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ABSTRACT 

Probabilistc prediction of the value of a given observ­
able quantity given a random sample of past observations 
of that quantity is a frequent problem in the sciences, but 
a problem which has not a commonly agreed solution. In 
this paper, Bayesian statistical methods and information 
theory are used to propose a new procedure which is 
model-free, in that no assumption is required about an 
underlying statistical model, and it is objective, in that a 
reference non-subjective prior distribution is used. The 
proposed method may be seen as a Bayesian analogue to 
conventional kernel density estimation, but one with an 
appropriate predictive behaviour not previously avail­
able. The procedure is illustrated with the analysis of 
some published astronomical data. 

RESUMEN 

Predicción Bayesiana objetiva con modelos 
probabilísticos desconocidos 

En la investigación científica se plantea frecuen­
temente el problema de especificar una distribución de 
probabilidad que, a la vista de una muestra aleatoria de 
observaciones experimentales de una magnitud, permita 
predecir el valor de una observación/wíwra de la misma 
magnitud; este problema de predicción probabilística 
carece sin embargo de una solución generalmente acep­
tada. En este trabajo se utilizan los métodos estadísticos 
Bayesianos y la teoría de la información para proponer 
una solución al problema descrito que no requiere 
suponer conocido un modelo paramétrico que describa el 
comportamiento de las observaciones, y que proporciona 
resultados objetivos en el sentido de que utiliza una dis­
tribución inicial de referencia que, por definición, no es 
subjetiva. El método propuesto puede ser descrito como 

un análogo Bayesiano al procedimiento convencional de 
estimación de densidades mediante núcleos (kernel den­
sity estimation), lo que proporciona un comportamiento 
predictivo adecuado del que no se dispone en la 
metodología convencional. El procedimiento es ejem­
plificado mediante el análisis de un conjunto conocido de 
datos relativos a la velocidad con la que las galaxias se 
desplazan por el universo. 

1. THE PREDICTION PROBLEM 

Let X = {xj, ..., jc,j be a set of n real-valued observa­
tions of some observable real-valued quantity x, and con­
sider a situation where one is interested in a (necessarily 
probabilistic) prediction of a future observation of the 
same quantity. Let us suppone that the observed values 
{xj, ..., x„} may be assumed to be a subset of an ex­
changeable sequence, so that the order in which these 
observations have been obtained is assumed to contain 
no relevant information on the behaviour of the x's. Note 
that, in particular, this includes all cases in which x may 
be assumed to be a random sample from some underlying 
probability model. 

It then follows from the general representation the­
orem (see e.g., Bernardo and Smith, 1994, Ch. 4 and ref­
erences therein) that there exists some probability model 
m(x¿ I 9), labelled by some parameter 0 e 0 , such that the 
joint probability density of x may be written as 

P(X) =/7(Xi, ..., X j = llm(x,\9)p(9)d9 (1) 
0 i=\ 

' Research partially funded with grant PB97-1403 of the DGICYT, Madrid, 
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Consequently, x may always be regarded as a random 
sample from some, typically unknown, probability model 
m(x¿ 19), indexed by some unknown (possibly multi­
dimensional) paramenter 0 G 0 , defined as the limit as 
n -^ 00 of some function of jc, for which a prior distribu­
tion p(9) necessarily exists. Note that this result is an 
existence theorem in probability theory and, hence, it is 
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not subject to any of the polemics often associated to the 
use of Bayesian statistics in the sciences with a subjetive 
prior specification. 

An immediate corollary of the representation theorem 
is that all the information about the value of future obser­
vation X contained in the observed data x is encapsulated 
in its (posterior) predictive distribution 

p{x\x) =p{x\xy, ..., x„) = m{x\e)p{d\x)de, (2) 

where, by Bayes' theorem the posterior distribution 
p{0\x) of the unknown parameter 6 is of the form 

p{B\x)=p{e\x,,...,xj Xp{e) n m{x,\e). (3) 

For any exchangeable data set x, the posterior predictive 
distribution p(x I jc) given by (2) is the solution to the prob­
lem posed: it precisely describes all available information 
about a future observation x. If a point estimate x is desired, 
the mode, the median or the mean ofp{x\x^, ..., x^) could 
be used; confidence regions R{(i) with posterior proba­
bility 1 - a may he obtained as solutions of the equation 
i/?(a) P^^ \x) dx=\ - a. Those are however only partial (if 
very useful) descriptions of the available information 
about a future values of x; the complete solution is simply 
and elegantly encapsulated in p{x\x). Moreover, any 
other from of solution will necessarily violate the basic 
rules of probability theory; unfortunately, this includes 
most conventional proposals, such as those obtained bĵ  
plug-in estimates of the form m{x \ 9), for some estimate 6 
of 9. Naturally, the problem is to find a suitable model 
m(x I 9), and to specify the prior distribution, p(9), for its 
associated parameter 9. 

For a detailed description of Bayesian prediction, including 
the use of dynamic models, see the excellent review paper 
by West (1998), and references therein. 

In some scientific contexts, there are good reasons to 
select a particular model m(x\ 9)\ this may be suggested, 
for instance, by an underlying physical theory, by invari­
ance considerations, or by judicious application of some 
limit theorem. If this is the case, the problem reduces to 
specifying an appropriate, non-subjective, model based, 
'reference' prior distribution n{9) which would let the 
data 'speak for themselves'. The prediction problem 
would then be immediately solved by the corresponding 
reference posterior predictive distribution 

In the long quest for these 'baseline' non-subjective dis­
tributions, a number of requirements have emerged which 
may reasonably be regarded as their necessary properties. 
These include invariance, consistent marginalization, good 
frequency properties, general applicability and limiting ad­
missibility. The reference analysis algorithm, introduced by 
Bemardo (1979b) and further developed by Berger and Ber­
nardo (1989,1992) is, to the best of our knowledge, the only 
available method to derive non-subjective distributions 
which satisfy all these desiderata. For a discussion of the 
many polemic issues in this topic, see Bemardo (1997). For 
an introduction to reference analysis, see Bemardo and Smith 
(1994, Ch. 5), or Bemardo and Ramón (1998). 

In many situations however, it is very difficult to specify 
the probability model m{x \ 9) with a reasonable degree of 
confidence. An exact Bayesian approach then requires to 
specify a very large class of models m{x \ 9), where 0 G 0 is 
often infinitely dimensional, one of whose members hope­
fully provides a good approximation to the underlying prob­
ability mechanism, and a púor p(9) which describes available 
information on this stmcture; popular choices are. mixture 
models with Dirichlet priors (see e.g., West, 1992; Escobar 
and West, 1995, Roeder and Wasserman, 1997, and refer­
ences therein). However, subjetive prior specification within 
this framework is very difficut — ân often polemic—, and the 
reference priors for those models are typically very difficult 
to derive. 

A possible altemative, which will be described in this pa­
per, is to consider an approximate, data-based 'model' which 
may be used as a proxy to the actual, unknown underlying 
model. The more successful techniques to achieve such a 
type of aproximation are known under the general heading of 
kernel density estimation. Those are considered in the next 
section. 

2. KERNEL DENSITY ESTIMATION 

2.1. Conventional Approach 

Let X = {x,, ..., X,} be a random sample from some un­
known underlying model m(x 19). Conventional kernel den­
sity estimation consists on assuming that an appropriate 
proxy for the required predictive density is provided by 

1 " 
p(x\x) = - X q(x\xi, Í), (5) 

where the kernel q(' \ /i, a) is some location-scale probability 
model 

n(x\x) = 7c(x|x,, ..., xj = m(x\9) 7c(0|jc,, ..., xj d9, 

(4) 

^7l(9\x^, ...,x,) ex: 7i(9) Yi m(x¡\9). 

q('\l,,a) = -f('^-^]Jit)>0, fit) dt = 1 (6) 

and (T = â(x) is an estimate of the unknown parameter a (see 
e.g., Silverman, 1986). 
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A large proportion of the literature on kernel density esti­
mation deals with the appropriate selection of the kemel 
function and the corresponding estimate d of its 'window' 
a. The more pupular choice seems to be a normal kemel, 
q{x \¡i, o)-= N(x I n, o\ with the so-called normal reference 
mle, given by 

Ô = {AI3f's n'" ^ 1.06 s n"\ {n-\)s^=Y. i^i-^f^ O) 

as its corresponding estimate (see Scott, 1992, p. 131, 
and references therein). 

This is a plug-in estimate solution and, therefore, it is 
bound to violate basic probability theory principles. In­
deed the use of (5) is found to be both inconsistent under 
marginalization, and incompatible with Bayes theorem 
(West, 1991). 

2.2. A Bayesian Approach 

As described in Section 1, if data x = {xj, ..., x^ are 
assumed to be a subset of some exchangeable sequence, 
then they may be considered as a random sample from 
some unknown underlying model. Note that the ex-
changeabiHty assumption is not unduly restrictive; for in­
stance, the underlying model may well be a mixture 
model, thus allowing to model outlying observations. 

We will assume that for some k, with 0 < ^ < n, the 
underlying model may be approximated by a kernel-type 
mixture based on a subset of size k of the observed data. 
Intuitively, we are assuming that the probabilistic behav­
iour of the exchangeable sequence from which the data 
have been sampled may approximately be described by 
mixtures with k components, where the value of/: has yet 
to be specified. Formally, 

Kemel approximation assumption. Let x¡^ = {x,,..., x̂ } 
be a subset of size k of some exchangeable sequence. It is 
assumed that there is a location-scale kernel q(' | fi, a) 
indexed by positive parameter a, which may depend on 
Xj^, such that, for any other element x in the sequence. 

1 ^ 
^). (8) 

Under the kemel assumption, an approximate express­
ion for the required posterior predictive density p(x \ x„) 
may be obtained. Indeed, it follows from (8) that for any 
partition of the observed datax„ = {x,,..., x,J of the form 
^n = {^k^ Jm}' where x̂  is a size k subset of x ,̂ and j„, 
consists of those observations in x,, which are not in x ,̂ 

with m = n - k and 0 < k <n, one may obtain a reason­
able approximation to /7(y,„ | a), namely 

m m Í k "I 

p(y. k) = n /'()',• k) ~ n i Z ?()', I ̂ j' )̂ \- (9) 
/ = i / = i Lj=\ J 

Thus, for any other element x in the exchangeable se­
quence. 

p(^\Xk,yJ = p(x\(j)pia\Xj^,yJd(T 

7 Z (̂-̂  I ^j' ^) P(^ I ^k' Jm) dcy, (10) 

'j=\ JO 

= 7 Z q(x\xj, a)p((7\x^,yjd(j 

which is the average of k integrated kernels with respect 
to the posterior distribution of a, 

P(<^\Xk,yJ cc p(a) piyjxi^, a) '. 

^M^)ñ j¿^U•I^P^)j• (11) 

Since this is true for all partitions of this type, an estimate 
of the desired posterior predictive distribution may be 
obtained as 

1 
p(x|fc,xj = -XpUI4'>j^^x (12) 

>/=! 

where n^ is an arbitrary number of random partitions of 
the form x„ = {x̂ , j ^ } . It is suggested that n^ should be 
of the same order that the sample size n\ in the examples 
quoted in this paper, the number of simulations n^ has 
been chosen to be equal to the corresponding sample 
size. Note that the solution explicity depends on the 
number k of components in the mixtures which are 
judged necessary for an accurate description the behav­
iour of the data; we postpone to Section 4 our discussion 
of the choice of k. 

The proposed solution conditions on one part of the 
data x ,̂ to build the model, and on the rest of the data, j ^ , 
to learn about its parameter o. This is intended as a work­
able approximation to an exact Bayesian appropach 
which would requiere a probability model on the un­
known sampling distribution and a prior over its par-
amenters what, as mentioned before, may be extremely 
difficult to implement from a non-subjetive viewpoint. 

2.3. Choice of the Kernel Function 

The procedure described could be implemented for 
any choice for the kemel density. However there are sev­
eral arguments which suggest the use of normal kernels: 
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i) Published literature on both kernel density esti­
mation and Bayesian mixture models suggests 
that normal mixtures are typically able to provide 
good approximations to predictive densities (see 
e.g., Diaconis and Ylvisaker, 1985). 

ii) A 'maximum entropy' argument may be used to 
argue that normal kernels are the 'less demand­
ing' of all possible location-scale kernels on the 
real line. Indeed, (see e.g., Bernardo and Smith, 
1994, Sec. 3.4 and references therein) if x is a 
real-valued location quantity defined on (-c, c), 
then the positive, invariant, logarithmic diver­
gence between a density p(x) and the uniform 
density on (-c, c), n(x) = (2c)~\ 

ô{p('), c} = 

= log 2c -

p(x) log — - dx = 
. n{x) 
c 

p(x) logp(x) dx, (13) 

To implement our proposal, there are two problems 
which remain to be solved. First, an appropriate refer­
ence prior n((p) with respect to the model p(y \ x, 0) has 
to be chosen; then, a computable expression for the cor­
responding posterior density for 7i((p ¡y^J given a random 
sample j ,^^ = {y^,..., y^^} of m observations from p(y\x, 0) 
has to be found. In words, we have to provide a reference 
analysis of the mixture model p(y\x, (/)). This is done in 
the next section. 

3. REFERENCE ANALYSIS OF A MIXTURE 
OF NORMAL KERNELS 

3.1. Mixture of Normal Models 
with Known Locations 

For a given known vector x = {x^, ..., x,} e W" and 
unknown 0 > 0, consider the mixture of k normal den­
sities centered at each of the x/s, with common variance 
0, that is 

measures the amount of information about x con­
tained in p(x). If p(x) has both finite mean fi and 
finite variance a^ for all c, then a simple calculus 
of variations argument may be used to prove that, 
as c -> 00, ô{p('), c} is minimized if, and only if 
p(x) = N(x I jÂ, 0"), so that normal kernels may be 
described as those containing the minimum 
amount of information among all possible loca­
tion-scale kernels on the real line. Thus, normal 
kernels suggest themselves as a 'default' option 
for kernel estimation. 

///) If restrictions in the range of possible x values, to 
say an interval (a, b), are relevant, then one may 
work with the unrestricted transformed data 
Zi = log {(x- - a)/{b - x¡)}, use normal kernels to 
obtain p(z | k, z), and transform back to the original 
metric to derive the required predictive density 

p(x \k, x) = p(z I k, z) 
(x - a)(b - xY 

z = log{(x - a)/(b - x)}. (14) 

In the rest of this paper, we will restrict attention to 
normal kernels so that, with the notation established 
above, q(y \p, a) = N(y | p, a). We will find more con­
venient to work in terms of the variance 0 = a ,̂ so that 
we will use kernels of the form 

0-'/̂  
q(y \p, (p) = —j= exp 

271 

(y - Pif 
20 

(15) 

The relevant mixture model will be therefore/?(j |x, 0) = 
= k~^ lL-fl{y\xj, 0), where the xjs are known constants 
and 0 > 0 is an unknown parameter. 

1 ^ 

1 ' 
p{y\x, 0) = -Y. ^(y\^j' 0) = 

(y - xj) 0 
-1/2 

271 
exp 20 

(16) 

j e 

This is a probability model with a single unknown par­
ameter 0 > 0, whose first two moments are immediately 
found to be 

1 ^ 
E [ j k . 0] =-^, ^ = vT. ^p 

1 ^ 
Var[}; |x, 0] = / + 0, s^ = JYJ ^ ~ •̂ )' 

(17) 

The likelihood function which corresponds to a sample 
y m = {jp — 3̂m} of size m is 

m r J n 

Q̂  11 i Z ^ = e^Pl 
ij 

20 

(18) 

where d¡j = (y¡ - x-)^. Clearly, L(0, x ,̂ y J is a computa­
tionally formidable quantity for large k and m values; it is 
known, however that, by definition, the reference prior 
only depends on the asymptotic behaviour of the likeli­
hood function. 

3.2. Asymptotic Behaviour 
of the Likelihood Function 

The probability density of an inverted gamma distribu­
tion with parameters a and P is given by 

http://Rev.RAcad.Cienc.ExactFis.Nat
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Ig(0|a,/Í) = Í0-^^->>exp 
r(a) 0. 

Oí > 0, p>0; 

therefore, the likelihood function (18) may be reex-
pressed as 

m n n ^ 

7 = 1 

^ n ^ E Ç i g i 0 
/ = ! L j = l 

1 ̂  
2' 2 

m r k 

=0'" n ] z w, ig( 0 
/ = 1 1 7 = 1 

(19) 

1^ 
2' 2 

>^. = ^ 

thus, the likelihood function is proportional to the product 
of m mixtures of k inverted gamma densities lg(0 | a, b¿j) 
with a = 1/2, b-j = d^Jl, and weights inversely propor­
tional to ^d.j. 

The logarithmic divergence of an inverted gamma 
density lg(0 | a, p) from a general density /?(0) is given by 

S(a, P) = 
0 lg(0|a, ^) 

d(p 
(20) 

=c + a log /? -- log r(a) - (a + l)EDog 0] - /ÎE[0-^], 

where c is an irrelevant constant; this is minimized if, 
and only if, 

E[log 0] = log ^ - iA(a), E[0-^] = a/A (21) 

where il/(') is the digamma function. The right hand sides 
of (21) are, respectively, the expected values of {log 0} 
and {0"'} when 0 has an inverted gamma lg(0 | a, j8) dis­
tribution; thus, according to the commonly accepted log­
arithmic divergence critérium, (Bernardo, 1987; West 
and Harrison, 1989, Ch. 12) to approximate the density 
of a positive random quantity 0 by an inverted gamma 
distribution, one shoud match the expected values of 
both {log 0} and {0"^}. 

Taking p((p) = Ê  pj lg(01 ̂ , /?p, it follows, after some 
algebra, that the best approximation to this mixture of 
inverted gammas by a single inverted gamma lg(0 | a, P) 
is obtained by the solutionl to the non-linear equation 
system 

/?« 
^(D + log—, iS = 2 a r log a - {¡/(OÍ) = log I 

where 

(22) 

(23) 

are, respectively, the weighted logarithmic and harmonic 
means of the jS '̂s. 

An aproxímate explicit solution to (22) may be ob­
tained making use the Stirling approximation to the 
digamma function, namely, log t - {¡/(t) ^ (20~^ this 
leads to 

{ a ^ t / 2 , ^ ; ^ i r } , i = ( l + l o g ^ 
i ( 0 ) \ - l 

(24) 

The use of (24) to approximate the mixtures of in­
verted gammas in (19) leads to 

1 d, 
L(0, x„ y J ccrUiZ ^ij Ig( <P 2' 2 

m 

/ = 1 

oc 0'" 0-^i«' + 'l exp(-i:è,/0) oc 

X 0-"^^exp(-mè/0), 

where à = m~^l.¿a. and b = m~'S.è,, with 
t. t. d^^^ ( dí^^^-' 

(25) 

df = expl Z Wy log ûiy 
.;=! L j = i 

(26) 

w,.. = 

and where, as before, d¿j = (y¿ - Xj)^. 

3.3. Reference Distributions for 0 

The asymptotic approximation to the likekihood func­
tion derived above provides a heuristic argument to ob­
tain the reference prior. Indeed, it follows from (25) that, 
for large sample sizes m, the posterior distribution of 0 
will be approximately proportional to 0""" "" exp(m ¿>/0), 
which has a maximum at 0 = b/à, the approximate maxi-
mun likelihood estimate of 0. Taking logarithms and ex­
panding around 0, one finds, after some algebra, 

log /7(0 |x , , j J^c + - : J ^ ( 0 - 0 ) ^ /z(0) = a-0-^ (27) 

where c is some irrelevant constant. Hence (Bernardo 
and Smith, 1994, p. 314) the required reference prior 
should be 

71(0) oc h((py^' oc 0-', (28) 

as one could possibly expect for an scale-type parameter. 
A more detailed analysis of the asymptotics involved 
would be necessary for a formal proof. 

By Bayes' theorem 7i(0|x^, y J oc 7i(0) L(0, x̂ , j j ; 
thus, combining (28) and (25) we have an approximate 
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expression for the reference posterior distribution, immedi­
ately identified as an inverted gamma density, mamely 

7r(0 |x^, J J oc <p ^(p "'"^ exp(-m b/cp) cc 

az lg(0 I ma, mb) (29) 

3.4. Approximate Reference Predictive Distribution 

Introducing the approximation (29) in the procedure 
described by (10), and using the known fact that the mix­
ture of normal distributions with inverted gamma distrib­
uted variances produces an Student t distribution, the 
required reference predictive distribution may be ap­
proximated by 

1 ^ 
N(x I Xj, (p) lg(0 I ma, mb) d(j) 

1 ^ ^ 
= - y St(x IX:, Jd, mt) 

(30) 

where 

t = -Y^t., d = 
m 

(31) 

In words, for a given partition of (jĉ , j,„) of the data set 
X, the desired reference predictive density may be ap­
proximated by a mixture or Student kernels centered at 
each of the x/s, with a scale ^Jd, the squared root of a 
weighted mean of weighted harmonic means of the 
squared distances (y • - x̂ )̂ , which plays the same central 
role as that played by the 'window' in conventional ker­
nel density estimation. 

If Ujj random partitions {{xf, y^j^), / = 1, ..., AẐ} of the 
same size k are performed, we can use (12) to obtain 

7r(x|/:,x) = - ¿ / 7 ( x | x f , j í í ) = 
'^p ; = 1 

^p l=\ ^ j=l 

We finally need a procedure to select k. This is devel­
oped in the next section. 

4. PERFORMANCE 

The choice of /: is a particular case of the general prob­
lem of model choice. It has often been argued (see e.g., 
Bernardo and Smith, 1994, Ch. 6 and reference therein) 
that model choice may usefully be treated as a decision 
problem where the utility function is a proper scoring 
rule evaluating the behaviour of the corresponding pre­
dictive distribution. 

Moreover (Bernardo, 1979a; Bernardo and Smith, 
1994, Sec. 3.4), it may be argued that the logarithmic 
scoring rule is the appropriate proper scoring rule to use 
in pure inference problems; it follows that the expected 
utility of using an approximate model p{x) to predict the 
value of an observable random quantity x with density 
p{x) may reasonably be assumed to be of the form 

(33) u{p) - a p(x) log[ p(x)] dx + b, 

where a > 0 and b are arbitrary constants. If the true dis­
tribution j9(x) is unknown but a random sample x^ = {xj, 
..., x }̂ of observations is available, then one may use the 
corresponding Monte Carlo approximation 

1 " 
ü(p) ^a-J] log[p{xj\x,^_,(j))] + b, (34) 

^ j = \ 

where p[xj\x^_^{j)) is the predictive density of Xj based 
on the set all the other observations x^_ i( j) = x^ - {x¡]. 

Equation (34) may be also seen as a cross-validation 
procedure, where the predictive value of the model ̂ (0 is 
judged by its average performance when predicting one 
observation based on all the others. 

The constants a and b in equations (33) and (34) may 
arbitrarily be chosen to define some easily understand­
able scale and origin. In the examples which follow, we 
use the values a and b defined by the equations 

w{N(-10, 1), 0} = 1 M{N(- 10, 1), 3} = 0, (35) 

leading to 

a = 2l9 ^ 0.2222, b=\+ log(27i)/9 ^ 1.2042. (36) 

Thus, the utility of predicting the value of an observ­
able quantity by a standard normal is set to be one if 

Table 1. Mean and standard deviations of the predictive utili­
ties of 20 reference predictive densities for partition sizes k=\, 
..., 12. The expected utility of the conventional kernel estimate 
is 0.709. 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

u 

0.623 
0.701 
0.742 
0.761 
0.765 
0.764 
0.767 
0.766 
0.762 
0.753 
0.739 
0.698 

K 

0.007 
0.011 
0.009 
0.010 
0.005 
0.008 
0.006 
0.006 
0.005 
0.007 
0.006 
0.008 
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Figure 1. Analysis of 14 observations simulated from the mixture 
of two normals (thin line) p{x) = 0.7 N(;c 10, 1) + 0.3 N(;t: 15, 1). Conven­
tional kernel estimate p{x \ x) (dashed line), and optimal Bayes referen­
ce estimate (thick line) %{x \ x). 

centered a its realized value, and zero if centered three 
standard deviations apart; consequently, a negative value 
would indicate a probabilistic prediction which associ­
ates to the actual observation a smaller density than the 
density of a standard normal at the point 3. 

5. EXAMPLES 

5.1. Simulated Data from a Mixture 
of Two Normals 

In his interesting report on Bayesian prediction using 
mixtures of Dirichlet process models. West (1990) 
makes repeated used of the sample of 14 observations 

X = {-1.39, -0.85, -0.54, -0.32, -0.31, -0.30, -0.19, 

-0.02, 0.54, 3.65, 4.21, 4.30, 4.98, 5.51} 

generated from the mixture of two normals 

p{x) = 0.7 N(x|0, 1) #0.3 N(jc|5, 1). 

We used (34), with the constants a and b set to the 
values provided by (36), to evaluate the behaviour of the 
reference predictive distribution n(x | k, x) given by (32) 
forfc= 1,..., 12. 

The procedure was repeated 20 times; Table 1 shows 
the mean and standard deviations of the estimated ex­
pected utilities. It may be appreciated that the expected 
utility is maximized with k = 7 leading to an expected 
utility 0.767. We also used (34) and (36) to evaluate the 
behaviour of the conventional kernel estimate provided 
by (5) and (7); this lead to an expected utility 0.709. 

Figure 1 shows the density from which the data were 
actually generated, its conventional kernel estimate and a 
reference predictive density computed with the optimal par­
tition size, Â: = 7. It is easily appreciated that the Bayesian 
solution provides a much better match to the true density. 

5.2. Astronomical Data 

Postman et al (1986) describe a set of 82 measures of 
speed of galaxies, reproduced in Table 2, which have at­
tracted considerable discussion over their underlying 
structure. We will now illustrate the proposed metodol-
ogy with these data; for alternative Bayesian analysis see 
Roeder (1992), Escobar and West (1995), and Roeder 
and Wasserman (1997). 

As with the simulated data above, we used (34) and 
(36), to evaluate the behaviour of the reference predictive 

Figure 2. Speeds of Galaxies in the Corona Borealis Region 
n = 82. Conventional kernel estimate (dashed line) and Bayes optimal 
reference estimate (k = 72, continuous line). 

Table 2. Ordered Speeds of Galaxies in the Corona Borealis Region (xlO^ m/seg) 

9.172 
18.552 
19.529 
19.989 
20.821 
22.185 
22.914 
24.129 
32.789 

9.350 
18.600 
19.541 
20.166 
20.846 
22.209 
23.206 
24.285 
34.279 

9.483 
18.920 
19.547 
20.175 
20.875 
22.242 
23.241 
24.289 

9.558 
19.052 
19.663 
20.179 
20.986 
22.249 
23.263 
24.366 

9.775 
19.070 
19.846 
20.196 
21.137 
22.314 
23.484 
24.717 

10.227 
19.330 
19.856 
20.215 
21.492 
22.374 
23.538 
24.990 

10.406 
19.343 
19.863 
20.221 
21.701 
22.495 
23.542 
25.633 

16.084 
19.349 
19.914 
20.415 
21.814 
22.746 
23.666 
26.960 

16.170 
19.440 
19.918 
20.629 
21.921 
22.747 
23.706 
26.995 

18.419 
19.473 
19.973 
20.795 
21.960 
22.888 
23.711 
32.065 
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Figure 3. Speeds of Galaxies in the Corona Borealis Region 
n - 82. Conventional kernel estimate (dashed line) and Bayes referen­
ce estimate for /: = 25 (continuous line). 

distribution Ti(x\k, x) given by (32) iox k- 1, ..., 80. It 
was found that the best partition size corresponds to /: = 
72 leading to an expected utility 0.633. We also used (34) 
and (36) to evaluate the behaviour of the conventional 
kernel estimate provided by (5) and (7); this lead to an 
expected utility 0.604. 

Over the background of a histogram of the data. Fig­
ure 2 shows its conventional kernel estimate and the ref­
erence predictive density computed with the optimal par­
tition size, k - 72. It is easily appreciated that the 
proposed Bayesian solution suggests that, to optimize 
predictive power, the model has to be far more complex 
than the tri-modal solution given by conventional kernel 
estimation; speed galaxies appear to have many clusters, 
and those are duly reflected by the reference predictive 
distribution. Indeed, a trimodal solution, similar to that 
obtained by kernel estimation is obtained, for instance, 
with k-15 (see Figure 3) but its expected utility is only 
0.609 showing its smaller predictive power. If simplicity, 
rather than just predictive power, is to be taken into con­
sideration, this may be done within the Bayesian frame­
work by appropriately modifying the utility function. 

It is important to note that the Bayesian solution is a 
predictive distribution, from which one is entitled to de­
rive quantitative probabilistic predictions; since the ref­
erence predictive n{x \ k, x) is a mixture of Student den­
sities this does not even require numerical integration, 
but may be done in terms of the Student distribution 
function. Thus, the probability that the speed of a galaxy 
is, say, larger than 35, is simply 

Pr[x> 35 I x] 7i(x|72, x )Jx = 0.0012. 
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This predictive interpretation, central to most scien­
tific data analysis is not justifiable from a conventional 
kernel density estimation viewpoint. 


