted. 

6. CONCLUSIONS 

There is still much work to be done and we are still 
some way from a complete solution. However the 
examples of Section 4 show that some useful results can 
be obtained. In particular it seems that we can propagate 
information across the nonlinear link in one direction. In 
the inventory problem, for example, propagation is al
ways in one direction, from sales to stocks. We are never 
in a situation where we would want to infer sales from 
observed stocks. Rather we forecast future sales from 
past sales and this propagates into the forecast of future 
stocks, etc. Similarly in the case of the dynamic linear 
model with a nonlinear link we obtain partial success by 
imposing a restriction. In this case information flows 
from the «nonlinear» side to the «linear» side when data 
are observed then flows back to give forecasts for future 
observations. This is done by imposing conditional inde
pendence between the data vectors, on the «nonlinear» 
side, given the underlying «linear» state vectors. Even 
with this condition, however, we are only able to update 
by the data at a single time step. 

In Section 5 I have suggested a starting point for fur
ther investigation towards a method for belief adjust
ment, based on first and second moments, in more gen
eral cases. Work is under way on a more general method 
and I hope to be able to report on this in a future paper. At 
the time of writing further work is required. In particular, 
we need to establish that the results of any such general 
updating have a useful meaning and what that is. That is, 
the exact relationship with R-6 needs to be established. 
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