Rev.R.Acad.Cienc.Exact.Fís.Nat. (Esp) Vol. 93, N.^o 2, pp 275-277, 1999 Matemáticas

GENERALIZED RADON SPACES WHICH ARE NOT RADON

(t-additivity/µ-compactness/Radon spaces)

J. FERNÁNDEZ NOVOA

Departamento de Matemáticas Fundamentales. Facultad de Ciencias. UNED. C/ Senda del Rey, s/n. 28040-Madrid (Spain).

Presentado por Pedro Jiménez Guerra el 24 de marzo de 1999. Aceptado el 2 de junio de 1999.

ABSTRACT

For any Borel measure μ in a topological space X we show that τ -additivity and μ -compactness are two concepts closely related (Theorem 2.1). Moreover, if \mathcal{F} is the family of all closed subsets of X, we give two new examples of Radon spaces of type (\mathcal{F}) which are not Radon spaces.

RESUMEN

Para cualquier medida de Borel μ en un espacio topológico X probamos que los conceptos de τ -aditividad y μ -compacidad están estrechamente relacionados (Teorema 2.1). Además, si \mathcal{F} es la familia de todos los subconjuntos cerrados de X, damos dos nuevos ejemplos de espacios de Radon de tipo (\mathcal{F}) que no son espacios de Radon.

1. INTRODUCTION AND PRELIMINARIES

Let X be a topological space not necessarily Hausdorff. We shall denote by $\mathcal{G}(X)$, $\mathcal{F}(X)$, $\mathcal{K}(X)$, $\mathcal{B}(X)$, respectively, the families of all open, closed, compact closed and Borel subsets of X. When no confusion can arise, we shall write $\mathcal{G}, \mathcal{F}, \mathcal{K}$ and \mathcal{B} instead of $\mathcal{G}(X), \mathcal{F}(X), \mathcal{K}(X)$ and $\mathcal{B}(X)$, respectively.

A nonempty family \mathcal{A} of subsets of X is called *directed* upwards if for each A, B in \mathcal{A} there is C in \mathcal{A} such that A $\cup B \subset C$. If \mathcal{A} is directed upwards and $A_0 = \bigcup \mathcal{A}$, we write $\mathcal{A} \uparrow A_0$.

A Borel measure in X is a countably additive measure on B. If μ is a Borel measure in X and $A \subset X$, we let

$$\mu^*(A) = \inf \{\mu(G): A \subset G \in G\}$$

and

$$\mu_*(A) = \sup \{\mu(F): A \supset F \in \mathcal{F}\}.$$

Let μ be a Borel measure in X. A set $B \in \mathcal{B}$ is called

- a) μ -outer regular if $\mu(B) = \mu^*(B)$;
- b) μ -inner regular if $\mu(B) = \mu_*(B)$.

The measure μ is called

A) locally finite if each $x \in X$ has an open neighborhood V_x such that $\mu(V_x) < +\infty$;

B) τ -additive if sup $\{\mu(G): G \in \mathcal{G}_0\} = \mu(\mathcal{G}_0)$ for each $\mathcal{G}_0 \subset \mathcal{G}$ with $\mathcal{G}_0 \uparrow \mathcal{G}_0$;

- C) inner regular if each $B \in \mathcal{B}$ is μ -inner regular;
- D) outer regular if each $B \in \mathcal{B}$ is μ -outer regular;
- E) regular if it is outer and inner regular.

If X is a T₁ topological space, a Borel measure μ in X is called *diffused* when $\mu(\{x\}) = 0$ for each $x \in X$.

If X is a Hausdorff space, a *Radon measure* in X is a locally finite Borel measure μ in X such that

$$\mu(B) = \sup \{ \mu(K) \colon B \supset K \in \mathcal{K} \}$$

for each $B \in \mathcal{B}$.

The Radon measures were introduced in 1973 by L. Schwartz in [7]. In the same year, B. Rodríguez-Salinas introduces in [6] the Radon measures of type (\mathcal{H}) in arbitrary topological spaces, replacing the compact inner regularity of Radon measures by the μ -compact one.

Let μ be a Borel measure in X. A set $B \in \mathcal{B}$ is called μ -compact if for each $\varepsilon > 0$ and each open cover \mathcal{G}_0 of B there is a finite subfamily \mathcal{G}_1 of \mathcal{G}_0 such that $\mu(B - \bigcup \mathcal{G}_1) < \varepsilon$.

$$\mu(B) = \sup \{ \mu(H): B \supset H \in \mathcal{H} \}$$

for each $B \in \mathcal{B}$.

Clearly, each Radon measure μ in X is a Radon measure of type (\mathcal{K}). For a extensive treatment of Radon measures of type (\mathcal{H}) we refer to [5].

The space X is called a *Radon space* when each finite Borel measure in X is a Radon measure. For properties of Radon spaces we refer to ([7], Section 3, Chapter II) and ([2], Section 11).

For any family \mathcal{H} of closed subsets of X, P. Jiménez Guerra and B. Rodríguez-Salinas introduce in [4] the Radon spaces of type (\mathcal{H}). The space X is called a *Radon space of type* (\mathcal{H}) when each finite Borel measure in X is a Radon measure of type (\mathcal{H}).

Clearly, a Radon space is a Radon space of type (\mathcal{K}) .

For any Borel measure μ in X, we show in this paper that the concepts of μ -compactness and τ -additivity are closely related. Indeed, when $\mathcal{H} \subset \mathcal{B}$ and μ satisfy the two following properties

a) For each $H \in \mathcal{H}$ there is $G \in \mathcal{G}$ with $H \subset G$ and $\mu(G) < +\infty$,

b)
$$\mu(G) = \sup \{\mu(H): G \supset H \in \mathcal{H}\}$$
 for each $G \in \mathcal{G}$,

we establish that μ is τ -additive if and only if each $H \in \mathcal{H}$ is a μ -compact set (Theorem 2.1).

This result lets to give other equivalent definition of Radon measure of type (\mathcal{H}) which replaces the μ -compactness of each $H \in \mathcal{H}$ by the τ -additivity of μ , whenever \mathcal{H} satisfies above property (a) (Corollary 2.2).

Moreover, we deduce that each regular, hereditarily Lindelöf space (in particular, each separable metric space) is a Radon space of type (\mathcal{F}) (Theorem 2.4 and Corollary 2.5), and we give two examples of Radon spaces of type (\mathcal{F}) which are not Radon spaces (Examples 3.1 and 3.2).

For the last example we shall recall some standar results.

If $Y \subset X$, then $\mathcal{B}(Y) = \{B \cap Y : B \in \mathcal{B}(X)\}$ ([2], Proposition 3.4).

Let μ be a Borel measure in X and let

$$\mu^{\oplus}(A) = \inf \{ \mu(B) \colon A \subset B \in \mathcal{B} (X) \}$$

for each $A \subset X$. Then the restriction μ_Y of μ^{\oplus} to $\mathcal{B}(Y)$ is a Borel measure in Y. We say that μ_Y is the *restriction* to Y of Borel measure μ . If μ is outer regular, then $\mu^{\oplus} = \mu^*$ and μ_Y is outer regular for each $Y \subset X$ ([2], Proposition 3.6).

2. THE RESULTS

Theorem 2.1. Let $\mathcal{H} \subset \mathcal{B}$ and let μ be a Borel measure in X with the following properties:

a) For each $H \in \mathcal{H}$ there is $G \in \mathcal{G}$ such that $H \subset G$ and $\mu(G) < +\infty$;

b) $\mu(G) = \sup \{\mu(H): G \supset H \in \mathcal{H}\}$ for each $G \in G$.

Then μ is τ -additive if and only if each $H \in \mathcal{H}$ is μ compact.

Proof. Assume that μ is τ -additive and let $H \in \mathcal{H}$. Let \mathcal{A} be an open cover of H and let $\varepsilon > 0$. By (a), there is $G \in \mathcal{G}$ such that $H \subset G$ and $\mu(G) < +\infty$. Let \mathcal{V} be the family of all finite unions of the sets $A \cap G$ where $A \in \mathcal{A}$ and let $V_o = \bigcup \mathcal{V}$. Then $\mathcal{V} \uparrow V_o$ and as μ is τ -additive, we have

$$\sup \ \{\mu(V): \ V \in \ \mathcal{V}\} = \mu(V_{\rm o}) \le \mu(G) < +\infty$$

hence there is $V \in \mathcal{V}$ such that $\mu(V_0 - V) < \varepsilon$, and if $V = \bigcup_{i=1}^n (A_i \cap G)$ with $A_i \in \mathcal{A}$ for i = 1, 2, ..., n, we have

$$\mu\left(H-\bigcup_{i=1}^{n}A_{i}\right)\leq\mu\left(V_{o}-\bigcup_{i=1}^{n}A_{i}\right)\leq\mu\left(V_{o}-V\right)<\varepsilon.$$

Thus *H* is μ -compact.

Conversely, assume that each $H \in \mathcal{H}$ is μ -compact and let $\mathcal{U} \subset \mathcal{G}$ such that $\mathcal{U} \uparrow U_0$. For each $H \in \mathcal{H}$ with $H \subset U_0$ and for each $\varepsilon > 0$ there is a finite subfamily \mathcal{U}_1 of \mathcal{U} such that $\mu(H - \bigcup \mathcal{U}_1) < \varepsilon$, and there is $U_1 \in \mathcal{U}$ such that $\bigcup \mathcal{U}_1 \subset U_1$, hence

$$\mu(H) \le \mu(\bigcup \ \mathcal{U}_1) + \mu(H - \bigcup \ \mathcal{U}_1)$$
$$\le \mu(U_1) + \varepsilon$$
$$\le \sup \{\mu(U): \ U \in \ \mathcal{U}\} + \varepsilon.$$

It follows that

$$\mu(U_{0}) \leq \sup \{\mu(U): U \in \mathcal{U}\}.$$

The reverse inequality is obvious. Therefore, μ is τ -additive.

Corollary 2.2. Let $\mathcal{H} \subset \mathcal{F}$ and let μ be a Borel measure in X with the following properties:

a) For each $H \in \mathcal{H}$ there is $G \in \mathcal{G}$ such that $H \subset G$ and $\mu(G) < +\infty$;

b)
$$\mu(B) = \sup \{\mu(H): B \supset H \in \mathcal{H}\}$$
 for each $B \in \mathcal{B}$.

Then μ is a Radon measure of type (\mathcal{H}) in X if and only if μ is τ -additive.

Proof. By (a), $\mu(H) < +\infty$ for each $H \in \mathcal{H}$ and by Theorem 2.1, each $H \in \mathcal{H}$ is μ -compact if and only if μ is τ -additive.

Corollary 2.3. Let $\mathcal{H} \subset \mathcal{F}$ and let μ be a finite, τ -additive Borel measure in X. Then μ is a Radon measure of type (\mathcal{H}) in X if and only if

$$\mu(B) = \sup \{ \mu(H) \colon B \supset H \in \mathcal{H} \}$$

for each $B \in \mathcal{B}$.

Proof. It follows from Corollary 2.2.

Lemma 2.4. Let μ be a Borel measure in a hereditarily Lindelöf space X. Then μ is τ -additive.

Proof. Let $\mathcal{G}_{o} \subset \mathcal{G}$ such that $\mathcal{G}_{o} \uparrow \mathcal{G}_{o}$. Since \mathcal{G}_{o} is Lindelöf, there is a sequence $(\mathcal{G}_{n}) \subset \mathcal{G}_{o}$ such that $\mathcal{G}_{o} = \bigcup_{n=1}^{\infty} \mathcal{G}_{n}$. Set $U_{n} = \bigcup_{k=1}^{n} \mathcal{G}_{k}$ for each $n \in \mathbb{N}$. Then (U_{n}) is increasing and for each $n \in \mathbb{N}$ there is $V_{n} \in \mathcal{G}_{o}$ such that $U_{n} \subset V_{n}$, hence

$$\mu(G_{o}) = \sup \{\mu(U_{n}): n \in \mathbb{N}\}$$

$$\leq \sup \{\mu(V_{n}): n \in \mathbb{N}\}$$

$$\leq \sup \{\mu(G): G \in G_{o}\}.$$

The reverse inequality is obvious.

Theorem 2.5. Each regular, hereditarily Lindelöf space X is a Radon space of type (\mathcal{F}) .

Proof. Let μ be a finite Borel measure in X. By above lemma, μ is τ -additive. Since X is regular, from ([2], Proposition 6.10) it follows that each $G \in \mathcal{G}$ is μ -inner regular, and from ([2], Proposition 6.2) we deduce that μ is regular. Consequently, μ is a Radon measure of type (\mathcal{F}) by Corollary 2.3.

Corollary 2.6. Each separable metric space X is a Radon space of type (\mathcal{F}) .

3. EXAMPLES

We shall give two examples of Radon spaces of type (\mathcal{F}) which are not Radon spaces.

Example 3.1. The *Sorgenfrey interval* is the space X = [0,1) with the topology generated by the family of all intervals $[a, b) \subset X$. The space X is regular and hereditarily

Lindelöf (see, e. g. [1]) and from Theorem 2.5, it follows that X is a Radon space of type (\mathcal{F}) .

On the other hand, $\mathcal{B}(X) = \mathcal{B}([0,1))$ where $\mathcal{B}([0,1))$ denotes the σ -algebra of the Borel subsets of [0,1) for the Euclidean topology. Let λ be the Lebesgue measure in X. Since λ is diffused and the compact subsets of X are at most countable ([1], 3.1 (b)), we have $\lambda(K) = 0$ for each $K \in \mathcal{K}(X)$, whereas $\lambda(X) = 1$. Thus λ is not a Radon measure in X. Therefore, X is not a Radon space.

Example 3.2. There are sets $Y \subset [0, 1]$ such that both Y and [0, 1] - Y contain only countable compact subsets (see [3], 10.2). Such sets are called *Berstein sets*.

Let Y be a Berstein set with the Euclidean topology. Then Y is a separable metric space, hence it is a Radon space of type (\mathcal{F}) by Corollary 2.6.

Let λ be the Lebesgue measure in [0,1]. Since $\mathcal{F}([0,1]) = \mathcal{K}([0,1])$, we have

 $\lambda_*(Y) = \sup \{\lambda(K): Y \supset K \in \mathcal{K}([0,1])\} = 0.$

On the other hand, If $Y \subset G \in \mathcal{G}([0,1])$ then [0,1] - G is a compact set contained in [0,1] - Y, hence [0,1] - G is countable and since λ is diffused, $\lambda([0,1]) - G) = 0$ and so, $\lambda(G) = 1$. Consequently,

 $\lambda^*(Y) = \inf \{\lambda(G): Y \subset G \in \mathcal{G}([0,1])\} = 1.$

Let $\mu = \lambda_Y$ the restriction to Y of λ . Since μ is diffused, $\mu(K) = 0$ for each $K \in \mathcal{K}(Y)$. Since μ is outer regular, $\mu(Y) = \lambda^*(Y) = 1$. Thus μ is not a Radon measure in Y. Therefore, Y is not a Radon space.

REFERENCES

- 1. Engelking, R. (1977) General Topology. PWN, Warsaw.
- 2. Gardner, R.J. & Pfeffer, W.F. (1984) *Borel measures*. In Handbook of Set-theoretic Topology. K. Kunen and J.E. Vaughan ed. North-Holland. New York, 961-1043.
- 3. Hewitt, E. & Stromberg, K. (1965) *Real and Abstract Analysis*. Springer-Verlag. New York.
- Jiménez Guerra, P. & Rodríguez-Salinas, B. (1975) Espacios de Radon de tipo (H). Rev. R. Acad. Ci. Madrid, LXIX, 4, 761-774.
- Jiménez Guerra, P. & Rodríguez-Salinas, B. (1979) Medidas de Radon de tipo (H) en espacios topológicos arbitrarios. Mem. R. Acad. Ci. Madrid.
- 6. Rodríguez-Salinas, B. (1973) Teoría de la medida sobre los espacios topológicos no localmente compactos. Rev. Mat. Hisp. Amer. 33, 178-192 and 257-274.
- 7. Schwartz, L. (1973) Radon measures on arbitrary topological spaces and cylindrical measures. Oxford Univ. Press.