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ABSTRACT 

Testing a precise null hypothesis against a composite 
alternative presents a problem for Reference Bayesian 
inference. When the alternative prior is improper, any fi
nite observation ensures that the Bayes Factor will be in
finite. This paradox can be avoided by using a Reference 
Posterior Odds (RPO) ratio rather than the Bayes Factor. 
The RPO is closely related to the ratio of the Bayes Fac
tor to its repeated sampling expectation, to Aitkin's Pos
terior Bayes Factor and also to the probability density or 
mass of the corresponding Frequentist test statistic, dif
fering from all three principally by a factor n^''^, When 
the observations are normally distributed, the logarithm 
of the RPO is exactly equal to the Schwarz Criterion, up 
to an arbitrary constant. 

RESUMEN 

Contraste de una hipótesis precisa mediante el 
cociente de referencia de probabilidades finales 

El contraste de una hipótesis precisa frente a una alter
nativa compuesta presenta dificultades para la inferencia 
bayesiana objetiva, puesto que cuando la distribución in
icial bajo la hipótesis alternativa es impropia, el factor 
Bayes correspondiente resulta infinito. Esta dificultad 
puede evitarse utilizando el cociente de referencia de 
probabilidades a posteriori {reference posterior odds, 
RPO). El RPO está muy relacionado con el cociente del 
factor de Bayes a su valor esperado en el muestreo, al 
factor Bayes a posteriori de Aitkin, y a a densidad de 
probabilidad en el muestreo del estadístico convencional 
de contraste, difiriendo de todos ellos en un factor del 
orden de n^^^. Cuando las observaciones tienen una dis
tribución normal, el logaritmo del RPO coincide exac
tamente con el criterio de Schwartz, excepto por una cons
tante arbitraria. 

1. INTRODUCTION 

For those who follow the Reference Bayesian (RB) ap
proach exemplified by such articles as Bernardo (1979) 
and Bernard (1996), the testing of a precise null hypoth
esis against a composite alternative has long been a seri
ous problem. There is usually either one conjugate prior 
or a limited range of them that can be taken as formaliz
ing neutrality. (Such priors are sometimes described as 
«noninformative», but since all priors can be viewed as 
supplying information of one kind or another, the term 
«reference prior» will be used here instead.) The basic 
problem is that many reference priors are improper and 
that for any improper alternative prior the resulting 
Bayes Factor is automatically infinite —no matter how 
small the sample or how extreme the observations (Bar-
tlett, 1957). 

Earlier attempts to overcome this problem are con
sidered in Section 3 (especially Remark 3.1) and in Ap
pendix 2. The counterintuitive behaviour of the Bayes 
Factor is here circumvented by using a Reference Pos
terior Odds ratio (RPO) instead. This RPO is defined, and 
some of its properties described, in the following Sec
tions of this paper. As a preliminary, the ordinary Bayes 
Factor, its repeated sampling expectation, and the ratio of 
the two (the «Realization Factor», R) are discussed in 
Section 2. The RPO itself is defined in Section 3, and 
examples of it are derived there and in Appendix 1. In 
Section 4, Aitkin's Posterior Bayes Factor (PBF or A) is 
shown to be closely related both to R and to the RPO. In 
Section 5, all three of these are shown to be related to the 
Classical or Frequentist test statistic as well. Information 
criteria are considered in Section 6. (The logarithm of the 
RPO is exactly equal to the Schwarz Criterion, up to an 
arbitrary constant.) 
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THE BAYES FACTOR AND ITS 
EXPECTATION OVER REPEATED 
SAMPLINGS 

2.1. The Bayes Factor 

The ordinary or conventional Bayes Factor is defined 
as the ratio of the mean likelihood of the parameter 9 
over the null hypothesis, HQ, to its mean likelihood over 
the alternative hypothesis, H^. If the prior distribution un
der H- isfi(9), / = 0, 1, the Bayes Factor may be written, 

Denoting that ratio by R, we have by definition that 

B = 
uk(e;y)ue)de 

OGH^ 

Lik(e;y)f,(e)de 

Lik(.) being the likelihood operator, y the observation 
vector and J / (0 ) dO unity by definition. In the important 
special case where the null hypothesis is precise, i.e. of 
the form HQ:6 = OQ, this expression becomes 

B = 
Xik(0o;y) 

LiHO; y)f,(9) d9 
OeH, 

So defined, it is unequivocally a measure of the empirical 
evidence supporting HQ over // , , and this has led to it 
being regarded as the appropriate test statistic for the 
choice between these two hypotheses. This is prima facie 
the case in situations where HQ and H^ are genuinely 
practical alternatives and meaningful subjective prior 
probabilities can be associated with them but, as men
tioned in Section 1, if //Q is precise and H^ is improper, 
the Bayes Factor is necessarily infinite. Conventionally, 
UQ (the prior probability associated with HQ) and its com
plement 71J are each given the value one half, but if TZQ 
takes any finite value at all, the infinite Bayes Factor re
quires the posterior probability of HQ to be unity—for any 
experimental outcome. 

2.2. The Realization Factor 

The paradox just described can only be fully resolved 
by recognizing that priors with TTQ = TI, = 1/2 and an im
proper alternative distribution are not neutral between HQ 
and //, but biased overwhelmingly towards the precise 
HQ. An appropriate adjustment, making the prior more 
genuinely neutral, will be described in Section 3. In the 
meantime, it is worth noting that for experiments of fixed 
size, the ratio of B to its repeated sampling expectation 
under HQ is stable against small changes to the specifica
tion of H,. 

R = 
B 

E,(B) 

Uk(9Q;y)/E,{Uk(9;y)} 

J [Lik(0o; y)/E,{Lik(9; ymf^iy)di 

E/is where £, denotes the expectation over 9 under H^ 
the repeated sampling expectation under HQ, and^(y) is 
the sampling density of y, also under HQ. 

R is not the kind of statistic typically regarded as use
ful by Bayesian statisticians but, being directly propor
tional to B, it is at least arguably an alternative measure 
of the empirical evidence favouring HQ over /f j . We refer 
to it here as «the Realization Factor» because it measures 
the extent to which the repeated sampling expectation of 
B under HQ is realized in the experimental situation. It 
will be demonstrated in Section 5 that there is a close 
relationship between R and the Classical or Frequentist 
test statistic. 

3. THE REFERENCE POSTERIOR ODDS 

Another alternative to the Bayes Factor is the Refer
ence Posterior Odds (RFC). The posterior odds ratio can 
be held stable, as the alternative prior distribution is 
made more and more diffuse, by adjusting the prior odds 
ratio TIQ/TII appropriately. The limiting value of UQ as the 
alternative prior becomes more and more diffuse is 
necessarily small. At the limit, where the alternative 
prior is improper, UQ can be set equal to the amount of 
Lebesgue measure for the alternative prior in an interval 
of fixed length in the near proximity of 9Q, the posterior 
odds then being defined as the finite limit (the Reference 
Posterior Odds or RPO) which it was approaching while 
the alternative prior was still proper. As already in
dicated, the RPO is closely related to the Realization 
Factor. 

The RPO is preferable to the Realization Factor from a 
Bayesian standpoint, because it does not depend upon the 
notion of repeated sampling, and so is not a function of 
the likelihoods of unobserved events. The derivation of 
the RPO used in this Section is very similar to that em
ployed by Robert (1993, Section 2) and by Robert and 
Caron (1996, Section 2), but it avoids an important logi
cal error (see Appendix 2). 

Example 1: Normal mean, variance known. Let 
the observations be N{p, o^) with o^ known. The natural 
choice of reference prior under the alternative hypoth
esis, //, , is the (improper) uniform over the real line, but 
the Bayes Factor will then be infinite. Provided only that 
TIQ is finite, the posterior odds on HQ.¡A = PQ over H^ will 
then also be infinite. To overcome this problem, a proper 
uniform prior over the interval (-C, C) can be used in
stead, and C allowed to tend to infinity. The Bayes Factor 
then also tends to infinity (for any given set of n observa-
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tions) but the posterior odds on H^ over //j can be kept 
constant by choosing TCQ to be a monotonically decreasing 
function of C Specifically, while C is still finite, TIQ must 
be equal to the amount of alternative prior probability in 
the fixed length interval [/ÍQ - ter, JÂQ + TCT] (where T is an 
arbitrary constant); and similarly, in the limit where 
C -^ GO, TÏQ must be equal to the amount of Lebesgue 
measure in that same interval. As long as C is still finite 
we may write 71Q/(1 - KQ) = xalC, and the Bayes Factor as 

B = 
{2n)-'''-o-'n"^ exp{-n(J - ix^flila^) 

re 
[(27i)-''V-'n'^2 exp{-n(y - iJ.y(2a^)](2C)-' dfi 

where y is the mean of the n observations. For large C, 
the posterior odds tend to the limit 2T(27i)~'̂ ^n'̂ ^ 
exp{-n(y - ¡i^^l{2a-)], and it is this limit that defines the 
Generalized Reference Posterior Odds (GRPO or Gg )̂. 

The maximum value of the GRPO over y is therefore 
2x(2n)-"W^ or kn"^ where k = T(2/7I)'^1 TO define the 
RPO itself, it only remains to choose a suitable value for 
the fixed length interval 2T, or equivalently for k. Since 
k = 2x{2ny^'^, it is interpretable as the area of a rectangle 
whose width is 2XG and whose height is {2ny^'^G~\ the 
maximum value of the density function for a single ob
servation. 

An immediately obvious choice for k is unity. It will 
be shown in Section 6 that defining the RPO with /c = 1 is 
effectively the same as using the Schwarz Criterion or 
the Bayes Information Criterion (BIC). The choice k - 1 
also corresponds to the situation where, given a single 
observation located exactly at //Q, the experimenter 
would be indifferent between //Q and / / j . The reference 
value proposed here, however, is A; = 2'̂ ^. Some conveni
ent results that follow from the use of that value will be 
encountered in Sections 4 and 5, but the choice remains 
essentially arbitrary. Robert (1993) and Robert and 
Caron (1996) advocate T = 1/2 or fc = l/(27l)'^^ but their 
argument involves a confusion between probability mass 
and probability density (see Appendix 2). D 

Two further examples of RPO derivations are given in 
Appendix 1. 

When the null hypothesis is true, the posterior odds 
tend to increase proportionally with n '̂ .̂ Hence for ob
servations that are not intrinsically normal, but for which 
the Central Limit Theorem holds, it seems reasonable to 
choose the prior odds so as to ensure that, for large n, the 
maximum attainable value of the posterior odds would 
also be kn ^''^. 

Formally, the generalized RPO, Gg„ can be defined by 
the requirement that when n is large and the observations 
are such that the posterior odds ratio attains its maximum 

possible value conditional on n^ its leading term should 
be equal to kn '̂ ~, i.e. 

lim <^max(Gg,)An''2( ^ 

This definition can also be used more generally where 
the alternative prior density is not uniform but is still 
locally flat in the region of //Q. Let JQ be the value of 
y for which Lik(0Q; n, y) attains its maximum value (for 
any given n observations). Then we may write the gen
eralized RPO as 

„im^^n^^ 
Lik(0o; n, y^ 

and the proposed specific RPO, G ,̂ is the special case for 
which k = 2'"-. 

Remark 3.1. This is actually a revival of a much ear
lier idea. M. S. Bartlett, on reading Lindley (1957), had 
written to the author pointing out that when the prior dis
tribution describing H^ was improper, B became infinite 
and the «silly answer» ensued that the posterior probabil
ity of //Q would be unity for any set of observations. Lin
dley's counter-suggestion was to make «the prior odds in 
favour of the null hypothesis against any unit interval of 
the alternative values [equal to a constant]» (Bartlett 
(1957)). At the time, however, Bartlett regarded this as 
«rather an artificial evasion of the difficulty» and com
monly used Bayesian textbooks such as Press ((1989), p. 
35) still warn that it may be impossible to conduct a 
meaningful hypothesis test of a simple null hypothesis 
against a diffuse alternative. The remedy usually recom
mended is to use a realistic subjective prior distribution 
over the space of //, instead. 

However, a number of Reference Bayesians (including 
Jeffreys (1961), Smith and Spiegelhalter (1980), Aitkin 
(1991), O'Hagan (1995), Kass and Wasserman (1995), 
Berger (1995) and Berger and Pericchi (1996)) have at
tempted to tackle the problem by devising proper priors 
that deliver plausible values for B. An airing of diverse 
views on this topic can be found in the Discussion to 
O'Hagan (1993). D 

4. THE POSTERIOR BAYES FACTOR 

Concerned at the sensitivity of the Bayes Factor to the 
specification of the alternative prior, Aitkin (1991) intro
duced a statistic that he called the Posterior Bayes Factor 
(or PBF) and denoted by A. It differed from the conven
tional Bayes Factor in that the means of the likelihoods 
were taken over the posterior rather than the prior dis
tributions, resulting in the expression 
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A = 

uk\y-e)M9)dei 
^o 

uk{y;e)ue)de 
BEH. o 

Lik^(y; 0)/,(0) de/ Lik(y; 0)/,(0) dB 

^£o{LikX;y)}/£o{Lik(go;y)} 
£,{Lik2(0,;y)}/£,{Lik(0,;y)}' 

This statistic did not meet with favour from orthodox 
Bayesians, mainly because, as a Bayes Factor, it corre
sponded only to one special and highly informative prior 
(Feam (1991)), and because it used the same data twice 
to make a single inference in such a fashion as to be tem
porally incoherent (Cuzick, 1991; Cox, 1991). The fol
lowing theorem, however, indicates a close relationship 
between A and the Realization Factor, R. 

Theorem 4.1. Given that 

1. //Q is of the simple or precise form 0 = 9Q, 

2. /,(0)isflat, 

3. there is a univariate sufficient statistic, y, for 9 and 

4. L{9; y) is origin invariant. 

then A and R are equal. 

For proof, see Appendix 3. D 

Remark 4.1. Since Conditions 3 and 4 of the The
orem are satisfied by the normal distribution, the asym
ptotic equality of i? and A can be invoked whenever HQ is 
precise, f^(9) is locally uniform and the Central Limit 
Theorem is opeative. D 

Whenever Theorem 4.1 holds, the PBF can also be in
terpreted as the posterior odds corresponding to the situ
ation where the prior distribution is identical with the ref
erence prior defined in Section 3, except that the amount 
of prior Lebesgue measure associated with HQ is chosen 
specifically to ensure that G = A. Such a prior may be 
viewed as reflecting the beliefs of a person who, faced 
with an experiment of size n in which the posterior odds 
take their maximum value given n, regards those pos
terior odds as being 2'̂ :̂1 on. So G^^ = A implies that k 
has been chosen to be {21 ny^. If, however, k is already 
specified as taking the specific reference value, 2'̂ ,̂ (i.e. 
G = G^ = An ̂ '^) then G^^ = A only for the special case 
wnere n = \. 

It might perhaps be regarded as unduly arbitrary to 
adopt a prior in which the experiment size, n, figures so 
prominently, but such a judgment could well be regarded 
as implicit in the (equally arbitrary) choice of the experi
ment size itself. Alternatively, one might argue that the 
prior can only be regarded as a reference prior for one 

particular value of n, and that the natural value to choose 
is the size of the experiment. 

There is, however, a substantial difference between 
the interpretation of a hypothesis test based on the use of 
the statistic G^ (with k = 7)'^) and that of one based on the 
use of A (or, almost equivalently, oíR). If ¿ = 2^'^ is used, 
there is a quite definite a priori degree of belief asso
ciated with HQ. Although in the limit as C -> oo the value 
of TÍQ is notionally zero, it is nevertheless equal to the 
amount of Lebesgue measure associated with the alterna
tive hypothesis in the interval {9Q - n^^^a, 9Q + n^^^a) or, 
equivalently, in an interval of length 2n^^^(7 anywhere on 
the real line. 

If A or R is used, however, the implied degree of belief 
in HQ is proportional to n'^^^. This can only be compatible 
with Bayesian inference if n is held fixed throughout the 
inference process. It would not be permissible, for in
stance, to stop the experiment halfway through and make 
a provisional inference based on the value of A obtained 
from that half of the experiment. The two inferences 
taken together would be incoherent. 

Thus the use of A in the fashion recommended by Ait
kin seems not to be fully Bayesian in spirit. Instead of 
there being a fixed prior degree of belief in HQ, there is 
the implicit assumption that HQ can never really be trus
ted, and therefore that the only question at issue is 
whether or not there is already an experiment size large 
enough to demonstrate that it is false. The similarity be
tween this approach and that of the Frequentist statisti
cian is obvious, and it is not surprising to see that Aitkin 
himself drew attention to the repeated sampling proper
ties of A (Aitkin [1991], Section 3). 

5. THE CLASSICAL OR FREQUENTIST TEST 
STATISTIC 

Under the conditions required for Theorem 4.1, A and 
R are interchangeable and, when considering relation
ships with the Frequentist test statistic, it is more con
venient to think in terms of R. For all three examples (the 
first in Section 3 and the other two in Appendix 1) the 
choice of a uniform prior distribution over //j leads to a 
formula for R which is proportional either to the prob
ability density or, in the discrete case, to the probability 
distribution of the corresponding Classical test statistic 
under HQ. 

For Example 1 (the normal mean) R (i.e. G/f^'^) is 
proportional to the ordinate of A (̂̂ o' ^^1^)^ the distribu
tion of the Classical test statistic. 

For Example 2 (the normal variance), R may be inter
preted as the ordinate of ;ĉ _i+2a standardized so as to 
have the expectation unity over repeated sampling when 
a^ = (JQ . Hence if the flat prior (the one for which a = 0) is 
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chosen, R is the similarly standardized ordinate of ;(^_i. 
The Classical test statistic is also proportional to Xn-i. 
but has its ordinates standardized so as to ensure that the 
value of its definite integral over the alternative par
ameter space is equal to unity. 

For Example 3 (the binomial parameter), Ĝ , B and R 
are all inversely proportional to r\{n - r)\ (r being the 
number of «successes») when the alternative prior is uni
form. This is also the condition for proportionality to the 
probability distribution of the Classical test statistic. 

While the correspondence between the Classical test 
statistic and the RB test statistic obtained when the alter
native prior is uniform may not hold in general, it does 
hold wherever the Central Limit Theorem can be in
voked. However, whereas the Classical test focuses on 
the repeated sampling distribution of the observations 
and uses tail areas, the RB test focuses on the possible 
parameter values and uses ordinates. Further, for discrete 
distributions such as the binomial where the meaningful 
tail areas are limited in number, the one to one corre
spondence is restricted to a finite number of possible 
comparisons. 

There remains one more important difference between 
the Classical test and the specific RB test based on G^ (for 
which k = 2^'^). This is the factor n^'^, which has already 
been recognized as the rate at which B tends to increase 
with the size of the experiment when H^ is true. It corre
sponds to the progressive elimination of alternatives that 
are nearly but not quite equivalent to HQ, and the conse
quent reduction in the amount of alternative prior prob
ability able to support /f j in any effective sense. It is this 
factor, combined with the hypersensitivity of B to the 
choice of alternative prior, that leads to the well-known 
Lindley Paradox (Lindley, 1957), namely that a Classical 
significance test for //Q could be indicating y to be sig
nificant at the 5 % level, while at the same time the pos
terior probability of //Q, given y, could be as high as 
95 %, even though the corresponding prior probability 
was quite small. 

6. THE CHOICE OF INFORMATION 
CRITERION 

Aitkin (1991, Section 3) showed that for a comparison 
between two nested hypotheses with v additional par
ameters in //,, the multivariate version of A implied a 
particular form of information criterion within a general 
class of penalized likelihood ratio test statistics discussed 
by Smith and Spiegelhalter (1980). Using X to denote the 
usual likelihood test statistic, this general class may be 
written A(m) = A - mv and, since -2 log A = A - v log 2, 
the choice of multivariate A as a test statistic implies the 
choice m = log 2 = 0.693. This is a smaller value for m 
than is customarily used in practice. For comparison, the 
Akaike Information Criterion or AIC uses m = 2, while 

the Bayes Information Criterion [together with the effec
tively identical Schwarz Criterion, S] uses m = log n 
(Schwarz, 1978). 

The choice m = log 2 for all n results in decisions to 
favour complex models to a counterintuitive extent. For 
example, suppose that there were v potential regressors 
for a given regressand, all spurious, and that each in turn 
was to be judged as either «real» or «spurious» depend
ing on whether or not the value of À obtained by adding 
each candidate in turn to the equation exceeded log 2 (or 
0.693). Since the probability that x] exceeds 0.693 is 
about 0.43, an expected 43 per cent of these spurious par
ameters would be judged to be «real», regardless of the 
size of the experiment. If they were to be tested as a 
group, the likely outcome would be even more extreme. 
For V = 12, the probabihty that X\2 exceeds 12 log 2 is 
just greater than 3/4, so the entire group would be judged 
«real» with a probability of more than 75 per cent. 

By contrast, the use of G^^ in place of A leads to the 
formula m = log (k^n). The choice k= I yields m = log n 
and therefore corresponds to the Schwarz Criterion/BIC, 
for which m exceeds the value 2 when n^S (Schwarz 
[1978]). The choice of Ĝ , with k = 2^'^ and m = log {2n\ 
is more parsimonious still, m exceeding 2 when n^A. 

It would nevertheless appear that the BIC, and even 
more the RPO, could be unduly parsimonious (i.e. prone 
to underfitting) if used to decide between the use of HQ 
and //j in practice. Unlike any Frequentist test statistic, 
the RPO is intended to reflect the odds on H^ that a rea
sonable person might hold, after observing a sample, if 
that person had no strong beliefs beforehand as to the 
value of the relevant unknown parameter, conditional on 
//, being true. The BIC test statistic implies a posterior 
odds smaller than the RPO only by the factor 2"'^, and 
therefore carries fairly similar implications. It seems dif
ficult to justify, for reference purposes, any posterior 
odds markedly larger or smaller than these. 

There is, however, an important difference between 
the inference that H^ is more probable than //, and the 
decision to use H^ rather than //, in practice. It is fairly 
obviously unsafe to use HQ in circumstances where it is 
only marginally more probable than ^, , since the latter 
makes greater use of the information provided by the 
data. A penalty function is therefore indicated, but one 
operating in a direction opposite to that used by Frequen-
tists. Pending a comprehensive empirical investigation, 
the logarithmic penalties 2, 3 and 4 might be used to de
fine a «parsimonious», a «standard» and a «generous» 
test; e.g. the standard test would indicate the use of HQ 
only if 2 log G^ > 3v. These tests would be more par
simonious than the AIC for n ^ 28, 75 and 202 respect
ively. 

Kass and Wasserman (1995) have further suggested 
that, for the BIC, the relevant value of n in the formula 
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for m is not the number of vector observations but the 
number of vector components in the observations, nv. If 
this is correct, the use of G^ should lead to the choice m = 
log (2nv), which is more parsimonious still. However the 
notion that this result should hold even when each com
ponent within the matrix of observations, Y, is almost 
perfectly correlated with every other is counterintuitive, 
and it seems wise to suspend judgment on this issue for 
the time being. 

This expression, and hence also the posterior odds ra
tio, attains its maximum value over s^ when {n - 1)S^I(JI 
= n - 3 4- 2(2, in which case 

max B^ 
s~ 

_ (Jô ^̂ - '\(n -3 + layif-''-^''^'^ explain - 3 + 2a)/2] 
= ^ , , . . r [ (n -3 + 2a)/2] 
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Appendix 1. Two further derivations of Reference 
Posterior Odds 

Example 2: Normal variance, mean unknown. Let 
the n observations y¿ be distributed N(JJ,, G^) with ¡i in
itially distributed uniformly over the real line. The pre
cise null hypothesis, //Q, is that a^ = al and the composite 
alternative, //,, that a^ ^ (JQ, the alternative prior having 

the distribution k a-^'^da^ 

The statistics y = n ' ^ j ^ and s^ = {n-\) ^ Yj ()y ~ 3̂ )̂  

are sufficient for ¡i and o^ respectively. Integrating over 
pi, the likelihood of cr̂  indexed on s^ only may be written 

Lik((j'; s') = (j-^"-'^ exp [-(n - l)sy(2(j')l 

Equating max BJjiçJn^)^^ asymptotically to kn and 

applying Stirling's formula, the generalized reference 
prior odds ratio is given by 

{7i^7i,\, = kn"\m^xBy ^ 2kn''X,a.<^ô 

The corresponding generalised RPO is 

G = lim {BXTZQ/U,) } 
e - * 0, oj -» oc 

2kn'^mn-l)sy(2a¡)} 2\\{n-3 + 2a)/2 exp[-(A2-iy/(2(j^)] 

nin -3 + 2a)/2] 

or, for large n (and again applying Stirling's formula), 

^ (2ny^'ktxp[-(n-l)sy(2(j¡)] 
^' "~ exp[-(n - 5 -H 2a)/2] 

Example 3: Binomial parameter. Let the probabil
ity of success on a single trial be P. Consider the test of 
HQ'.P = PQ against H^:P ^ PQ, the prior density over the 
alternative parameter space being n^f^(P) = n^P°^~\l -
P/~ ' r ( a + j8)/r((x)r(j8). suppose r successes are ob
served in n trials. The posterior odds ratio is then 

The expectation of this expression over the parameter 
space-of//, is 

= K,.,con(n - 3 + 2a)/2][2/{n - iyj-|(.-34-2a)/2 

This approximation can be made arbitrarily close—in the 
sense that the ratio of the two sides can be made to ap
proach unity—by choosing s to be small enough and co to 
be large enough. With this approximation in mind, the 
Bayes Factor in favour of H^ over //, is 

5 . ^ 
(Jo'̂ «-'̂ [(/î- iy/(2(j¿)]^"-'̂ 2"^ '̂ expKn- l)//(2(Jo')] 

k,^,J[in-3 + 2a)/2] 

7ii 71, r(a + P) r (r + oOr(n - r -H j8) ^̂  ^̂  * 

This attains its maximum value over r when (r + a)/(n + a 
+ P) = PQ. In the limit as /Î -^ oo, this implies r/n ~ PQ 
and, since the leading term in G^^ must be kn^'^, 

G^/i-''' ^ k = {nJn,\Xioi)Tmna + P)}'' 

lim [T{n+a+P){T{r+a)T{n-r+P)}-W\n-rT~'n~^^''''^^% 

Applying Stirling's formula, we have 

k{2ny'^ L^^J'J^ pa-0,5/1 _ D /̂i-0.5 
1/gr nocwip) 
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and the generalized RPO is 

^-1^/ 
-0 .5 ^ {2nyi^{nPJry^'~''-^{n{l - P^)l{n - r)}'^-^^^-^-

Three priors having some claim to be neutral are of 
special interest: 

1) a = j? = 1, the uniform prior; 

2) a = p = 0.5, the Jeffreys prior (Jeffreys (1961), 
p. 125) and 

3) a = ^ = 0, the Haldane (1948) improper prior pro
portional to p~\i - py\ 

Comparing the formulae for G^^ in the three cases, the 
RPO can be shown to be asymptotically stable against 
such variations in a and P, provided only that PQ is nei
ther zero nor one. It is least stable when either r or n - r is 
small. 

The expression for {njn^)^^ is not stable against 
changes in a or jS and tends to zero as a, jS -> 0. When a = 
= P = 0.5, however, it takes a particularly simple form, 
killny^, which is uniquely invariant over PQ (cf. Jeffreys 
(1961), p. 188). 

Appendix 2. The contributions of Robert and Caron 

Robert (1993) considered H^.O = 0 for a single incom
ing observation from the distribution N{9, 1), and conju
gate priors A (̂0, o^) rather than the uniform over (-C, C), 
but otherwise his approach was very similar to that de
scribed in Section 3. For a sequence of increasingly dif
fuse proper priors he proposed the constraint that (in the 
notation of this paper) required that TTQ be held equal to 
the amount of alternative probability mass in a fixed in
terval either side of 0. (He actually suggested the 99 % 
HPD region of the incoming observations.) At the point 
of transition from proper to improper priors, however, he 
made a logical error. He described his constraint as «too 
strong to hold when a goes to infinity, since the prior 
probability of any fixed interval must go to 0». As an 
alternative he suggested that the densities for H^ and H^ 
be equal at 0. Had he carried this idea through consistent
ly, it would have resulted in the ratio of TÍQ to the alterna
tive probability mass in any finite fixed interval going to 
zero. He interpreted his suggestion, however, as requir
ing equality between the probability mass UQ and the 
probability density of the conjugate alternative prior at 0. 
This was equivalent to the requirement in Section 3 of 
this paper that defines the limiting value of TIQC as C -^ OO 

to be k{2ny'^ observational standard deviations, with the 

value of k set at {In)'^'^ or 0.3989. It consequently de
fined the fixed interval to be half a standard deviation on 
either side of zero, covering approximately the 38.3 % 
HPD of incoming observations under HQ. (For k = 1^'^~, 
the relevant interval extends n"'^ standard deviations each 
side of /io and approximates the 92.4 % HPD region for 
the observations. To arrive at the 99% HPD, it would 
have been necessary to set k equal to 2.5758(2/7i)'^~ or 
2.0552—see Fig. 1). 

The consequence of choosing such a small value as 
0.3989 for ^ is a test distinctly lacking in parsimony 
when considered against other Bayesian tests. In general, 
the maximum value for the posterior odds (obtained 
when all the n standard normal observations happen to be 
exactly zero) is kn^'^. Thus taking the value k = 1 supplied 
by the BIC it is just possible—with probability zero—to 
achieve indifference between HQ and //, for a sample of 
one. It is also possible, with a sample of size two, to 
achieve a posterior odds ^ 1 with probability 0.5 when 
HQ is true. With k = (27r)"'̂ ,̂ however, the minimum poss
ible sample size necessary to achieve a posterior odds 
^ 1 is seven, and the minimum possible sample size 
necessary to achieve a posterior odds ^ 1 with probabil
ity greater than 0.5 when HQ is true is 13. In terms of 
required sample size, the posterior odds test proposed by 

0.3989 

-2.576 -1.772 -1.253 -0.500 0.0 0.500 1.253 1.772 2.576 

:, 38.3% ^ 1 

Robert '93 at limit 

79.0% 
Schwarz '78 

92.4% 

Now proposed (cf Aitkin '91) 

99% 

Robert '93 other than at limit 

Figura 1. HPD regions for N(0, 1) observations. The height of the 
rectangles is {In)"^'^ and k = T(2/7I)'^^ is the area of a rectangle of 
width 2T. The four values of T shown are 1/2, (7c/2)'̂ ,̂ TT'̂ ^ and 
(D-'(0.99) or 2.576..., corresponding io k = (2n)-"\ 1, 2''^ and 2.055... 
respectively. 
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Robert is In or about 6.28 times less parsimonious than 
the BIC. For n < 47, it is less parsimonious than the AIC. 

Robert and Caron [1996] compared Robert's posterior 
probabilities for H^ first with the Frequentist p-values 
and then with another statistic they called the Neutral 
Bayes Factor. They showed that although the /^-values 
and the posterior probabilities had different asymptotic 
behaviours, they took roughly similar values over the 
range where the standard normal observation x was be
tween one and three. They concluded that for practical 
purposes their posterior probabilities yielded much the 
same inferences as the Frequentist test. This conclusion, 
however, ignored the factor n^''^ that enters into the pos
terior probabilities for samples larger than a single obser
vation. It was also dependent on the choice of the value 
{2n)~^'^ for k which, as has been seen, leads to a test dis
tinctly less parsimonious than the BIC. 

Their Neutral Bayes Factor was actually the probabil
ity density of a proper conjugate prior distribution cen
tred on zero and chosen such that the ordinary Bayes 
Factor, for any given standard normal observation, would 
be unity. This probability density was then interpreted as 
a Bayes Factor because it could «be interpreted as the 
maximum weight one [could] give to H^ [the comple
ment OÏHQ] for HQ to be accepted (i.e., more rigorously, 
for the probability of HQ to increase from a priori to a 
posteriori)». (Robert and Caron [1996], p. 425). For a 
single standard normal observation, this Neutral Bayes 
Factor was asymptotically equivalent to their posterior 
odds as |x| -^ oo, but it took the values unity at x = 0 and 
infinity in the ranges 0 < |x| ^ 1. This last result was in
terpreted by the authors as either «strong support for HQ 
or, alternatively, as the impossibility to assess quantitat
ively the validity OÍHQ when x is too close to 0» (p. 426). 
It seems unlikely that this statistic could bear the weight 
of the interpretations given to it by its authors without the 
value k = {2%)"^'^ being accepted as normative first. 

Appendix 3. Proof of Theorem 4.1 

Since HQ is precise, 

A = Lik(0o; y)l{E,{Uk\e', y)]lE,{UW\ y)]l and 

R = 

= Lik(0o;y)/ 

[Lik(0o; j)/^,{Lik(0; y)]] 

J [Lik(0o; y)IE,{Uk{e- y)}]fpiy)dy 

Since Lik(0; y) is origin invariant and /,(0) is flat, 
£',{Lik(0; y)} is invariant with y and can be cancelled 
out, leaving 

Uk\e,;y)dy, U\i{B¿y)dy 

Lik(0o; y) Lik(0; y)fmd6 

OEH, 

Lik (̂0; y)ad)de 

OEH, 

/? = Lik(0o;y)^ Uk{eQ.y)fQ{y)dy 
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